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Optimal Execution
Assume the agent can also trade in dark pools, i.e. venues which, in
contrast to traditional (or lit) exchanges, do not display bid and ask
quotes to their clients. Trading may occur continuously, as soon as orders
are matched, or consolidated and cleared periodically (sometimes referred
to as throttling). We focus on a particular kind of dark pool known as a
crossing network defined by the SEC as

“...systems that allow participants to enter unpriced orders
to buy and sell securities, these orders are crossed at a spec-
ified time at a price derived from another market...”

I Typically, the price at which transactions are crossed is the midprice
in a corresponding lit trading venue.

I When a trader places an order in a dark pool, she may have to wait
for some time until a matching order arrives so that her order is
executed.

I Thus, on the one hand the trader who sends orders to the dark pool
is exposed to execution risk, but on the other hand does not receive
the additional temporary price impact of walking the LOB.

2 / 14



Model Setup
I Matching orders in the dark pool have no price impact and not

necessarily the whole amount yt she sends is executed.

I Other participants send matching orders to the dark pool which
arrive at Poisson times.

I Let Nt denote a Poisson process with intensity λ, and

I Let {ξj : j = 1, 2, . . . } be a collection of iid corresponding to the
volume of the various matching orders which are sent into the dark
pool.

I The total volume of buy orders placed in the dark pool up to time t
is the compound Poisson process

Vt =
Nt∑
n=1

ξn .

I When a matching order arrives, the agent’s inventory (accounting
also for the continuous trading in the lit market) satisfies

dQν,y
t = −νt dt −min

(
yt , ξ1+Nt−

)
dNt ,
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Model Setup
I Hence, the agent’s cash process X ν,y

t satisfies the SDE

dX ν,y
t = (St − k νt) νt dt + St min

(
yt , ξ1+Nt−

)
dNt .

I Her performance criteria is

Hν,y (t, x ,S , q) = Et,x,S,q

[
Xτ + Qν,y

τ (Sτ − αQν,y
τ )− φ

∫ τ

t

(Qν,y
u )2 du

]
,

where Et,x,S,q [·] denotes expectation conditional on Xt− = x ,
St = S , Qt− = q, and the stopping time

τ = T ∧ inf{t : Qt = 0} ,

represents the time until the agent’s inventory is completely
liquidated, or the terminal time has arrived.

I The value function is

H(t, x ,S , q) = sup
ν,y∈A

Hν,y (t, x ,S , q) .
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DPE
Applying the DPP shows that the value function should satisfy the DPE

∂tH + 1
2σ

2∂SSH − φ q2

+ sup
ν
{(S − k ν) ν ∂xH − ν ∂qH}

+ sup
y≤q
{λE [H (t, x + S min(y , ξ), S , q −min(y , ξ))− H]} = 0 ,

subject to the terminal condition

H(T , x ,S , q) = x + q (S − α q) .

I The term ∂SS represents the diffusion of the midprice,
I The −φ q2 term represents the running penalty,
I The supν{·} term represents optimising over continuous trading in

the lit market,
I The supy≤q term represents optimising over the volume posted in

the dark pool and the expectation is there to account for the fact
that buy volume coming into the dark pool from other traders is
random.
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Ansatz

Make ansaz H(t, x ,S , q) = x + q S + h(t, q). Thus

∂th − φ q2 + sup
ν

{
−k ν2 − ν ∂qh

}
+ λ sup

y≤q
E [h (t, q −min(y , ξ))− h(t, q)] = 0 ,

(1)

subject to the terminal condition h(T , q) = −α q2. Next, the first order
condition for ν implies that the optimal speed to trade in feedback
control form is

ν∗ = − 1

2k
∂qh (2)

so

sup
ν

{
−k ν2 − ν ∂qh

}
=

1

4k
(∂qh)2 .
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Full Execution in Dark Pool
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Full execution in Dark Pool

I Assume that the agent’s desired execution is small relative to the
volume coming into the dark pool,

I ξi ≥ N (for all i = 1, 2, . . . ).

