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Abstract We are concerned with geometric properties of transonic shocks as
free boundaries in two-dimensional self-similar coordinates for compressible
fluid flows, which are not only important for the understanding of geometric
structure and stability of fluid motions in continuum mechanics but also fun-
damental in the mathematical theory of multidimensional conservation laws. A
transonic shock for the Euler equations for self-similar potential flow separates
elliptic (subsonic) and hyperbolic (supersonic) phases of the self-similar solu-
tion of the corresponding nonlinear partial differential equation in a domain
under consideration, in which the location of the transonic shock is apriori un-
known. We first develop a general framework under which self-similar transonic
shocks, as free boundaries, are proved to be uniformly convex, and then apply
this framework to prove the uniform convexity of transonic shocks in the two
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longstanding fundamental shock problems — the shock reflection-diffraction by
wedges and the Prandtl-Meyer reflection for supersonic flows past solid ramps.
To achieve this, our approach is to exploit underlying nonlocal properties of
the solution and the free boundary for the potential flow equation.
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1 Introduction

We are concerned with geometric properties of transonic shocks as free bound-
aries in two-dimensional self-similar coordinates for compressible fluid flows,
which are not only important for the understanding of geometric structure and
stability of fluid motions in continuum mechanics but also fundamental in the
mathematical theory of multidimensional conservation laws (see [5, 14, 17]).
Mathematically, a transonic shock for the Euler equations for potential flow
separates elliptic (subsonic) and hyperbolic (supersonic) phases of the self-
similar solution of the corresponding nonlinear partial differential equation
(PDE) in a domain under consideration, in which the location of the transonic
shock is aprior: unknown. The Rankine-Hugoniot conditions on the shock, to-
gether with the nonlinear PDE in the elliptic and hyperbolic regions, provide
the sufficient overdeterminancy for finding the shock location. This enforces
a restriction to the shock and yields its fine properties such as its possible
geometric shapes, which is the main theme of this paper. For this purpose, we
formulate the transonic shock problem as a one-phase free boundary problem
for the nonlinear elliptic PDE in a domain with a part of the boundary fixed,
as illustrated in Fig. 2.1. More precisely, we first develop a general frame-
work under which self-similar transonic shock waves, as the free boundaries
in the one-phase problem, are proved to be uniformly convex, and then apply
this framework to prove the uniform convexity of transonic shocks in the two
longstanding fundamental shock problems — the shock reflection-diffraction by
wedges and the Prandtl-Meyer reflection for supersonic flows past solid ramps.
In particular, the convexity of transonic shocks is consistent with the geomet-
ric configurations of shocks observed in physical experiments and numerical
simulations; see e.g. [4, 11, 12, 27], [18, 19, 28, 32, 36, 40|, [24-26, 29, 41], and
the references cited therein. Also see [9, 10, 31, 33, 34, 37, 39] for the geometric
structure of numerical Riemann solutions involving transonic shocks for the
Euler equations for compressible fluids.
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One of our key observations in this paper is that the convexity of transonic
shocks is not a local property. In fact, for the regular shock reflection-diffraction
problem as described in §7.1, the uniform convexity is a result of the interaction
between the cornered wedge and the incident shock, since the reflected shock
remains flat when the wedge is a flat wall. Therefore, any local argument is not
sufficient to lead to a proof of the uniform convexity. In this paper, we develop
a global approach by exploiting some nonlocal properties of transonic shocks in
self-similar coordinates and employ it to prove that the transonic shocks must
be convex. Our approach is based on two features related to the global and
nonlinear phenomena. One is that the convexity of transonic shocks is closely
related to the monotonicity properties of the solution, which is derived from
the global structure in the applications. These properties are also crucial in the
proof of the existence of the two shock problems in [3, 14]. The other is that
the Rankine-Hugoniot conditions, combined with the monotonicity properties,
enforce the nonlocal dependence between the values of the velocity at the
points of the transonic shock, as well as the nonlocal dependence between the
velocity and the geometric shape of the shock. Moreover, for this problem, it
seems to be difficult to apply directly the methods as in [7, 8, 20], owing to
the difference and more complicated structure of the boundary conditions.

The convexity of shock waves is not only an important geometric property
observed frequently in physical experiments and numerical simulations, but
also crucial in the analysis of multidimensional shock waves. For example,
the convexity property of transonic shocks plays an essential role in the proof
of the uniqueness and stability of shock waves with large curvature in [15].
Therefore, our approach can be useful for other nonlinear problems involving
transonic shocks, especially for the problems that cannot be handled by the
perturbation methods.

In particular, as an application of our general framework for the convex-
ity of shocks, we prove the uniform convexity of transonic shocks in the two
longstanding fundamental shock problems. The first is the problem of shock
reflection-diffraction by concave cornered wedges as analyzed in §7.1. It has
been analyzed in Chen-Feldman [13, 14], in which von Neumann’s sonic and
detachment conjectures for the existence of regular shock reflection-diffraction
configurations have been solved all the way up to the detachment wedge-angle
for potential flow. The second is the Prandtl-Meyer reflection problem for su-
personic flow past a solid ramp as analyzed in §7.2. Elling-Liu [21] made a first
rigorous analysis of the problem for which the steady supersonic weak shock
solution is a large-time asymptotic limit of an unsteady flow under certain
assumptions for an important class of wedge angles and potential fluids. Re-
cently, in Bae-Chen-Feldman [2, 3], the existence theorem for the general case
all the way up to the detachment wedge-angle has been established via new
techniques based on those developed in Chen-Feldman [14]. For both prob-
lems, we apply the general framework developed in this paper to prove the
uniform convexity of the transonic shocks involved.

The study of geometric properties of free boundaries, such as the convexity
of free boundaries and the monotonicity properties of the corresponding solu-
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tions under consideration, is fundamental in the mathematical theory of free
boundary problems; see [6-8, 20, 22, 23, 38] and the references cited therein.
Furthermore, as mentioned earlier, the convexity of free boundaries has played
an essential role in the analysis of the uniqueness and stability of solutions of
the free boundary problems, as shown in [15].

The organization of this paper is as follows: In §2, we introduce the po-
tential flow equation and the Rankine-Hugoniot conditions on the shock, and
set up a framework as a general free boundary problem on which we focus
in this paper, and then we present the main theorem for this free boundary
problem. In §3, we show some useful lemmas. Then we develop our approach
to prove first the strict convexity of the shock, i.e., Theorem 2.1 in §4, and to
prove further the uniform convexity of the shock on compact subsets of its rel-
ative interior, i.e., Theorem 2.3 in §5. In §6, we establish the relation between
the strict convexity of the transonic shock and the monotonicity properties of
the solution, i.e., Theorem 2.2. Finally, in §7, we apply the main theorems to
prove the uniform convexity of transonic shocks in the two shock problems —
the shock reflection-diffraction by wedges and the Prandtl-Meyer reflection for
supersonic flows past solid ramps.

A note regarding terminology for simplicity: Since our main concern is
the convexity of the elliptic (subsonic) region for which the transonic shock
as a free boundary is a part of the boundary of the region throughout this
paper, we use the term — convexity — for the free boundary, even though
it corresponds to the concavity of the shock location function in a natural
coordinate system. Moreover, we use the term — wuniform convexity — for
a transonic shock to represent that the transonic shock is of non-vanishing
curvature on any compact subset of its relative interior.

2 The Potential Flow Equation and Free Boundary Problems
2.1 The potential flow equation

As in [1, 13], the Euler equations for potential flow consist of the conservation
law of mass for the density and the Bernoulli law for the velocity potential ¥:

Otp + Vi - (pVx¥) =0, (2.1)
1

where By is the Bernoulli constant determined by the incoming flow and/or
boundary conditions, x = (z1,z2) € R?, i(p) = |/ @dT for the pressure
function p = p(p), and v = V¥ is the velocity.
For polytropic gas, by scaling,
P’ 2 -1 ;
plp)="—, c(p)=p"", ilp)=——
gl y—1

where ¢(p) is the sound speed.
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If the initial-boundary value problem is invariant under the self-similar
scaling:

4
(th) - (OéX, Oét), (p7 g/) - (p7 E) for a # Oa

then we can seek self-similar solutions with the form:
1
px,t) = pl€), (k1) = t(p(€) + SIE)  for € = (&1,6) = 7,

where ¢ is called a pseudo-velocity potential that satisfies Dy := (¢, , pe,) =
v — &, which is called a pseudo-velocity. The pseudo—potential function ¢
satisfies the following potential flow equation in the self-similar coordinates:

div(pDy) + 2p = 0, (2.3)

where the density function p = p(|Dyp|?, ¢) is determined by

p(IDe,0) = (5" — (1= Dl + 51D) 7T, (24)

with constant pg > 0, and the divergence div and gradient D are with respect
to the self-similar variables &.

From (2.3)—(2.4), we see that the potential function ¢ is governed by the
following potential flow equation of second order:

div(p(|Del*, ©) D) + 2p(|Dep]?, ) = 0. (2.5)

Equation (2.5) written in the non-divergence form is
(02 - @21)4005151 - 2@519052905152 + (02 - 9022)805252 + 202 - |D30|2 =0, (26)
where the sound speed ¢ = ¢(|D¢|?, ¢, po) is determined by
_ _ _ 1
A(IDe 0 p0) = T (Dol 003 ) = 05 = (v = 1) (51D + ). (27)

Equation (2.5) is a second-order equation of mixed hyperbolic-elliptic type, as
it can be seen from (2.6): It is elliptic if and only if

|D90| < C(|D90|2790ap0)7 (28)

which is equivalent to

2

ﬁ(ﬂg_l —(v— 1)90)- (2.9)

Dol < sl i=
Moreover, from (2.6)—(2.7), equation (2.5) satisfies the Galilean invariance
property: If (&) is a solution, then its shift ¢ (& — &) for any constant vector
& is also a solution. Furthermore, ¢(€) + const. is a solution of (2.5) with
adjusted constant pg correspondingly in (2.4).
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One class of solutions of (2.5) is that of constant states that are the solutions
with constant velocity v = (u,v). This implies that the pseudo-potential ¢ of
a constant state satisfies Dy = v — & so that

Pl€) = —3JEP +v-E+C, (210)

where C is a constant. For such ¢, the expressions in (2.4)—(2.7) imply that
the density and sonic speed are positive constants p and c, i.e., independent of
&. Then, from (2.8) and (2.10), the ellipticity condition for the constant state
is

€ —v|<ec

Thus, for a constant state v, equation (2.5) is elliptic inside the sonic circle,
with center v and radius c.

2.2 Weak solutions and the Rankine-Hugoniot conditions

Since the problem involves transonic shocks, we define the notion of weak
solutions of equation (2.5), which admits shocks. As in [13], it is defined in the
distributional sense.

Definition 2.1. A function ¢ € I/Vlicl(ﬂ) is called a weak solution of (2.5) if
(i) qu —(y=1)(¢+3De*) 20 ace. in 2

(i) (p(IDel*, ), p(IDg[*, 0)|Dpl) € (Lioe(£2))*:
(iii) For every ¢ € CF(12),

jﬂ (P(IDl?. ¢)De - DC — 2p(|Dgf2, )C)dE =0, (2.11)

A piecewise C? solution ¢ in 2, which is C? away from and C' up to
the C'-shock curve S, satisfies the conditions of Definition 2.1 if and only
if it is a C*-solution of (2.5) in each subregion and satisfies the following
Rankine-Hugoniot conditions across curve S:

[p(1D¢|?, ) Dy - v]s = 0, (2.12)
¢ls =0, (2.13)

—

where the square bracket [ - |s denotes the jump across S, and v is the unit nor-
mal vector to S. Condition (2.13) follows from the requirement: ¢ € W, (1)
for piecewise-smooth ¢, and condition (2.12) is obtained from (2.11) via in-
tegration by parts and by using (2.13) and the piecewise-smoothness of (.
Physically, condition (2.12) is owing to the conservation of mass across the
shock, and (2.13) is owing to the irrotationality. From now on, we denote
Dy -v =20,p =, when no confusion arises.

It is well known that there are fairly many weak solutions to conservation
laws (2.5). In order to single out the physically relevant solutions, the entropy
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condition is required. A discontinuity of Dy satisfying the Rankine-Hugoniot
conditions (2.12)—(2.13) is called a shock if it satisfies the following physical
entropy condition:

The density function p increases across the discontinuity
. o (2.14)
in the pseudo-flow direction.

From (2.12), the entropy condition indicates that the normal derivative func-
tion ¢, on a shock always decreases across the shock in the pseudo-flow di-
rection. That is, when the pseudo-flow direction and the unit normal vector v
are both from state (0) to (1), then p; > po and @1, < Yo, -

2.3 General framework and free boundary problems

Now we develop a general framework for the transonic shocks as free boundary
problems, on which we will focus our analysis in this paper.

