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Numerical Optimisation is the study of algorithms which find an
approximate solution to a minimisation problem. In plain English, a
minimisation problem is one where we are trying to find the lowest
point of a given function. A real-world example of this is imagining
being on a mountain, blindfolded, and given only some very local
information about landscape (such as the slope, the height, and
possibly the local curvature), we need to take steps in such a way
as to reach the lowest valley.

Machine Learning (ML) is the study of computer algorithms which
aim to gain generalization abilities after having learned on a set of
data. In plain English, generalization abilities mean that they can
(almost always) correctly predict an ouput for a given input. A
typical example of this is a classification task: labeling an image as a

dog or a cat. The process of learning involves using optimisation algorithms to find the parameters of the
modelwhich minimise the loss. The loss essentially tells us how far off we are from correctly mapping
every single given input data point to its corresponding output. The parameters can simply be thought
of as a collection of real numbers. If we order this collection, we then refer to it as the parameter vector,
and its dimension is the number of real numbers it contains. This relates to the mountain-example that
we have previously seen in the following way. The height of the mountain at each particular point
represents the loss for a particular value of the parameter vector. The horizontal coordinates represent
two different parameters. Because we can only see three dimensions, we can only visualize the loss
when the dimension of the parameter vector is 2. However, in practice, the dimension is much larger.
Minimising the loss is computationally cheaper if this is convex. Loosely speaking, the loss is convex
if its associated “mountain” looks like a paraboloid which points downwards, no matter which pair
of parameters we select out of our paramater vector (see Figure 1). Deep Nets are a particular case of
ML models which mathematically construct an ensemble of neurons. In the case of Deep Nets, the
loss is NOT convex, making the optimisation procedure much more complicated. The complication is
further exacerbated by the fact that for Deep Nets, the dimension of the parameter vector can be in the
order of 1 million, which is much larger than for other ML models. We focus on Deep Nets here.
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Figure 1 – Convex Function (Left) vs Non-Convex Function (Right)

Notion of Budget
We have seen that optimisation algorithms use local information to minimise the loss. However,
obtaining this local information comes at a computational cost (waiting time), which can make the
algorithms very slow in practice, up to the point where they become infeasible. Furthermore, in
ML, the slope, height, and curvature are “measured” at each location with relatively high error. We
can reduce this error by increasing what is known as the batch-size (n), but this comes at increased
computation cost. We define the notion of budget, which is a measure of computation time. For a
batch-size of n and parameter dimension d, it takes us nd, 2nd, and 4nd2 units of budget to compute
the height, the slope, and the local curvature respectively.

First and Second Order Methods
First Order Methods (FOM) use only height and slope information to perform a step. These have
been the state of art in DeepNets due to their cheap cost per iteration (budget cost of 3nd per iteration;



as they do not require computing the curvature). The most popular algorithms are Stochastic Gradient
Descent (SGD) andAdaptiveMomentum (ADAM). ADAM tends to outperform SGD in practice because
it ingeniously uses the slope information to infer approximate curvature information.

Second Order Methods (SOM) also employ curvature information, on the top of height and slope.
Because of this, each iteration offers much more progress than an iteration of a first order method.
When d is low, and the local information can be accurately measured, SOM outperform FOM in
terms of computational time. However, in the case of Deep Nets, d is so large that computing the
curvature is infeasible (as d2 � d). Thus, approaches in the literature generally resort to computing
what is known as Hessian-vector products, which essentially give the curvature in only one direction,
at a budget cost of 4nd. The Hessian-vector products can be used to reconstruct the curvature in a
chosen subspace. This essentially means that we only obtain part of the curvature information at
a significantly reduced cost. The idea is that if the subspace is selected ingeniously, then we could
achieve the same progress that we would if we had the complete curvature information, but at a
much more reduced cost. If we managed to do this, then SOM would outperform FOM. However,
selecting such a subspace is far from trivial, and represents our main challenge here. This challenge
is further aggravated due to the loss landscape not being convex.

Our Proposed Algorithm and Results
The algorithm we propose is a Trust-Region (TR) algorithm. A TR algorithm is one which builds a
model of the landscape at the current location based on the slope and (subspace) curvature, and uses
it to take a step. The model is only “trusted” within a ball, whose radius is updated at each iteration
based on the progress achieved.
Our algorithm draws upon the ones in the literature, but has the following differences: (1) the
dimension of the subspace is much smaller: 3 - 10 (it is 200 in the literature); (2) The subspace
selection is based on the cheaply available ADAM step; (3) The first order information used in the
TR model is, loosely speaking, averaged over the past few values (unlike just the local one as is
typical in the literature). Point (1) is meant to save on computation cost. However, because the
subspace is of smaller dimension than typical, it is harder to select it to get meaningful second order
information. Bymeaningful secondorder informationwemean informationwhichwill improveupon
the progress made when just first order information is employed. If the second order information is
not meaningful, then we are essentially wasting budget. Point (2) is meant to improve the subspace
selection and thus compensate for the drawbacks of Point (1). Point (3) is meant to help navigating
potential ripples in the landscape better. We name our proposed algorithm NLTR.
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Figure 2 – NLTR vs SGD/ADAM: Varying the
Subspace Dimension.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Budget 1e7

0

20

40

60

80

100

120

Te
st
 A
cc

ur
ac

y 
(%

)

Test Accuracy Budget Plot
SGD, lr=0.01
ADAM, lr=0.001
NLTR (6D), beta1=0, beta 2=0
NLTR (6D), beta1=0.3, beta 2=0.4
NLTR (6D), beta1=0.6, beta 2=0.8
NLTR (6D), beta1=0.99, beta 2=0.999

Figure 3 – NLTR vs SGD/ADAM: Varying the
Momentum Parameters.

In Figures 2 and 3, we see plots of test-accuracy vs budget for NLTR with different parameter values,
compared against the state of art: ADAM and SGD. We see that for best parameter choices, NLTR
underperforms SGD and ADAM, being about 8 times slower. This suggests that in order to make
SOM competitive, we must come up with a better subspace selection technique. NLTR does however
outperfom other approaches in the literature, who are typically 10 times slower. Finally, we believewe
can enhance our method using concept of "momentum" with TR and this will be further investigated.
Mr Jan Fiala, Product Manager for Optimization), at NAG said:

“Training Deep Nets is a highly nontrivial problem which attracts a lot of attention all over the
world and any improvement will have a significant impact. We are very proud to take part in
this research and we are excited about the progress Constantin has made so far. Success doesn’t
come easy and it will be our pleasure to explore this topic further during the research project.“