We hypothesise that the ansatz is a polynomial in q. Before proposing
the ansatz note that the DPE contains an explicit q2 penalty, the
optimum over ν is quadratic in ∂qh, and the terminal condition is −α q2.
Thus this suggests the following ansatz for h(t, q):

h(t, q) = h0(t) + h1(t) q + h2(t) q2 ,

with terminal conditions h0(T ) = h1(T ) = 0 and h2(T ) = −α.

8 / 14



The supremum over y becomes

sup
y≤q

E [h (t, q −min(y , ξ))− h(t, q)]

= sup
y≤q

[h (t, q − y)− h(t, q)]

= sup
y≤q

[
−y h1 + (y2 − 2 q y) h2

]
= − 1

4 h2
(h1 − 2 q h2)2 ,

and the optimal dark pool volume in feedback form is

y∗ = q +
1

2

h1
h2
.

From the terminal condition, h2(t) < 0. It remains to be seen that
h1(t) ≥ 0 so that indeed y∗ ≤ q and the admissibility criteria are
satisfied.
Furthermore, the optimal speed of trading, in feedback form, simplifies to

ν∗ = − 1

2k
(h1 + 2q h2) .
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Inserting the above feedback controls into the DPE (1) leads to the
coupled system of ODEs

∂th2 − φ− λ h2 + 1
k h

2
2 = 0 , (3a)

∂th1 +
(
λ+ 1

k h2
)
h1 = 0 , (3b)

∂th0 + 1
k h

2
1 − λ

4

h21
h2

= 0 . (3c)

I Since h1 vanishes at T and its ODE in (3b) is linear in h1, the
solution is h1(t) = 0 and it is also trivial to show that h0(t) = 0.

I Clearly, we see that if there is no dark pool, that is λ = 0, the
problem reduces to that of optimal liquidation already discussed.
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Solving Riccati ODE
The equation for h2 is of Riccati type and can be solved explicitly. Let ζ±

denote the roots of the polynomial φ+ λ p− 1
k p

2 = 0, then write (3a) as

∂th2 = − 1
k (h2 − ζ+)(h2 − ζ−) , ζ± = 1

2k λ±
√

1
4k

2 λ2 + kφ .

Cross multiplying and writing as partial fractions, we have

∂th2

(
1

h2 − ζ+
− 1

h2 − ζ−

)
= − 1

k (ζ+ − ζ−) ,

and integrating from t to T leads to

log

(
h2 − ζ−

h2 − ζ+

)
− log

(
α + ζ−

α + ζ+

)
= − 1

k (ζ+ − ζ−)(T − t) ,

where we have used h2(T ) = −α. Rearranging,

h2(t) =
ζ− − ζ+ β e−γ(T−t)

1− β e−γ(T−t)
,

where the constants are

β =
α + ζ−

α + ζ+
and γ = 1

k (ζ+ − ζ−) .
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Optimal liquidation and inventory

Therefore, the optimal trading strategy is

ν∗t = − 1

k
h2(t)Qν∗,y∗

t and y∗t = Qν∗,y∗

t . (4)

We can obtain the optimal inventory to hold, up to the arrival of
matching order in the dark pool, by solving

dQν∗,y∗

t = −ν∗t dt =
1

k
h2(t)Qν∗,y∗

t dt ,

so that
Qν∗,y∗

t = Q0 exp
{

1
k

∫ T

t
h2(u) du

}
,

and therefore by direct integration

Qν∗, y∗

t = e(ζ
−/k) t

(
1− β e−γ(T−t)

1− β e−γ T

)
N . (5)
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Optimal liquidation and inventory II

In the limit α→∞,

Qν∗,y∗

t
α→∞−−−−→ e

(
ζ−
k + γ

2

)
t sinh

(
γ
2 (T − t)

)
sinh

(
γ
2T
) N .

Furthermore, in the limit λ→ 0, ζ− → −
√
kφ and γ → 2

√
φ/k and thus

Qν∗,y∗

t
(α,λ)→(∞,0)−−−−−−−−→

sinh

(√
φ
k (T − t)

)
sinh

(√
φ
k T

) N ,

which recovers the results from the AC case without the dark pool.
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Simulations
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Figure : Top panels show optimal inventory path and speed of trading prior to
a matching order in the dark pool. The bottom panels show the optimal
inventory and trading speed where we assume that the dark pool matching
order arrives at t = 0.6 right after which inventory drops to zero.
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