As in Fig. 2.1, let {2 be a bounded, open, and connected set, and 02 =
Tshock U I'1 U I's, where the closed curve segment [y,ock is a transonic shock
that separates a pseudo-supersonic constant state (0) outside {2 from a pseudo-
subsonic (non-constant) state (1) inside 2, and Iy U I3 is a fixed boundary
whose structure will be specified later. The dashed ball B, (Op) is the sonic
circle of state (0) with center Oy = (ug,vg) and radius ¢y. Note that Iypock is
outside of B, (0p) because state (0) is pseudo-supersonic on I'ghock. A and B
are the endpoints of the free boundary Iynock, while 74 and 7p are the unit
tangent vectors pointing into the interior of I'ypocx at A and B, respectively.

Fig. 2.1 Free boundary problems

Denote v = (ug, vg). Then the pseudo-potential of constant state (0) with
density po > 0 has the form:

®o = —%(é —vo)”. (2.15)
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Let
¢ = —¢o.
Then we see from (2.6) that ¢ = ¢ — g satisfies the following equation in {2:

(62 - @21)%151 - 29051@62(1)5152 + (C2 - 3022)455252 =0, (216)

where ¢ = ¢(|Dp|?, ¢, po) is the sound speed, determined by (2.7). Along the
shock curve Iyhock that separates the constant state (0) with pseudo-potential
o from the non-constant state ¢ in (2, the boundary conditions for ¢ are:

(rb = 07 P(|D¢’+D<PO|2;¢+ SDO)D(¢+S00) v = pODSOO vooon Fshocka (217)

from the Rankine-Hugoniot conditions (2.12)—-(2.13).

Now we state the main results of this paper. We first state the following
structural framework for domain {2 under consideration.

From now on, I'° denotes the relative interior of a curve segment I'. In
particular, I3, is the relative interior of Ispock.

Framework (A) — The structural framework for domain 2:

(i) Domain {2 is bounded. Its boundary 042 is a continuous closed curve with-
out self-intersections, piecewise C1® up to the endpoints of each smooth
part for some « € (0,1), and the number of smooth parts is finite.

(ii) At each corner point of 012, angle 6 between the arcs meeting at that point
from the interior of {2 satisfies 6 € (0, 7).

(iil) 092 = I'yhoek W 1 U Iy, where Iinock, I1, and I are connected and disjoint,
and both I’ Sohock and I'7 u I'» are non-empty. Moreover, if I'; # ¢ for some
i € {1,2}, then its relative interior is nonempty, i.e., I'? # .

(iv) Tshock includes its endpoints A and B with corresponding unit tangent
vectors 74 and Tp pointing into the interior of I'shock respectively. If I #
&, then A is a common endpoint of Iynecx and 7. If I # &, then B is a
common endpoint of I'yock and I5.

If 74 # +7p, define the cone:
Con:={rra+stp : r,s€ (0,00)}.
Then we have

Theorem 2.1. Assume that domain (2 satisfies Framework (A). Assume that
peCH )N C*(RUTY, ) N C3(2) is a solution of (2.16)—(2.17), which is
not a constant state in (2. Moreover, let ¢ satisfy the following conditions:

(A1) The entropy condition holds across I'shock: p(|De|?,¢) > po and ¢, < 0
along I'ihock, where v is the interior normal vector to Ishock, i.€., pointing
mnto f2;

(A2) There exist constants C1 > 0 and oy € (0,1) such that (9], ,,, 7 < C1;
(A3) In 20U I3, ., equation (2.16) is strictly elliptic: ¢ — |D(¢ + po)|*> > 0;
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Tihock 45 C? in its relative interior;

T4 # 715, and {P + Con} n 2 = & for any point P € I'shock;

>
AN

There exists a vector e € Con such that one of the following conditions
holds:
(i) It # &, and the directional derivative ¢ cannot have a local maxi-
mum point on I'Y U {A} and a local minimum point on Iy,
(i) Iy # &, and ¢ cannot have a local minimum point on I and a
local maximum point on Iy U {B},
(i) ¢e cannot have a local minimum point on Iy U Iy,
where all the local mazimum or minimum points are relative to {2.

Then the free boundary I'ghock @5 a convex graph. That is, there exists a concave
function f € CH*(R) in some orthonormal coordinate system (S,T) in R? such
that

Tshock = {(S,T) : S=f(T), Ta <T<TB}, (2 18)

n{Ta<T <Tg}c{S<f(T)} ’
with f € C*((Ta,Tg)), and shock Iyhock 18 strictly convex in its relative inte-
rior in the sense that, if P = (S,T) € I3 . and f"(T) = 0, then there exists
an integer k > 1, independent of the choice of the coordinate system (S,T),
such that

T =0 forn=2,...,2k—1, (1) < 0. (2.19)

The number of the points at which f"(T) = 0 is at most finite on each compact
subset of 19 - In particular, the free boundary Ishocx cannot contain any
straight segment.

Remark 2.2. Conditions (A2) and (A5)—(A6) of Theorem 2.1 are the require-
ments on the global behavior of solutions. In fact, (A5) ensures that there is a
coordinate system in which the shock is a Lipschitz graph globally.

Remark 2.3. Condition (A6) allows us to deal with three different kinds of
boundary conditions. Moreover, at each of the endpoints of I'shock, the ellip-
ticity can be either uniform or degenerate. Some applications to each case can
be found in §7.

Remark 2.4. The assumption that ¢ is not a constant state means that ¢
cannot be of the form: ¢ = a1 + (az,as3) -§ in 2, where a;j,j = 1,2,3, are con-
stants. In fact, this assumption can be guaranteed by the boundary conditions
assigned along Iy U I in the applications in §7.

In the next theorem, we show that, if assumptions (Al)-(A4) and (A6)
hold, then a monotonicity condition for ¢ near I3 _ , , which is slightly stronger
than condition (A5), is the necessary and sufficient condition for the strict
convexity of shock I'yhock-
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Theorem 2.2. Let 2 and ¢ be as in Theorem 2.1 except condition (A5). Then
the fact that the free boundary I'shock S a strictly convexr graph in the sense
of (2.18)~(2.19) in Theorem 2.1 is the necessary and sufficient condition for
the monotonicity property that e > 0 on Fsohock for any unit vector e € Con,

where Fsohock is the relative interior of I'shock-

Remark 2.5. Let 2 and ¢ be as in Theorem 2.2, including that the mono-
tonicity property (or equivalently, the strict convexity of I'shoek) holds. In ad-
dition, assume that, for any unit vector e € Con and any point € in the fixed
boundary part It U Is, ¢e satisfies that either ¢pe(€) = 0 or ¢o cannot attain
its local minimum at & with respect to 2. Then ¢e > 0 in 2 U IS . for any
unit vector e € Con.

The proof of Remark 2.5 is given after the proof of Theorem 2.2 in §6.
Moreover, the assumptions of Remark 2.5 can be justified for the two appli-
cations: the regular shock reflection problem and the Prandtl-Meyer reflection
problem; see §7.

Furthermore, under some additional assumptions that are satisfied in the
two applications, the shock curve is uniformly convex in its relative interior in
the sense defined in the following theorem:

Theorem 2.3. Let {2 and ¢ be as in Theorem 2.1. Furthermore, assume that,
for any unit vector e € R?, the boundary part I U Iy can be further decomposed
so that

(A7) T u Iy = Tyulyulyu fg, where some of I; may be empty, I is
connected for each i = 0,1,2,3, and all curves I are located along 012
in the order of their indices, i.e., non-empty sets fj and Iy, k > 7,
have a common endpoint if and only if either k = 5+ 1 or I; = & for
alli = j+1,...,k — 1. Also, the non-empty set I; with the smallest
(resp. largest) index has the common endpoint A (resp. B) with [ihock-
Moreover, if I # & for some i € {0,1,2,3}, then its relative interior is
nonempty: fio # J;

(A8) ¢e is constant along fo and fg;

(A9) Fori = 1,2, if ¢e attains its local minimum or mazimum relative to 2
on I'?, then ¢e is constant along I%;

(A10) One of the following two conditions holds:
(1) Either I = & or Iy = ;
(ii) Both It and Iy are non-empty, and Iy = &, so that I has the
common endpoint B with I'ghock. At point B, the following conditions
hold:

— Ifvg(B)-e <0, then ¢e cannot attain its local mazimum relative
to 2 at B,

— Ifvgh(B)-e =0, then ¢pe(B) = ¢e(Q*) for the common endpoint
Q* of I'y and Iy,

where vgp(B) = lim v(P), which exists since Ishock is C1 up
rd . .>P—B
to B.

shoc!
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Then the shock function f(T) in (2.18) satisfies that f”(T) < 0 for all T €
(T4, Tg); that is, Ishock 8 uniformly convexr on closed subsets of its relative
interior.

Remark 2.6. By (2.17) and condition (A1) of Theorem 2.1, it follows that
¢ < 0in 2 near 'spock- Since Ishock 98 the zero level set of ¢, then the following
statements hold (see also Lemma 3.2(v)):

(i) The convezity of I'shock 1S equivalent to the fact that ¢rr =0 on Iypock-
Moreover, by (2.19), if ¢rr = 0 at some P € I'gock, then there exists an
integer k > 1 such that

Mp=0 forn=2,...,2k—1, 0% p >0 atP, (2.20)

where k is the same as in (2.19). In particular, this implies that k is
independent of the choice of the coordinate system (S,T) used in (2.18);
(ii) The conclusion of Theorem 2.3 is equivalent to the following: ¢rr > 0
along Fsohock, where Fs(iwck is the interior points of I'shock-

Remark 2.7. If the conclusion of Theorem 2.3 holds, then the curvature of

Fshock:
f"(T)
(1+(f(1))?)

has a positive lower bound on any closed subset of (Ta,Tp).

3/2

Remark 2.8. The definition of Iy and Iy is motivated by the observation
that ¢e s constant along the sonic arcs in the two shock problems; see the
applications in §7 for more details.

Remark 2.9. We can simplify (2.15) as follows: By the Galilean invariance
of the potential flow equation (2.16) (i.e., invariance with respect to the shift
of coordinates), we assume without loss of generality that vo = (0,0); indeed,
this can be achieved by introducing the new coordinates & = (&1 — ug, &2 — o).
Furthermore, we choose constant py in (2.4) to be the density of state (0).
Then the pseudo-potential of state (0) is

o = —%IEI2~ (2.21)

We will use this form in the proof of the main theorems.

Remark 2.10. Rewrite the condition: ¢, < 0 in (Al), as Dy -v < Dyq - v.
Then, replacing ¢ + po by @ in the second equality in (2.17) and using that
p > po by (A1) for py > 0, we have

D(po V> D(p v >0 on Ishock- (2.22)

The theorems stated above are proved in §3-§6. In §3, we first prove some
general properties of the free boundary Iynock, and then derive some addi-
tional properties from the assumptions in the theorems. In §4-§6, we employ
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all of these properties to prove Theorems 2.1-2.3. Specifically, we prove The-
orem 2.1 in §4, Theorem 2.3 in §5, and Theorem 2.2 in §6. Then, in §7, we
apply the general framework to show the convexity results for the two shock
problems: the shock reflection-diffraction problem and the Prandtl-Meyer re-
flection problem. In the appendix, we construct paths in {2 satisfying certain
properties — these paths are used in the proof of the main results.

In the rest of the paper, we use the following terminology: A statement
that a function attains a local extremum at P € 0f2 means that the local
extremum is relative to 2. In the case when the local extremum is along (or
relative to) 012, we always state that explicitly.

3 Basic Properties of Solutions

In this section, we list several lemmas for the solutions of the self-similar po-
tential flow equation (2.16), which will be used in the subsequent development.
Some of them have been proved in Chen-Feldman [14] for a specific geometric
situation for the shock reflection-diffraction problem. Here we list these facts
under the general conditions of Theorem 2.1 and present them in the form
convenient for the use in the general situation considered here. For many of
them, the proofs are similar to the arguments in [14], in which cases we omit
or sketch them only below for the sake of brevity.

3.1 Additional properties from (A1)—(A5)

Let ¢ € C(2) n C*(2 U IT§,4) N C3(£2) be a solution of (2.16)-(2.17). In

this subsection, we use the results of [14, Lemma 6.1.4] to show some proper-
ties as the consequences of conditions (A1)—(A5) of Theorem 2.1. First, for a
given unit constant vector e € R?, we derive the equation and the boundary
conditions for ¢e.

Let el be the unit vector orthogonal to e, and let (S,T) be the coordinates
with basis {e,e'}. Then equation (2.16) in the (S, T)-coordinates is

(¢ — 98 bss — 2psprdsT + (¢ — o1)prr = 0. (3.1)
Differentiating (3.1) with respect to S and using the Bernoulli law:
0sc = —(y = 1)(ps¢ss + prosr),
we obtain the following equation for w = 0g¢ = Oe¢:

(? — p%)wss — 2psprwsr + (¢ — o7 )wrr
+ (0s(c® = %) — (v = Dpsérr)ws (3.2)
— (20s(pser) — 20197 + (v — Vordrr)wr = 0.

Since the coefficients of the second-order terms of (3.2) are the same as the
ones of (3.1), we find that (3.2) is strictly elliptic in 2 U I'J_ .. Using the
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regularity of ¢ above, we find that the coefficients of (3.2) are continuous on
20 TIY, . Thus, (3.2) is uniformly elliptic on compact subsets of 2 U I'g .
For the boundary conditions along I ynock, we first have

¢=0 along I'shock.

Thus, the unit normal vector ¥ and the tangent vector 7 of I'yock are

V= (v1,10) = ﬁ;i', r=(r1,m) = (—%&f;jm). (3.3)

Notice that, from the entropy condition — condition (A1) of Theorem 2.1, we
have

D¢ # 07 1Y > Po on Fshocka

so that (3.3) is well defined. Taking the tangential derivative of the second
equality in (2.17) along I'yhock and using (3.3), we have

(=06, ® 0c, + ¢, 0 0c,) ((pDo — poDpo) - D) = 0 on I'ypock-

From this, after a careful calculation by using equation (2.16) (see [14, Sect.
5.1.3] for details), we have

D?¢[T,h] =0 on Isnocks (3.4)
where D?¢[a,b] := Z?,jzl a;b;jd;j¢ and
h:—p_po((c2— 2) I/—( 2+ 02) 7-) (35)
Poc? p Pu)Pu PPy T POC )PrT). :

Using (2.22) and conditions (Al) and (A3) of Theorem 2.1, we obtain from
(3.5) that

how ==Ll = ) <0 along Due (39

Based on equation (3.2) and the boundary condition (3.4), we have the
following lemma.

Lemma 3.1. Let 2 be a domain with piecewise C' boundary, and let I'ypock C
012 be C? in its relative interior. Let ¢ € C*(20I9,4) N C3(82) be a solution
of (2.16) in 2 and satisfy (2.17) on I'shock, and let ¢ be not a constant state
in 2. Assume also that ¢ satisfies conditions (A1)—(A3) of Theorem 2.1. For
a fized unit vector e € R? with v-e < 0, if a local minimum or mazimum of
w: = e in §2 is attained at P € 'S ., then ¢rr > 0 or ¢ < 0, respectively,
where v denotes the interior unit normal vector to Ihock pointing into 2.
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Proof. First, we note that the proof of [14, Lemma 8.2.4] applies to the present
case so that the conclusion of that lemma holds:

h(P) = ke at P for some k € R.

Since v - e < 0, we follow the proof of [14, Lemma 8.2.15] to obtain that k > 0
and

2

w, 2 (PPer(® — |Do) + pic?92) ¢rr  at P.

 kpou(c? =0

Thus, by ellipticity and (2.22), ¢+, has the same sign as w,,. Also, w satisfies
equation (3.2), which is strictly elliptic in 2019, .. Then, from Hopf’s lemma,
wy (P) < 0 if w attains its local maximum at P, while w, (P) > 0 if w attains
its local minimum at P. Then ¢,-(P) < 0 if w attains its local maximum at
P, while ¢--(P) > 0 if w attains its local minimum at P. O

Next we consider the geometric shape of I'spocx under the conditions listed
in Theorem 2.1.

Lemma 3.2. Let 2 be a domain with piecewise C* boundary, and let Iyhock
012 be C* in its relative interior. Let ¢ € C(2) nC*(R2 0TS ) N C3(92) be a
solution of (2.16)—(2.17). Assume also that conditions (A1)—(A5) of Theorem
2.1 are satisfied. For a unit vector e € Con, which is defined in Theorem
2.1(A5), let e* be the orthogonal unit vector to e with e--14 > 0. Let (S,T) be
the coordinates with respect to basis {e,e*}, and let (Sp,Tp) be the coordinates
of point P in the (S,T)-coordinates. Note that Tg > Ta since e~ - T4 > 0.
Then there exists fo € C*(R) such that

(1) Lshoek = {S = fo(T) : Ta < T < Tg}, 2 c {S < fo(T): T € R},
A= (fe(TA)ﬂTA)’ B = (fe(TB)7TB)’ and f € 02((TA>TB))§

(ii) The directions of the tangent lines to I'shock lie between T4 and Tp; that
is, in the (S, T)-coordinates,

T5.S — pi(Ts) < fUT) < fo(Ta) =

TA €

—00 < <

75 -el Ta- el
for any T € (Ta,Tg);
(iii) v(P)-e <0 for any P € Ishock;
(iv) ¢e >0 on Isnock;
(v) For any T € (Ta,Tg),
Grr(fe(T),T) <0 = fJ(T) >0,

while
bre(fo(1), 1) >0 —  fU(T) <0.

Proof. By the first condition in (2.17) and the entropy condition (A1),
=0, ¢, <0 on Ighock- (37)

From this, we have the following two facts:
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(a) D¢ 7 (an) on Fshock;
(b) Combining (3.7) with assumption (A5), D¢ -e = 0 on Ighock for each
ee Con.

Using facts (a)—(b) and recalling that C'on denotes the open cone, we conclude
that D¢-e > 0 on Iynock for any e € Con. Then the implicit function theorem
ensures the existence of fe such that property (i) holds.

For property (ii), from the definition that e* - 74 > 0 and the fact that
{P + Con} n 2 = &, we find that, in the (S,T")—coordinates, for any given
T € (T, Tp) and small 7 > 0,

TA € TB "€

fe(T) + Z fe(T+7) 2 fo(T) +

T T.
T4 et 5 el

From this, noting that f¢(T4) = 2% and the similar expression for f((T)

follow from the definition of fZ, we obtain (ii).
: _ _(fa(1),—1) _ _(L,f(Ta))
Next we show (iii). From (i), v = Iy TA = m, and
_ __(.5(TB)) ; — / _ '
TR = TN Since e € Con, then e = s1(1, fL(T4)) — s2(1, fL(TB))

for some s1,s2 > 0. Also, the condition that 74 # —7p in (A5) implies that
fL(Ta) # fL(Tp). Then

ue:1+&@W@mmn—gmm+@mam—ﬂ@m<a

where we have used (ii) and the fact that fL(T4) # fL(Tg) to obtain the last
inequality. Now (iii) is proved.

To show property (iv), we notice that, along I'ihoek, &+ = 0, ¢ < 0 by
assumption (A1) of Theorem 2.1, and v - e < 0 by (iii). Therefore, ¢o =
(v -e)¢, > 0, which is (iv).

Finally, property (v) follows from the boundary conditions along I'ipock-
More precisely, in the (S, T)—coordinates, differentiating twice with respect to
T in the equation: ¢(fe(T'),T) = 0, and using that ¢, = 0 and ¢e # 0 along
Tshock by property (iv), we have

D*¢[D'¢, D" ¢ ¢y prr

1) = A O D iy 1y - By s
(¢e) 03

Now property (v) directly follows from (3.8) and properties (iii)—(iv). This

completes the proof. O

In order to show Lemma 3.4 below, we first note the following property of
solutions of the potential flow equation:

Lemma 3.3 ([14], Lemma 6.1.4). Let £2 = R? be open, and let 2 be divided by
a smooth curve S into two subdomains 2% and 27. Let o € C%1(£2) be a weak
solution in 2 as defined in Definition 2.1 such that ¢ € C?>(2T)nCY(2ETUS).
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Denote pt := <p|QJ_r. Suppose that ¢ is a constant state in 2~ with density p—
and sound speed c_, that is,

GRS

where v_ is a constant vector and A~ is a constant. Let P, € S, for k =1,2,
be such that
(i) ¢~ is supersonic at Py: |Do~| > c_ 1= c(|Dp~ |, , po) at Py;

(ii) Do~ -v > Do* -v > 0 at Py, where v is the unit normal vector to S
oriented from 2~ to 27

(iii) For the tangent line Lp, to S at Py, k = 1,2, Lp, is parallel to Lp, with
v(P) = v(P);

(iv) d(Py) > d(Py), where d(Py) is the distance between line Lp, and center
O~ = v_ of the sonic circle of state ¢~ for each k =1,2.

Then
oy (P1) < o5 (P2),
where ¢ (€) = 3[€* + ¢ (€).
Now we prove a technical fact used in the main argument of the paper.

Lemma 3.4. Let §2, Iyhock, and ¢ be as in Lemma 3.2. For the unit vector
e € Con, let (S,T) be the coordinates defined in Lemma 3.2, and let fo be
the function from Lemma 3.2(1). Assume that, for two different points P =
(Ta fe(T)) and Pl = (Tlafe(Tl)) on Fshock;

fe(T) > fe(T1) + fo(TNT = Th),  fo(T) = fo(Th).
Then

(i) d(P) := dist(Og, Lp) > dist(Og, Lp,) =: d(Py), where Oy is the center of
sonic circle of state (0), and Lp and Lp, are the tangent lines of I'shock
at P and Py, respectively.

(i) ¢e(P) > ge(P1).
Proof. First, since fL(T) = fL(T1), denote v := v(P) = v(P,) and T :=
7(P) = 7(P;). In addition,
d(P) = dist(Og, Lp) = POy - v, d(Py) = dist(Og, Lp,) = P,Og - v.
Therefore, it suffices to find the expression of vector POy in terms of vector
P10g.

From the definition of the (S, T)-coordinates and the shock function fe in
the previous lemmas, we have

(T, fo(T)) = (T1, fe(T1) + (fe(T) = fo(T1))e + (T —T1)e™,
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so that
(T, fe(T)) = (T1, fe(T1)) + (fe(T) = fe(Th) — fU(T)(T —Th))e
+(T —Ty)(e" + fL(Th)e). (3.9)
Since (et + fL(T1)e) -v =0,
POy-v = (0g—(T, fo(T)))-v = PLOg-v—(fe(T)— fe(T1)— fo(Ty)(T—T1))e-v.

From Lemma 3.2(iii) and the fact that fo(T) > fe(T1) + fL(TV)(T — T1), we
conclude that POg - v > P;0Oq - v. This implies

d(P) = dist(Og, Lp) > dist(Og, Lp,) = d(Py).
Then (i) is proved.
Now we prove (ii). By (i) and Lemma 3.3,
¢u(P) < ¢ (P1).
Also, 0-¢ = 0 on Ighock by the first condition in (2.17). Thus, 0-¢(P) =
0r+¢(P1) = 0. Then, using e - v < 0, we obtain
D¢(P)-e=0,0(P)v-e>0,6(P1)v-e=Do(Py) - e,

which is (ii). O

3.2 Real analyticity of the shock and related properties

In this subsection, we show that the shock, I" S%O k- 1s real analytic and ¢ is real
analytic in 2 U IS .. To see that, we note that the free boundary problem
(2.5) and (2.12)—(2.13) can be written in terms of ¢ = ¢ — ¢y with v = %

in the form:

N(D?*¢,D¢,$,€) =0 in £2, (3.10)
M(D¢,$,€) =0 on Iynock, (3.11)
¢p=0 on Ishock, (3.12)

where, for (r,p, z,£) € S22 x R? x R x 2 with $2*2 as the set of symmetric
2 x 2 matrices,

N(r,p,z, &) := (¢ — (p1 — &)*)r11 — 2(p1 — &1) (P2 — &2)r12
+ (% = (p2 — &)°)rae, (3.13)

M(p, 2,€) i= (p(p, 2, €)(p + Do) — poDipo) - (3.14)

|

with

A58 =p —(r=D(e =€ p+ %Ipl2), p(p,2,€) = c(p, 2,€)7 1.
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Equation (3.10) is quasilinear, so that its ellipticity depends only on (p, z, £).
By assumption, the equation is strictly elliptic on solution ¢, i.e., for (p, z, ) =
(Dp(P),¢(P),P) for all Pe 2UTY ..

Furthermore, it is easy to check by an explicit calculation that the ellipticity
of the equation and the fact that v = % on I9 . imply the obliqueness of

the boundary condition (3.11) on I3, for solution ¢:
Do M(D¢,¢,6)-v >0 on I,

Moreover, from the explicit expressions, N (r,p, z,£) is real analytic on
§2%2 x R? x R x 2, and M(p, z, &) is real analytic on

(P.28) - 03— (= V(==& D+ 5lpl) > 0}

Since g is pseudo-supersonic, ¢ is pseudo-subsonic on [gpock, and conditions
(2.12)—(2.13) hold, we have

p(D¢7 ¢7 5) > Po for all S € Fshock»

so that L
P = =D(E-&p+glpP) >

for all (p,z,&) = (D@(E), d(€), &) with € € yhoek- That is, M(p, z,£) is real
analytic in an open set containing (p, z, &) = (D@(&), ¢(&), &) for all £ € Iock-

Then, by Theorem 2 in Kinderlehrer-Nirenberg [30], we have the following
lemma:

Lemma 3.5. Let §2, Iihock, and ¢ be as in Lemma 3.2. Then thock s real
analytic in its relative interior; in particular, fe is real analytic on (Ta,Tg)
for any e € Con. Moreover, ¢ is real analytic in 2 up to I'S .-

We remark here that the assertion on the analyticity of the solution up to
the free boundary is not listed in the formulation of Theorem 2 in [30], but is
shown in its proof.

Now we show the following fact that will be repeatedly used for subsequent
development.

Lemma 3.6. Let (2, Ighock, and ¢ be as in Lemma 3.2. Assume that ¢ is not
a constant state in (2. Let e € Con, and let Ta,Tg, and fe be from Lemma
3.2(1). Then, for any Tp € (Ta,Tg), there exists an integer k = 2 such that

M) (Tp) # 0.

Proof. In this proof, we use equation (3.4) in the (S, T')—coordinates with basis
{v,7} = {v(P), 7(P)} (constant vectors).

We argue by a contradiction. Assume that P = (fe(Tp),Tp) € I'S o 18
such that 5" (Tp) = 0 for all i > 1. From (3.8) and its derivatives with respect
to T, we use assumption (A1) of Theorem 2.1 to obtain

0Lp(P) =0 for all i > 1.
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Writing (3.4) in the coordinates with the basis of the normal vector v
and tangent vector 7 on Iyhoekx at P, and writing vector h given in (3.5) as
h = hyv + hT, we have

h‘r¢1"r + hud)u‘r =0 at P. (315)

From (3.6), h, = h-v < 0 at P so that ¢, = 0 implies that ¢, = 0.
Now, from equation (3.1) and assumption (A3) of Theorem 2.1, we obtain
that ¢,,, = 0, so that

Grr = Gyr = i =0 at P. (3.16)

Continuing inductively with respect to order k of differentiation, we fix
k > 2, and assume that Di¢(P) = 0 for j = 2,...,k — 1. With this, taking
the (k — 1)-th tangential derivative of (3.4), we obtain

he0%é + hy, 05 10,0 = 0 at P.
Thus, from 0%¢(P) = 0, we have
10,6 =0 at P.

Then, using the 0% ?-derivative of equation (3.1), we see that 0¥=202¢(P) =
0. Furthermore, using the 0% 3ds—derivative of equation (3.1), we see that
oF302¢(P) = 0, etc. Thus, we obtain that all the derivatives of ¢ of order
two and higher are zero at P. Now, from the analyticity of ¢ up to Fsohock s P,
we conclude that ¢ is linear in the whole domain {2, which is a contradiction
to the condition of Theorem 2.1 that ¢ is not a constant state. O

3.3 Minimal and maximal chains: Existence and properties

In this subsection, we assume that 2 < R2 is open, bounded, and connected,
and that 042 is a continuous curve, piecewise C™® up to the endpoints of each
smooth part and has a finite number of smooth parts. Moreover, at each corner
point of 012, angle 6 between the arcs meeting at that point from the interior
of (2 satisfies 6 € (0, 7). Note that Theorem 2.1 requires all these conditions.

Let ¢ € C(2) n C*(R2 U I§, ) N C3(£2) be a solution of equation (2.16)
in (2 satisfying conditions (A2)-(A3) of Theorem 2.1. Let e € R? be a unit
vector.

Definition 3.7. Let E1, Es € 082. We say that points E1 and Es are connected
by a minimal (resp. mazimal) chain with radius v if there exist r > 0, integer
k1 =1, and a chain of balls {B,(C*)}!, such that

(a) CO'=E,, C** = Ey, and C' € 2 fori=0,... ki;

(b) C**t e B.(CY) n 2 fori=0,...,k —1;

(€) ¢e(C) = min  ¢e < ¢o(C?) (resp. po(C*T) =  max  ¢e > po(C?))
B, (C)n 12 B (C)n 12

fori=0,...,k —1;
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(d) ¢o(C*) = min  ¢e (resp. ¢o(C*) =  max  ¢o).
B,.(CF1)n 2 B, (Ck1)n 2

For such a chain, we also use the following terminology: The chain starts at
FE4 and ends at Es, or the chain is from Fy to Es.

Remark 3.8. This definition does not rule out the possibility that B,(C*%) n
012 # &, or even C' € 012, for some or all i =0,...,k; — 1.

Remark 3.9. Radius r is a parameter in the definition of minimal or mazximal
chains. We do not fiz r at this point. In the proof of Theorems 2.1-2.3, the radii
will be determined for various chains in such a way that Lemmas 3.14-3.18
below can be applied.

We now consider the minimal and maximal chains for ¢ in 2. In the
results of these subsections, all the constants depend on the parameters in
the conditions listed above, i.e., the C®*-norm of the smooth parts of 812,
the angles at the corner points, and [|¢[c1.. (g, in addition to the further
parameters listed in the statements.

We first show that the chains with sufficiently small radius are connected
sets.

Lemma 3.10. There exists r* > 0, depending only on the C*-norms of the
smooth parts of 0£2 and angles 0 € (0,7) in the corner points, such that, for
any E € 2 and r € (0,7*],

(i) Br(E) n £2 is connected;

(ii) For any G € B.(E) n 2, B.(E) n By(G) n £2 is nonempty.

Proof. We only sketch the argument, since the details are standard.

We first prove (i). Denote @, := (=L, Lr) x (—r,r). The conditions on
012 imply that there exist L, N > 4 such that, for any sufficiently small r > 0,
the following facts hold:

(a) If P € 012 has the distance at least N7 from the corner points of 02, then,
in some orthonormal coordinate system in R? with the origin at P,

20 Qs ={(s,t) € Qo : s> g(t)},
0020 Qar ={(s,1) € Q2r : s =g(t)}
for some g € C1%(R) with g(0) = ¢/(0) = 0;

(b) If P e 02 is a corner point, then, in some orthonormal coordinate system
in R? with the origin at P,

20 Qunr = {(5,t) € Qunr = s> max(g1(t),g2(t))},

(3.17)

(3.18)
o2 n Q4NT = {(Sat) € Q4NT S = max(gl(t)792(t))}
for some g, and g satisfying
91,92 € Cl’a(R)v gl(o) = 92(0) = 07 gi(o) < 07 g/2(0) > 07 (3 19)

g1(t) > go(t) fort <0, g1(t) < g2(t) for t > 0.

Note that, in order to obtain (3.18)—(3.19), we use the condition that angle
0 at P satisfies 0 € (0, 7).
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Let E € 2. Without loss of generality, we assume that dist(E,082) < 7;
otherwise, (i) already holds.

The first case is that the distance from E to the corner points is at least
2Nr. Then, denoting by P the nearest point on 0f2 to FE, it follows that P
satisfies the condition for Case (a) above, so that P is the unique nearest
point on 012 to E, and F = (s*,0) with s* € [0,7) in the coordinate system
described in (a) above. Then, denoting f*(t) := s* £ /72 — t2 on [~7,7], and
using that |¢'(t)| < Ct* and |g(t)| < Ct'* on [—r,r] for C depending on the
C1*-norm of the smooth parts of 412, we obtain that, if r is small, there exist

tt e (&r,r] and t~ € [—r, —55r) such that

ft>gon (t,t1), fH<gon[-rr]\[t7,t7], (3.20)
where the last set is empty if t* = +r, and
20 B.(E)={(s,t) : max(f~(t),g9(t)) <s< fr(t), t- <t <tt}, (3.21)
which is a connected set, by the first inequality in (3.20) and the fact that
fm<ftin (—rr).
In the other case, when the distance from E to the corner points is smaller
than 2Nr, we argue similarly by using the coordinates described in Case (b)
above, related to the corner point P that is the nearest to E. The existence of

such a coordinate system and the fact that dist(E, P) < 2Nr also imply that
the nearest corner P is unique for E. Then, in these coordinates,

E = (s*,t*) € 7 Qanr.
Let
O = {s> g™ 1), teR}, T :={s=¢"(1), teR}  fork=12
Then, by (3.18),
20 Quny = 20 A 2% A Qun,. (3.22)

If r is sufficiently small, we deduce from (3.19) that there exists A € (0,1)
such that

AN <g) < =N A< g <A for all t € (—4Nr,4N7). (3.23)

Let P = (5% ¢(k)) be the nearest point to E on I'®), Then P*) ¢
rt Q2N

Assume that dist(E, ') < r, which implies that F € B,(P™"). Using
(3.23), ¢4 (t")) < 0. Then, reducing r depending on the C** norm of gy,
rotating the coordinate system (s,t) by angle arctan(|¢} (t("))]) clockwise, and
shifting the origin into PV, we conclude that, in the resulting coordinate
system (5,7,

AW Q = {(5T)eQ : §>G(T)},
r'a@,={(51eQ : §=G(D)}
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for some G € CH?(R) with G(0) = G'(0) = 0, which is similar to (3.17).
Then, arguing as in Case (a), we obtain an expression similar to (3.21) for
Q2WAB,(E)in the (S, T)coordinates. Changing back to the (s, t)-coordinates
and possibly further reducing r depending on A, we obtain the existence of
t~ € [t* —r,t*) such that

fr>gion (t7,t*+7r), ft<g on[thr—rt*+r\[t7,t* +7], (3.24)
where the last set is empty if t~ = t* —r, and

QU A B.(E) ={(s,t) : max(f~(t),q1(t)) <s < fT(t), t~ <t <t*+r}
(3.25)
where fE(t) := s* £ 1/r2 — (t —t*)2 on [t* — r,t* + r]. Note that (3.25) also
holds if dist(E, ") > r: Indeed, in this case, 2 N B.(E) = B,(F) and
g1(t) < f7(¢) on [t* —r t* + r], so that (3.25) holds with ¢t~ = t* —r.
By a similar argument, we show the existence of t* € (¢t*,¢* + r] such that

ftr>goon (t*—rth), ft<goon[th—rt*+r]\[t* —r,tT], (3.26)
where the last set is empty if t+ = t* + r, and

Q2 A B.(E) ={(s,t) : max(f~(t),g2(t)) <s < fr(t), t* —r <t <t*}.
(3.27)
From (3.22), (3.25), and (3.27), we obtain

020 Br(E) ={(s,t) : max(f(t),01(t),02(t)) <s < f7(t), t~ <t<t'},
(3.28)
which is a connected set, by the first inequalities in (3.24) and (3.26) and the
fact that f= < f* in (¢* —r, % + 7).

Now we prove assertion (ii). We can assume that G € B,.(E) n d2; other-
wise, (ii) already holds. Then we again consider two cases, as above, and use
expressions (3.21) and (3.28) to conclude the proof. O

Remark 3.11. The condition that the interior angles 6 at the corner points
of 012 satisfy 0 € (0,m) is necessary for Lemma 3.10. Indeed, let 6 € (7,2m) at
some corner Q € 012. For simplicity, consider first the case when 02 Bsr(Q)
consists of two straight lines intersecting at Q for some R > 0. Then it is easy
to see that, for any E € 082 with d := dist(F,Q) € (0,R], By(E) n 12 is
not connected for all v € (dsin(2w — 6), d). With the assumption that 02 is
piecewise OV up to the corner points (without assumption that 012 N Bsg(Q)
is piecewise-linear), the same is true for allr € (d1,d) for some dy € (dsin(2r—
0),d) if d is sufficiently small.

Lemma 3.12. There exists r* > 0 such that any chain in Definition 3.7 with
r € (0,r*) satisfies

k1
(1) U (B, (C") n 02) is connected;
i=0
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(ii) There exists a continuous curve S with endpoints C° and C** such that
]Cl )
S'c | J(BA(CH) A R), dist(S,,092) >0 for all r > 0,
i=0

where S, = S\(B,(C°) U B,(C*)), and S° denotes the open curve that

does not include the endpoints. More precisely, S = ¢([0, 1]), where g €

C([0,1]; R?) and is locally Lipschitz on (0, 1) with g(0) = C°, g(1) = C*1,
k1

and g(t) € U (B,(C") n 2) for all t € (0,1).

=0

Proof. We use r* in Lemma 3.10. We prove (i) by induction: We first note
that B,.(C') n 2 is connected by Lemma 3.10(i). Suppose that, for m €

{1,2,...,ky — 1}, A, = U (B,,(C'i) ) Q) is connected. We note that A,,
i=0
has a nonempty intersection with B,.(C™*!) n 2 by Definition 3.7(b) and

Lemma 3.10(ii). Also, B,.(C™"!) n 2 is a connected set. Then it follows that
m+1

U (B,(C") n 2) is connected. This proves (i).
i=0
Assertion (ii) with reduced r* follows from Lemmas A.1 and A.3. O

Remark 3.13. Lemma 3.12(ii) implies that S° lies in the interior of §2.

Now we show the existence of minimal (resp. maximal) chains. We use r*
from Lemma 3.12 from now on.

Lemma 3.14. If Eq € 012 and is not a local minimum point (resp. mazimum
point) of ¢e with respect to 2, then, for any r € (0,7%), there exists a minimal
(resp. mazimal) chain {Gi}fio for ¢e of radius v in the sense of Definition
3.7, starting at By, i.e., G° = E,. Moreover, G** € 012 is a local minimum
(resp. mazimum) point of ¢ with respect to 2, and ¢e(G*') < ¢o(E1) (resp.
0e(GH1) > Go(Er)).

Proof. We discuss only the case of the minimal chain, since the case of the
maximal chain can be considered similarly. Thus, F; is not a local minimum
point of ¢ with respect to 2.

Let G° = E;. Choose G**! to be the point such that the minimum of
w = ¢ in B.(G?) n 2 is attained at G**1, provided that w(G'™!) < w(G?);
otherwise (i.e., if the minimum of w = ¢ in B,,(G%) n 2 is attained at G?
itself), the process ends and we set ki := i.

In order to show that {G?}¥  is a minimal chain for r € (0,7*), it suffices
to show that G*' € 02 and that k; is positive and finite. These can be seen
as follows:

(i) Since G° = Ej is not a local minimum point relative to 2, it follows that
G! # GY so that k1 = 1 and ¢¢(G?) < ¢e(G1).
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(ii) There is only a finite number of {G'}. Indeed, on the contrary, since
domain §2 is bounded, there exists a subsequence {G*"} such that Gi» —
Casm— 00, where Cisa point lying in 2. Thus, for any € < r, there
is a large number N such that, for any j, m > N, dist{G%, sz} < €.
On the other hand, by construction, for any j < i — 1, G* cannot lie in
the ball centering at GY with radius 7 so that dist{G*, G’} > r for any
j <i—1. This is a contradiction.

(iii) G¥* € 092. Otherwise, G** € 2 is an interior local minimum point of
¢e, which contradicts the strong maximum principle, since ¢ satisfies
equation (3.2) that is strictly elliptic in {2, and ¢ is not constant in {2
by the assumption that ¢ is not a uniform state.

Therefore, {G?}¥, is a minimal chain with G* € 802. Also, from the

construction, G** is a local minimum point of w with respect to 2 with
w(GF) < w(Ey). O

Lemma 3.15. For any 6 > 0, there exists r§ € (0,7*] such that the following
holds: Let C < 02 be connected, let Ey and Es be the endpoints of C, and let
there be a minimal chain {E*}** of radius r1 € (0,7¥] which starts at Ey and
ends at By, and Hy € C° = C\{E1, Ey} such that

d)e(Hl) = ¢e(E1) + 4.

Then, for any ro € (0,71], any mazimal chain {H7 }?2:0 of radius o starting
from H, satisfies H*> € C°, where C° denotes the relative interior of curve C
as before.

Proof. Using the bound: [¢],,,, 7 < C by condition (A2) of Theorem 2.1, we
can find a radius r§ € (0,7*] small enough such that

S _
5 *(Esc)ﬁgqb < 1 for all P € f2.

We fix this 7# and assume that the minimal chain {E*}*L from E; to Ey is
of radius r1 € (0, r¥].

Recall that, from Definition 3.7 for the minimal and maximal chains,
(be(El) > d)e(El) for i = 17...,]{’1, and d)e(Hl) < d)e(Hj) for j = 1,. ..,kQ.
Then, for each ¢ =0,...,k;,and j =0,..., ko,

min _ ¢e > gbe(Hj)
B, (HI)nG

¢e(H1)

max ¢ + T
(El)m.Q

J 9

2 2

5 ) 1)
> ¢e(E1) + 5 37

where we have used that Fy = E°, H; = H?, and 0 <7 < r¥. Then

B, (H)Yn2NB,,(E)n2= foreachi=0,...,k1,and j =0,...,ko.
(3.29)
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From this, we have
B, (H)nQ2c A foreach j=1,..., ko,

where A := Ui‘to B, (E%) n £2.

Since By, (H!) n {2 is a connected set, then one of connected components
of set 2\A contains B, (H!) n £2. We denote this component by K;. Since 2
is a connected set, then it follows from (3.29) and Lemma 3.12(i) applied to
chain {H7} that
k2
| Br.(HI) n 2 c K.
j=0

Thus, H*? € K1 n 012. It remains to show that 0K; N 012 lies within C.

Notice that H; € K1 nC so that 0K1 nC # . Also, K7 is a connected set
with K1 n A = @&. From Lemma 3.12(ii) applied to chain {E’}, we obtain the
existence of a continuous curve S c A connecting £ to Fo with the properties
listed in Lemma 3.12(ii). Combining these properties with Remark 3.13, we
see that K1 < (2, where (2, is the open region bounded by curves S and C.
Notice that 2 < 2. Thus, 0K n 012 lies within 0§21 n 02 = C, which implies
that H*2 € C. Moreover, the definition of minimal and maximal chains and
our assumptions in this lemma imply

b (H"?) > ¢po(H") > po(E1) > de(Fa).
Thus, H* € C°. O

Remark 3.16. In Lemma 3.15, we have not discussed the existence of the
mazimal chain {Hj}fio of radius ro starting from Hy. If Hy is not a local
mazimum point of e with respect to §2, such an existence follows from Lemma
3.14.

We also have a version of Lemma 3.15 in which the roles of minimal and
maximal chains are interchanged:

Lemma 3.17. For any 0 > 0, there exists r§ € (0,r*] such that the following
holds: Let C < 02 be connected, let Ey and Es be the endpoints of C, and let
there exist a mazimal chain {E'}™, of radius 1 € (0,7%] which starts at E;
and ends at Fa, and Hy € CO such that

te(H1) < ¢pe(E1) — 0.

Then, for any ro € (0,71], any minimal chain {Hj}fio of radius rq, starting
from Hy, satisfies that H*> € C°.
The proof follows the argument of Lemma 3.15 with the changes resulting

from switching between the minimal and maximal chains and the correspond-
ingly reversed signs in the inequalities.
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Lemma 3.18. For anyry € (0,7*], there exists r5 = r3(r1) € (0,r*] such that
the following holds: Let C 012 be connected, let Fy and Eo be the endpoints
of C, let there exist a minimal chain {Ei}?;() of radius r1 € (0,7*] which starts
at By and ends at Eo, and let there exist Hy € C° such that

¢e(H1) < ¢e(E2)-

Then, for any r2 € (0,74], any minimal chain {H’ }fio of radius ry, starting
from Hy, satisfies that H*> € C°.

Proof. Asin the proof of Lemma 3.15, we need to show (3.29). Set § = ¢e(E2)—
¢e(H1). Then 6 > 0.
Using condition (A2) of Theorem 2.1, we can find a radius 5 € (0, r*] small
enough such that 5 (Z?DC) Q(be < g for all P € 2. We fix this 74 and assume
r¥ ~
that the minimal chain {H’ }?2:0 starting at H; is of radius r9 € (0,75]. Then,
using properties (c)—(d) in Definition 3.7 for the minimal chains, we have

bo(E2) = po(EM) =  min  ¢e < ¢o(E1) = min__ ¢go<---,
B, (EF1) Q2 B (EF1—1)n 02
that is,
de(F2) <  min  ¢e fori =0,...,k;.
B, (BN~
Then, for i =0,...,k and j =0, ..., ko,
; ) 1) ) . 1)

max Pe < de(H )+§ <¢e(H1)+§ :¢9(E2)_§ < min ¢e_§-

By (HI )2 B (E')n Q2

This implies (3.29). Then the rest of the proof of Lemma 3.15 applies without
changes. O

4 Proof of Theorem 2.1

In this section, we first prove Theorem 2.1, based on the lemmas obtained in
§3.

We use the (S, T)-coordinates from Lemma 3.2 for a unit vector e € Con
chosen below so that it suffices to prove that the graph of f7 is concave:

(1) <0 for all T € (T4, Tg),

e

and satisfies the strict convexity in the sense of Theorem 2.1.

In the following, we denote all the points on Iy With respect to T'; that
is, for any point P € [yock, there exists Tp such that P = (fe(Tp),Tp) in the
(S, T')—coordinates.

The proof of Theorem 2.1 consists of the following four steps, where the
non-strict concavity of fZ is shown in Steps 1-3, while the strict convexity is
shown in Step 4:
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Step 1. For any fixed e € Con, if there exists P € I, with fZ(Tp) > 0, we
prove the existence of a point C € I'9,, ., depending on e, such that
f2(Te) = 0, and C is a local minimum point of ¢e along I'ihoek, but
C is not a local minimum point of ¢, relative to £2.

Step 2. We fix e € Con to be the vector from condition (A6). Then we prove

the existence of C; € Iy . such that there exists a minimal chain
with radius r; from C to Cj.

Step 3. Let e € Con be the same as in Step 2. We show that the existence of
points C and C described above yields a contradiction, from which we
conclude that there is no P e I}, with f” (Tp) > 0. More precisely,
it will be proved by showing the following facts:

— Let As be a maximum point of ¢e along Igpocx lying between points
C and C;. Then As is a local maximum point of ¢ relative to 2,
and there is no point between C' and C7 on Iyock such that the
tangent line at this point is parallel to the one at As.

— Between C and As, or between C7 and A, there exists a local
minimum point Cy of ¢e along Iyhock such that Co # C, or Cy #
C4, and C5 is not a local minimum point of ¢ relative to domain
0.

— Then, by applying the results on the minimal chains obtained in
§3.3 and the facts obtained above in this step, and iterating these
arguments, we can conclude our contradiction argument.

Step 4. Fix e € Con. We show that, for every P € I'0_ ., either f2(Tp) < 0

or there exists an even 1nteger k > 2 such that fe )( Tp) = 0 for all

1=2,...,k—1,and fe (Tp) < 0. This proves the strict convexity of
the shock. We also note that k is independent of the choice of e € Con,
since, by Lemma 3.2, the above property is equivalent to the facts that
0Lp(P)=0foralli=2,...,k—1,and d¢(P) > 0.

Now we follow these steps to prove Theorem 2.1 in the rest of this section.

4.1 Step 1: Existence of a local minimum point C € I'9 shock along Igpock in
the convex part.

We choose any e € Con and keep it fixed through Step 1. Assume that

There exists a point P € I'0 . such that fe(Tp) > 0. (4.1)

Then, in this step, we prove that there exist points A, B, C' € I'9 “hock Such that
Tc € (T;,Ty) with fJ(Tc) = 0, f2(T) < 0 for all T € (T;,T3) which are

sufficiently close to T'; and T3, and

$e(C) = min  ¢e(fe(T),T).

Te[T,Ts]
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Moreover, the minimum at C' is strict in the sense that

de(fe(T),T) > ¢e(C) for all T e (T4, Ty) with f{(T) <O0.
Lemma 4.1. Let

IT :=I7(P) = (Ty+,Tg+)
be the maximal interval satisfying
—ITc (TA,TB),
- Tp € I+,
— fl(Tp) =20 for all TpeIt,
— Magzimality: If (Tp,,Tp,) C (Ta, Tg) such that P e (Tp,, Tp,) and
fl(Tp) =0 for all Tp € (Tp,, Tp,), then (Tp,,Tp,) c IT.

Note that such It exists and is nonempty because P € I8 oo and f2(Ts) > 0.
Then
(i) Ty <Ty+ <Tg+ <Tp,

(il) fe(Ta+) < fiTp) < fe(Tp+) and fe(Ta+) < fo(T) < fi(Tp+) for all
Telt,

(iii) There exists an open interval J* < (Ta,Tg) such that [Ty+,Tp+] < J 7T
and
<(T) <0, fo(Ta+) < fo(T) < fo(Tp+)  for all T e JE\I*, (4.2)

where JT\I+ is non-empty, since It < J* and J* is open.

Proof. Assume that T4+ = T4. By the definition of It, f. is convex on I™T.
From condition (A4) of Theorem 2.1, fo € C?((Ta,Tg)) n CH2([Ta,T5]).
Combining these facts with fZ(7Ts) > 0, we have

fe(TfD) > fe(TA) + fé(TA)(TP - TA)'
By Lemma 3.2(i), this implies that (A + Con) n 2 # &, which contradicts
(A5). Then Ty+ > Ty. Similarly, Tg+ < T. This proves (i).
Property (ii) follows directly from the definition of It and the fact that
fY(Tp) > 0, by combining with regularity fe € C*((Ta,Tg)).

It remains to show (iii). We first show that
there exists T3 € [T'4, T4+ ) such that f& <0on (T ,Ta+), (4.3)

where T4 < T4+ by (i). Suppose (4.3) is false, then there exists a sequence
{T;'} © (Ta,Ty+) such that lim;_,, T, = Ty+ and fZ(T;") = 0 for all i.
Also, from the maximality part in the definition of I™, there exists a sequence
{T7} © (T4, T+ ) such that lim;_,, T, = T4+ and fJ(T; ) < 0 for all 7. From
this, using the regularity of fe in Lemma 3.5, it is easy to see that fék) (AT) =0
for k = 2,3,..., which contradicts Lemma 3.6. This proves (4.3).
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Moreover, by property (ii), there exists T3 € [T'3 ,Ta+) satisfying f(T'3) <
fe(Tp+). Now, since fJ < 0 on (T3 ,Ts+), we obtain that fJ(7) < 0 and
Jé(Ta+) < fe(T) < fe(Tp+) for all T € (Tg, Ta+).

Similarly, we show that there exists T4 € (Ts+,Tg] such that fZ(T) < 0
and fe(TA+) < fe( ) < fe(TB+) for all T' e (TB+7TB’)'

Now (iii) is proved with J* = (T4, Ty). O

Clearly, the interval, J T, satisfying the properties in Lemma 4.1(iii) is non-
unique. From now on, we choose and fix an interval:

I = (T4, Tp) (4.4)

satisfying the properties stated in Lemma 4.1(iii). o
Now we show the existence of a local minimum point C' € It along I hock-
Proposition 4.2. Set
W= Pe.
Then

(i) There exists Tc € I* such that

w(C) = min w(fe(T),T);

[T4.Ts]

(ii) C eI, 4 with f2(Tc) =0
(iii) Furthermore,

w(P) > w(C) for all Tp € (T3, Tg)\[Ta+, Tp+]-

Proof. Let Jt be the open interval from (4.4), which satisfies the properties
in Lemma 4.1(iii). Also, recall that I+ = [T, Tg+]. Then, from (i) and (iii)
of Lemma 4.1, we obtain that T; < Tay <Tp+ <Tp.

Fix Tp € JT\I*. Then fL(Tx+) < fL(Tp) < f,;(TB+) by Lemma 4.1(iii).
Thus, there exists Tp, € IT = [Tay, Tg+] such that f.(Tp,) = fo(Tp). In ad-
dition, since f” > 0in IT by the definition of I, and f” < 0in J*\[Tas, Ts+]
by Lemma 4.1(iii), then

— It Tp € [Tp+,T ] fi(T) = fL(Tp,) for all T € [Tp,,Tp], with strict in-
equality f(T) > f.(Tp,) for T € (Tg+,Tp),

— If Tp € [T4,Ta+], fLUT) < fi(Tp,) for all T € [Tp,Tp,|, with strict in-
equality fL(T) < fi(Tp,) for T € (Tp,Ty+).

Thus, defining the function:
9(T) = fe(T) = fe(Tp,) = fo(Tp, )(T — Tp,),

we obtain in the two cases considered above:
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—IfTpe [TB+,TB], then

>0 for Te[Tp,Tpl,
§(T) or T € [Tp,,Tp]
>0 for T € (TB+,TP).

—IfTpe [TA,TA+], then

<
g/(T) <0 for T € [Tp,Tpl],
<0 fOl“TE(Tp,TA+).

Therefore, in both cases, g(Tp) > g(Tp,), which implies

fe(Tp) > fo(Tr,) + fo(Tp,)(Tp — Tp,).

Now, by Lemma 3.4,
w(P) > w(Py). (4.5)

Thus we have proved that, for any Tp € J+\IT, there exists Tp, € IT such
that (4.5) holds for P = (fe(Tp) p) and Py = (fe(Tp,),Tp,). This implies
that there exists T € IT such that w(fe(T),T) attains its minimum over
J+ =[T4,T3] at Tc. This proves assertion (i).

Moreover, we find from T € IT < J* that C € I'Y_ . Also, from (i) and
It ¢ Jt = (T4,Tp), f2(Ic) = 0. This proves assertion (ii).

Assertion (iii) for all Tp € (T4, T3)\[Ta+,Tp+] follows from the strict
inequality in (4.5). O

We derive a corollary of Lemma 4.2(ii). The property, C € I'0,_ ., guaran-
tees the strict ellipticity of equation (2.16) at C, where we have used assump-
tion (A3) of Theorem 2.1. Combining fZ(T¢) = 0 with Lemma 3.2(v) implies
that ¢++(C) < 0. Thus, from Lemma 3.1 and Lemma 3.2(iii), we obtain

Corollary 4.3. C is not a local minimum point of ¢e with respect to §2.

This means that, for any radius r > 0, there is a point C, € B,.(C) n {2
such that w(C,) < w(C).

4.2 Step 2: Existence of T, € (T4, Tp)\[T4, T3] such that C and C are
connected by a minimal chain with radius 7, for vector e from condition

(A6).

In the argument, we use the minimal and maximal chains in the sense of
Definition 3.7.

Through §4.2-84.3, we fix e € Con to be the vector from condition (A6) of
Theorem 2.1, and use points AB,Cerl 0 ok from Step 1 (which correspond
to this vector e) and constant T* from Lemma 3.10. In this step, we prove the
following proposition:
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Proposition 4.4. Let e € Con be the vector from condition (A6) of Theorem
2.1, and let C be the corresponding point obtained in Proposition 4.2. Then
there exists 71 € (0,7*] such that, for any r1 € (0,71) and any minimal chain
{Ci};go of radius r for w = ¢e starting from point C, its endpoint Cy := C*
is in I'9 oo i-€., C1 € TG, . Moreover, Cy is a local minimum point of w
relative to 2 such that

w(C) < w(C).

In order to prove Proposition 4.4, we first notice that, by Corollary 4.3
and Lemma 3.14, for any 7 € (0,7%), there exists a minimal chain {C?}¥ of
radius r; for w = ¢e in the sense of Definition 3.7, starting at C, i.e., C° = C.
Moreover, C*1 € 0f2 is a local minimum point of w with respect to {2, and
w(CF) < w(C).

Now, in order to complete the proof of Proposition 4.4, it suffices to prove
the following lemma.

Lemma 4.5. There exists 1 > 0 such that, if 11 € (0,71], then C*1 € TS .

Proof. On the contrary, if C*¥* € T} U I, we derive a contradiction for suffi-
ciently small r; > 0. Now we divide the proof into five steps.

_1. We first determine how small ;1 > 0 should be in the minimal chain
{C*}. Choose points Ay, By € I'yhock such that

TA1 € [TA7TC]7 ¢e(A1) = TE[I%}?XTC] ¢9(fe(T)?T)7

TB1 € [TC>TB]a d)e(Bl) = TE[I;}?XTB] ¢e(fe(T)7T)'

Note that the definition of points A; and B is independent of the choice of the
minimal chain {C*} and its radius. Also, from Proposition 4.2(iii), it follows
that ¢e(A1) > ¢e(C) and ¢e(B1) > ¢e(C). Let

0= min{d)e(Al) - (;59(0), ¢e(Bl) - (be(c)}
Then ¢ > 0. Lemma 3.15 determines (), so that r1 € (0,77(J)) is assumed
in the minimal chain {C*}.
2. We start from Case (i) of condition (A6).

Claim: Under the condition of Case (i), A; cannot be a local maximum
point of w = ¢, relative to £2.

In fact, for Case (i), if Ay = A, then A; cannot be a local maximum point.
On the other hand, if A; # A, and A; is a local maximum point, then

f2(Ta,) >0  in the (S, T)—coordinates,
by Lemmas 3.1-3.2. Thus, we consider the function:

F(T) := fe(T) = fe(Ta,) = fe(Ta ) (T = Ta,).
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Then F(Ta,) =0, F'(Ta,) =0, and F"(T4,) > 0 so that F(T) > 0 near Ty,.
Let the maximum of F(T') on [T4, T4, ] be attained at Tax. Then F(T4%) > 0,
which implies that Tys # Ta,.

If Tas # Ta, then F'(Tyx) = 0, which implies that f(Tax)— fL(Ta,) = 0.
If Tax = Ta, then, using f4(T4) = fL(T4,), condition (A5), and F'(T4) <0
(since T4 = Tax is a maximum point of F(T) on [Ta,T4,]), we conclude that
fo(Tax) = fo(Ta) = fL(Ta,). Thus, in both cases,

fe(Tax) = fe(Ta,) = 0.
Also, F(Tax) > 0 implies
fe(TA*) > fe(TAl) + fé(TAl)(TA* - TA1)'

Then, from Lemma 3.4, ¢pe(A*) > ¢e(A1), which contradicts the definition of
A;y. Now the claim is proved.

3. In this step, for Case (i) of condition (A6), we obtain a contradiction to
the assumption that C* € T} U I%.

Since C*1 e Ty U I 5 is a local minimum point of ¢e, the condition for Case
(i) implies that C*1 € I U {B}.

We first consider the case that C¥* € I1\{A}. Since A; is not a local
maximum point of w = ¢e, and r1 € (0,7*], then, by Lemma 3.14, there exists

a maximal chain {47}*2  of radius r; for w in the sense of Definition 3.7,

7=0
starting at A, i.e.,ﬁAO = A;. Moreover, A*2 € 912 is a local maximum point of
w with respect to 2, and w(A*?) > w(A;). Furthermore, by Lemma 3.15 and
the restriction for r; described in Step 1, it follows that one of the following

three cases occurs:

a 2 lies on etween 1 an ;

APz 1i JA) C* and A

(b) Af = 4;

(c) APz lies on I3 . strictly between A and C.

Since A*2 is a local maximum point of ¢, then it cannot lie on I’ U {A} by
the condition of Case (i). Thus, only case (c) can occur, i.e., A*2 lies on I,
between A and C. However, the property that w(A*?) > w(A;) contradicts
the fact that T4, is the maximum point of ¢e(fe(T),T) on [Ta,Tc]. Thus,
the case that C*1 € I7\{A} is not possible.

Next, consider the case that C** = A. Then

¢e(c) > (be(ckl) = ¢e(A)a

so that the definition of A; implies that A; # A. Combining with the fact that
Ay # C proved above, we conclude that A; lies on I, strictly between C
and C** = A. Then we obtain a contradiction by following the same argument
as above.

The remaining case, C** = B, is considered similarly to the case that
C* = A. Indeed, in that argument, we have not used the condition that A



Convexity of Self-Similar Transonic Shocks 33

cannot be a local maximum point. Thus, the argument applies to the case that
C*M = B, with only notational change: points B and B; are used, instead of
A and A;.

This completes the proof for Case (i) of condition (A6) of Theorem 2.1.

4. The proof for Case (ii) of condition (A6) of Theorem 2.1 is similar to
Case (i). The only difference is to replace both A and A; in the argument by
B and Bl.

5. Consider Case (iii) of condition (A6) of Theorem 2.1, i.e., when ¢e
cannot have a local minimum point on I} U I5. For the local minimum point
C* e I U Iy, this implies that C** € {4, B}. Then the argument is the same
as for the cases: C¥* = A and C*' = B, at the end of Step 3.

Proposition 4.4 with C; = C*1 follows directly from Lemma 4.5. O

4.3 Step 3: Existence of points C' and C yields a contradiction

In this section, we continue to denote by e € Con the vector from condition
(A6) of Theorem 2.1, and use points A, B,C € IS o from Step 1 which
correspond to this vector e. Then, for each 1 € (0,71], the corresponding point
(' is defined in Proposition 4.4. In this step, we will arrive at a contradiction
to the existence of such C' and C if r; is sufficiently small. This implies that
(4.1) cannot hold for e from condition (A6), which means that fe(-) is concave,
i.e., Iihock 1S convex.

For E1, Ey € I'shock, denote by I'shock[E1, E2] the part of I'shock between
points E7 and Fs, including the endpoints.

Fix 1 € (0,71]. This choice determines Cy. Let A € I'shock[C, C1] be such
that

e(As) = e(P). 4.6
pe(A2) per 2% 01 ® (P) (4.6)
Lemma 4.6. There exists 6 > 0 such that, for any r € (0,71], the corre-
sponding points C', C1, and Ay defined above satisfy

¢e(A2) = Qj)e(c) +0> ¢e(cl) + 4. (4'7)

Proof. We employ Proposition 4.2 for vector e from condition (A6). Then,
using that ¢e(C) > ¢e(C1) by Proposition 4.4, it follows from Proposition
42(1) that T, ¢ [TA7TB]'

Using this and (4.6), we conclude that (4.7) holds with

0= min{ max  ¢e(P), max ¢e(P)} — ¢e(C), (4.8)
Pelshock [A:C] PeTlshock [B’C]

where § > 0 by Proposition 4.2(iii). Notice that the definition of points A, B,
and C is independent of 71; see (4.4) and Proposition 4.2(i). Then the right-
hand side of (4.8) is independent of r; > 0, so that § > 0 is independent of
T1. O
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The rest of the argument in this section involves only part I'shock[C, Ci]
of the shock curve, independent of the other parts of df2. Without loss of
generality, we assume that C € I'yhock[A, C] so that

Te, € [Ta, Tc]- (4.9)
Indeed, if C1 € Ihok[B, C], we re-parameterize the shock curve by
Fshock: {(fe(T),T) : —TB <T<_TA}’

where fo(T) = fo(=T), and T, and T are the T-coordinates of A and B
with respect to the original parameterization, and then switch the notations
for points A and B. Thus, (4.9) holds in the new parametrization.

Now (4.6) has the form:

¢e(A2) = max ¢e(fe(T)a T)- (4'10)

Te[Tc, ,Tc]

In particular, Ta, € (T¢,,Tc). See also Fig. 2.
From Lemma 4.6 and Proposition 4.4, we obtain that, for any 1 € (0,71],

Pe(A2) > ¢e(C) + § > pe(C1) + 0. (4.11)
Now we prove

Lemma 4.7. If ry is sufficiently small, then

(i) Ay is a local mazimum point of e with respect to §2;

(ii) There is no point Q # As between C' and Cy along the shock such that
the tangent line at Q is parallel to the one at As.

Proof. The proof consists of two steps.

1. In this step, we prove (i). We first fix r; > 0. Let § be from Lemma 4.6,
and let rf > 0 be the constant from Lemma 3.15 for this . We fix ry = 7}, and
denote C7 and Ay as the corresponding points for this choice of r;. Suppose
that Ay is not a local maximum point of ¢ with respect to 2. Using (4.11)
and the existence of a minimal chain of radius r; from C to C7, we can apply
Lemma 3.15 to obtain the existence of a maximal chain {47 }fi o of radius 7
starting from A, (i.e., Ay = A®) such that A*2 is on Ij,occ between C' and
C1. Since ¢e(Az) < ¢e(A*?), we obtain a contradiction to (4.6). Thus, Az is a
local maximum point with respect to 2.

2. Now we prove (ii). We use (4.9). Assume that there is a point Q # Ag
between C' and C; such that the tangent line at () is parallel to the one at As.
Since A, is a local maximum point of ¢ with respect to 2 as shown in Step
1 in this proof, we find that fZ(T4,) > 0, by Lemmas 3.1-3.2. Define

F(T) := fe(T) = fe(Ta,) = f&(Ta,)(T = Ta,).

Then
F(Ta,) = F'(Ta,) =0, F"(Ta,) >0, (4.12)
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B H E Cshock
Ter Teo Ta, Ic

Fig. 4.1 The graphs of function f.(T)

and there is a point T € (Tc,,Ta,) v (Ta,, Tc) such that F'(Tg) = 0.

If F(Ty) > 0, then, by Lemma 3.4, we conclude that ¢e(Q) > ¢e(A2),
which contradicts (4.10).

If F(Tg) < 0, we first consider the case that Q € (T¢,,Ta,). Using
maxre(ry 7,,] £(T7) > 0 by (4.12) so that this maximum is attained at some
point T, € (Tg,T4,), we obtain

F(TQl) >0, FI(TQ1) =0,
so that Lemma 3.4 can be applied to obtain that ¢e(Q1) > ¢e(As), which is

a contradiction. The case that @ € (Ta,,T¢) is considered similarly.
Therefore, point @ does not exist. O

Fig. 4.2 Proof of Step 3 of Theorem 2.1

With the facts established in Lemma 4.7, we can conclude the proof of the
main assertion of Step 3 by a contradiction for sufficiently small r; > 0. The
main idea of the remaining argument is illustrated in Fig. 4.2. We first notice
the following facts:

Lemma 4.8. fo(T) satisfies the following properties:

fg(TCI) <0, fg(TAz) >0, (413)
é(T) < f(le(TA2) f07' any T € [TCUTAz]v (414)
(1) = fiTa,) for any T € [Ta,,Tc]. (4.15)
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Proof. Property (4.13) follows from Lemmas 3.1-3.2, since As and C are the
local maximum and minimum points of ¢ with respect to £2, respectively.
To show (4.14), we note from fJ(T4,) > 0 that fi(T) < fL(Ta,) in (Ta, —
g, Ta,) for some € > 0. Then, if f.(Tq) > f.(Ta,) for some Ty € [Tc,,Ta,),
there exists Tp € (T, Ta,) with fL(Tp) = fL(T4,), which contradicts Lemma
4.7(ii). Thus, (4.14) holds. Finally, (4.15) is proved by similar argument. [

Now we choose T, € [T¢,,Ta,] such that

$e(C2) =  min  ¢e(fe(T),T). (4.16)

Te[Tc, ,Ta,]
We show that
{%(@) < ¢e(Ch), (4.17)

Cs is not a local minimum point of ¢, relative to domain 2.

To prove (4.17), we first establish the following more general property of 'shock
(which will also be used in the subsequent development):

Lemma 4.9. Assume that there exist points E1, Eo, and E3 on Iyhocc Such
that

(i) T, < Tr, and Ty, € [Tg,, Tk, ],
(ii) f&(Tr,) <0,
(i) fe(Te,) < f&(Try),
(iv) de(E1) < ¢e(E2),
)

(V Pe(E3) = Te[?r"f;lir,lT%] be(fe(T),T).

Then ¢o(E3) < ¢pe(E1), and E3 is not a local minimum point of ¢e relative to

domain 2.

Proof. We divide the proof into two steps.

1. We first show that ¢e(E3) < ¢e(F1). By condition (v), this is equivalent
to the inequality:

de(FE1) > min  ¢o(fe(T),T).

Te |:71E1 7TE2]
Thus, it suffices to show that it is impossible that

GelBr) = min Gu(fo(T).T). (4.18)

Assume that (4.18) holds. Consider the function:
F(T) = fe(T) = fe(Tr,) — fe(Te, (T — Tk, ).

Then F(Tg,) = F'(Tg,) =0, and F"(Tg,) = f2(Tg,) < 0 by condition (ii).
This implies that F(T) < 0 in (Tg,,TE, + ¢) for some small 6 > 0. Denoting
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by To a minimum point of F(T) in [Tg,,Tg,], then F(Tg) < 0. This implies
that Q # E;. Now we consider two cases:
If Q # Es, then F'(Tg) =0, i.e., fi(Tg) = fo(Tk,). With this, F(Tg) <0

can be rewritten as

fe(Tr,) > fe(TQ) + fe(TQ)(TE, — Tg).

Then, by Lemma 3.4(ii), we obtain that ¢e(E1) > ¢e(Q), which contradicts
(4.18).

If Q = E», then F'(Tg,) < 0. Notice that F'(Tg,) = fL(Tg,)— fL(TE,) =0
by condition (iii). Thus, F'(Tg,) = 0, which means that f.(Tg,) = fi(Tk,).
Then, using F'(Tg,) = F(To) < 0 and arguing similar to the previous case,
we employ Lemma 3.4(ii) to obtain that ¢e(F1) > ¢e(E2), a contradiction to
(4.18).

Therefore, we have proved that (4.18) is false. This implies that ¢e(E3) <
oe(F1), as we have shown above.

2. We now show that F3 cannot be a local minimum point of ¢ relative
to domain 2. We have shown in Step 1 that E3 # E;. Also, B35 # E5 by
conditions (iv)—(v). Thus, Tk, € (Tk,,TE,), i.e., B3 € I9u.- If Es5 is a local
minimum point of ¢e relative to {2, we obtain by Lemmas 3.1 and 3.2(v) that

"(Tg,) <0. Let

G(T) = fe(T) = fe(Tr,) — [(Te,)(T = Th,).

Then G(Tg,) = G'(Tg,) = 0 and G"(Tg,) = f¢(Tr,) < 0. This implies that
G(T) < 0in (Try, Try+0) for some 6 > 0. Assume that T, is a minimum point
of G(T) in [Tg,, Tr,]- Then, repeating the argument in Step 1 (with Es, G, and
Tg, instead of Eq, F, and Ty, respectively), we obtain that ¢e(Es3) > ¢e(Q1),
which contradicts condition (v). O

Lemma 4.9 also holds if Tg, > Tg,, with only change in the condition that
fi(Tg,) < fL(Tg,) that is now replaced by f.L(Tg,) = f4(TE,). More precisely,
we have

Corollary 4.10. Assume that there exist points Fy, Es, and E3 on Ighock
such that
(1) TE1 > ’I’E2 and TE3 € [TEzaTElL
(i) f&(Tk,) <0,
(iii) f(Te,) 2 [i(Tr,),
(iV) ¢e(E1) < ¢e(E2)
(v) (B3) = minger [Tey.TE,] d)e(fe( ), T).

Then ¢e(E3) < ¢pe(E1), and E3 is not a local minimum point of e relative to
domain 2.

e
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Proof. We prove this by directly repeating the argument in the proof of Lemma
4.9 with some obvious changes. Alternatively, by re-parameterizing the shock
curve by R

Fshock = {(fe(T),T) : _TB < T < _TA}

so that fo(T) = fo(=T), and T4 and T are the T-coordinates of A and B
with respect to the original parameterization, then we are under the conditions
of Lemma 4.9 in the new parameterization. [

Proof of (4.17). Using (4.9)-(4.11), (4.13)-(4.14), and (4.16), we can apply
Lemma 4.9 with By = C, Ey = As, and E3 = Cy to obtain (4.17). O

Let 1 be the constant from Lemma 4.7, and 75 € (0,71). Since Cs is not
a local minimum point by (4.17), we use Lemma 3.14 to obtain the existence
of a minimal chain {C} };?2:0 with radius ro; see Fig. 4.2. Next, we restrict
r9 to be smaller than r5 from Lemma 3.18 defined by 7 fixed above. Then,
recalling that there is a minimal chain of radius r; which starts at C' and
ends at C, and noting that ¢e(Cs) < ¢e(C1) by (4.16)—(4.17), we obtain
that 052 lies on I'ghock between C' and Cy. Now, using (4.16) and noting that
$e(CF2) < $o(CY) = po(Cy), we conclude that C4? lies on the part [Ta,, Tc]
of I'ihock; see Fig. 4.2. Denote C3 := ng and notice that Cj3 is a local minimum
point of ¢ relative to 2.

From this construction, point As (defined by equation (4.6) so that (4.10)
holds) satisfies Ta, € (Tc,,Tc,) € (Tey, Te). Then

de (A2) = TG[ITI’IC;?),(Tc] ¢e(fe(T)a T) = TE[Yr%?,};cg_] ¢e(fe(T)> T)

Also, from (4.11), (4.16), and the definition of C5 as the endpoint of the min-
imal chain from Cs5, we have

¢e(A2) > ¢e(02) > ¢e(c3)7 fcla/(OS) < Oa

where the last property holds by Lemmas 3.1-3.2, since Cj is a local minimum
point of ¢e with respect to 2. Moreover, from (4.15),

fe(Tey) 2 fe(Tay)-

Choosing T¢, € [Ta,,Tc,] such that

$e(Cy) = min Pe(fe(T), T), (4.19)

Te [TA2 7TC?’]

we can apply Corollary 4.10 with E; = C3, Fy = As, and E3 = Cy to show
that ¢e(C4) < ¢e(C3) and Cy cannot be a local minimum point.

Then we repeat the same argument as those for the minimal chain starting
from Cs. Specifically, for any 75 € (0,72], we use Lemma 3.14 to obtain the
existence of a minimal chain {C}*}¥s_, with radius r3 starting from Cj, i.e.,
C) = Cy; see Fig. 4.2. Next, we restrict r3 to be smaller than r3(ry) from
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Lemma 3.18, i.e., ro fixed above is used as r; in Lemma 3.18 to determine
r%(r2). Then, recalling that there is a minimal chain of radius ro which starts
at Cy and ends at Cs, and noting that ¢e(Cys) < ¢e(Cs) as we have shown
above, we obtain by Lemma 3.18 that

C!f3 lies on I'yhock between Cy and Cs. (4.20)

However, combining the properties shown above, we have

¢e(04) = min ](be(fe(T)aT) < (be(c?»)

Te [TA2 7T‘C3

< ¢e(C2) = Te min Pe(fe(T),T),

cy:Tay

so that
e(Cs) = min e(fe(T),T).
6e(C0) =, min, 6u(fo(T).T)
Then the property that ¢o(C¥) < ¢e(C4) implies that C¥* cannot lie on
[Tc,, Te,] < [Te,, To,]- This contradicts (4.20).
This contradiction shows that (4.1) cannot hold if e is the vector from con-
dition (A6) of Theorem 2.1. Therefore, in the (S, T)—coordinates from Lemma
3.2 for this vector e, we conclude that

T) <0 for all T € (T4, Tg).

We thus completed the proof of the following fact:

Proposition 4.11. Suppose that conditions (A1)—(A6) of Theorem 2.1 hold.
Then the free boundary L'shock 18 a convex graph as described in Theorem 2.1.

4.4 Step 4: Strict convexity of Ispock

In this step, we show the strict convexity in the sense that, for any fixed
e € Con, using the coordinates and function fe from Lemma 3.2(i), for every
Pe I3 .. either f2(Tp) < 0 or there exists an even integer k > 2 such that
FKNTp)y=0foralli=2,....k—1,and fF(Tp) <o0.

Note that fZ < 0 on (T4,Tp) by Proposition 4.11.

Let Tp € (Ta,Tg) be such that fZ(Tp) = 0. By Lemma 3.6, there exists
an integer k such that

TPy =0 fori=2,..., k=1,  f{"(Tp) is nonzero.

The convexity of the shock in Proposition 4.11 implies that £ must be even and

fék)(Tp) < 0. This shows (2.19) in the coordinate system with basis {e,e’}.
Moreover, using Remark 2.6, we have

Proposition 4.12. Suppose that conditions (A1)-(A6) of Theorem 2.1 hold.
Then the free boundary I'shock 18 strictly convex in the sense that (2.19) holds
at every T € (Ta,Tg) with f"(T) = 0. Moreover, (2.20) holds at every point
of I o> b which ¢rr = 0.
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Furthermore, we note the following fact:

Lemma 4.13. Suppose that conditions (A1)-(A6) of Theorem 2.1 hold. Then,
for any € > 0, there is no more than a finite set of points P = (f(T),T) €
Tihook with T € [Ta+e,Tp—¢] such that f”(T) = 0 (or equivalently, ¢r-(P) =
0).

Proof. Suppose that T; € [Ta + ¢,Tp — ¢] for i« = 1,2,..., are such that
f"(T;) = 0. Then a subsequence of T; converges to T* € [Ta +¢,Tp — €], and
f(T*) =0 for each n = 2,3,..., and P* = (f(T*),T*) € I} .. It follows
that 02¢(P*) = 0 for each n = 2,3,.... This contradicts (2.20). O

By Propositions 4.11-4.12 and Lemma 4.13, the proof of Theorem 2.1 is
completed.

5 Proof of Theorem 2.3: Uniform Convexity of Transonic Shocks

In this section, we show the uniform convexity of I'J . in the sense that
"(Tp) <0 for every P e I3 ., for f(-) in (2.18), or equivalently, fZ(T) < 0
on (T4, Tg) for any e € Con.

The outline of the proof is the following: By Theorem 2.1 and Remark 2.6,
¢r+ = 0on I (hock Thus, we need to show that ¢ > 0 on I'9 thock: Assume
that ¢, =0 at Pye I'Y shock- Then we obtain a contradiction by proving that
there exists a unit vector e € R? such that P, is a local minimum point of ¢e
along I'S ., but Py is not a local minimum point of ¢e relative to 2. Then
we can construct a minimal chain for ¢ connecting Py to C** € 0£2. We show
that

~ Ch ¢y u s,

- Ckl ¢ Fl v FQa

- Ckl ¢ Fshock~

This implies that ¢ > 0on I3, so that f”(T) < 0on (T4, Tp); see Remark
2.6.

Now we follow the procedure outlined above to prove Theorem 2.3. In the
proof, we use the (S, T")—coordinates in (2.18). Then we have

Tinoee = {S = f(T) : Ta < T < Tg}, Qc{S<f(T): TeR},
L my_cLrmy) , )
et Y vrmerr TS0 (TA’TB)(’ |

5.1

where we have used the convexity of I'shock proved in Theorem 2.1. Note that
the orientation of the tangent vector 7(P) at P € Ishock has been chosen to
be towards endpoint B.

First, from the convexity and Lemma 3.1, we have
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Lemma 5.1. Let ¢ be a solution as in Theorem 2.1. For any unit vector
ecR? ife-v <0 (resp.e-v >0) at Pe Fsohocik, then ¢e cannot attain its
local mazimum (resp. minimum) with respect to §2 at this point.

We now prove the uniform convexity by a contradiction argument. From
Theorem 2.1 and Remark 2.6, we know that (2.20) holds so that, if f”(Tp,) =0
at some interior point Py of Ighock, then

¢TT(Pd) = 07 (5 2)
6rr(P) >0  for all P € Dypoax 0 No(Py) with P # Py, '

for some £ > 0. First we choose a unit vector e € R? via the following lemma.

Lemma 5.2. There exists a unit vector e € R? such that, for any local min-
imum point Py of ¢e along I'S . € v(Pa) < 0. In addition, Py is a strict
local minimum point along IS, .. in the following sense: For the unit tangent
vector T = T(P) to Iyhoek at P defined by (5.1), dor is strictly positive on
Lshock near Py in the direction of T, and ¢er is strictly negative on I'ghock near
Py in the direction opposite to 7. More precisely, in the coordinates from (5.1),

there exists € > 0 such that Ta <Tp, —e <Tp, +e <Tp and

Per (f(T),T) <0 on (T, — ¢, Tp,),

¢er(f(T),T) >0 on (TPd7 TPd + 5). (53)

Proof. Recall that ¢--(Py) = 0. Now we first use (3.15) at Pq with h, # 0
by (3.6), and then use the strictly elliptic equation (3.1) at Py in the (S,T)-
coordinates with basis {v(Py), 7(Py4)} to obtain

Qbuu(Pd) = ¢VT(Pd) = ¢TT(Pd) = 0. (54)

For any unit vector e € R?, define a function g(-) = g(e)(-) on I'9, . by

9(e)(&) := (p(c® — oi)pu(e-T) + (per + poc®)pr(e- 1)) (£). (5.5)

Then, at any point of 19,4, we see from (3.15) with (3.5) that, for any unit
vector e € R?,

drrg(e)

ber = Grr(e T) + dru(e-v) = (@ — 02w

(5.6)

Notice that, from the expression of g(e)(+) and assumption (A3) of Theorem
2.1

)

g(T) > Ov g(_T) <0 on Fs(ilock' (57)

Then we can choose a unit vector e such that e -v < 0 and g(e) = 0 at Py.
We fix this vector e for the rest of this proof. From (5.4), we have

Grr = =—1, =0  at Py (5.8)
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Below we use the (S, T')—coordinates from (5.1). From (2.17) and (5.1), we use
condition (A1) in Theorem 2.1 to obtain that ¢g > 0 on I'ypock so that
(=¢r, ¢s) D¢

R P

Then we can use these expressions to define 7 and v in {2 near [ypock, which
allows to extend function g(e)(-) defined by expression (5.5) into this region.
Since ¢ € C%(2 U I'Y,,.); the extended 7, v, and g(e)(-) are C* up to 19, .-
Then, from (5.4), DT = 0 and D(g v = 0 at point Py. Moreover,
differentiating (2.4) and (2.7), and using (5.4) yield that D¢grp = 0 and
D(S,T)c2 = 0 at point Py. Therefore, differentiating (5.5), using (5.8), and
writing g(-) for g(e)(-), we have

> 0.

gr(Pa) = =(e-v)(ppy, + poc)|

d

Then, by (5.1),

dg(f(T),T)

dT ‘T=Tp = (fl(TPd))2 + 1gT(Pd) > 0.

Thus, g(f(T),T) <0on (Tp, —¢, Tp,) and g(f(T),T) > 0 on (Tp,, Tp, +¢)
for some € > 0. By (5.2) and (5.6), the same is true for ¢ger.

Then Py is a local minimum point of ¢ along Iinock, and ¢er has the
properties asserted. O

Remark 5.3. The unit vector e is not necessarily in the cone introduced in
condition (A5) of Theorem 2.1.

Lemma 5.4. Py is not a local minimum point of ¢ with respect to f2.

Proof. If Py is a local minimum point, it follows from Lemma 3.1 and e -
v(Py) < 0 that ¢--(Py) > 0, which contradicts to the fact that ¢,-(Pa) =
0. O

Now we consider a minimal chain starting at Py. In the following argument,
we use the (5, T)—coordinates in (5.1).
To choose the radius for this chain, we note the following:

Lemma 5.5. There exist points Pdi € Fsohock such that

(1) Py lies on Lghock Strictly between Pd+ and P :
Ty <T,- <77pd <TP+ <Tpg;
d d

(ii) Denoting by I'shock[ P, Q] the segment of I'ihoek with endpoints P and Q,
then
¢e(Pd) < ¢e(P) < Qbe(P(;) ifP € Fshock[Pgapd]\{Pgapd}v

. (5.9)
(rbe(Pd) < ¢e(P) < ¢ (Pd ) ’lfPE Fshock[Pd-i-apd]\{P(;rapd};
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(iii) e-v(P) <0 for all P € I'youk[Py . Py 1.

Proof. Recall the definition of 7 in (5.1). Then we use (5.3) in Lemma 5.2 to
find that, for € > 0 defined there,

d¢e(f(T)7T) < O lf T € (TPd — &, TPd)7
dr >0 ifTe(Tr, Tr, +¢).

Thus, for points Pf := (f(Tp, t¢), Tp, £¢), assertions (i)-(ii) hold. Further-

more, since e - v < 0 at Py, then, reducing ¢ if necessary, we obtain property

(ii). O
Denote

§ = min { max Pe(P), max Pe(P)} — de(Pa).  (5.10)
Pe[‘shock[PJ; Pd] Pe[‘shock[Pch Pd+]

Note that 6 > 0 by (5.9). Now let r; be constant r¥ from Lemma 3.15 deter-
mined by § from (5.10).

By Lemmas 3.14 and 5.4, there exists a minimal chain with radius r; which
starts at Py. Denote its endpoint by C*. Then

C* e 02, (5.11)
and C* is a local minimum point of ¢ relative to £2. Moreover,
¢e(Pd) > d)e(ck)- (512)

Now we consider case by case all parts of the decomposition:

3
002 = FshockU(Uﬁi)
=0

defined in Framework (A)(iii) and in assumption (A7) of Theorem 2.3, and
show that C* cannot lie on the corresponding part. Eventually, we reach a
contradiction by showing that C* cannot lie anywhere on 012.

In the proof below, we note the following:

Remark 5.6. We use condition (A10) of Theorem 2.3 only in the proof of
Lemma 5.10. The other conditions of Theorem 2.3 to be used in the proof below
include Framework (A), conditions (A1)—(A6) of Theorem 2.1, and (AT7)—(A9)
of Theorem 2.3. These conditions are symmetric for Iy and I, for I and
Iy, and for points A and B. Also, § in (5.10) is defined in a symmetric way
with respect to the change of direction of T in (5.1). This allows without loss
of generality to make a particular choice between points A and B, and the
corresponding boundary segments in order to fix the notations, as detailed in
several places below.

Now we consider all the cases for the location of C* on 012.
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Lemma 5.7. C* ¢ FTO U Fg

Proof. On the contrary, if C* € Iy u I's, we now show in the next four steps
that it leads to a contradiction.

1. We first fix the notations. In this proof, we do not use condition (A10)
of Theorem 2.3. Thus, as discussed in Remark 5.6, we can assume without loss

of generality that C* e Iy and B = ook N 13,
From (5.12) and condition (A8) of Theorem 2.3,

Pe(Pa) > ¢o(C*) = ¢o(B). (5.13)

We now prove Lemma 5.7 by showing the two claims below: Claims 5.7.1—
5.7.2.

2. Claim 5.7.1. It is impossible that e - v(B) < 0 at B; see Fig. 5.1 for
the illustration of the argument below.

Py Py Py B

maximal chain

minimal chai

Fig. 5.1 Proof of Claim 5.7.1

We first show that, if e - v(B) < 0, then, since e - v(Py) < 0, the strict
convexity of I'shock (as in Lemma 4.13) and the graph structure (5.1) imply
that v - e < 0 at any point lying strictly between Py and B along Ighock-
Indeed, using (5.1) and writing e = (e, e2) in the (S, T')—coordinates, we have

! —
y(P).e= LDz =1 for P = (f(T),T). (5.14)
(f1(1))? +1
Thus,
f’(Tpd)(iQ —e1 <0, fI(TB)62 —e; < 0.
Using f”(T) < 0 and Lemma 4.13, we have
f/(Tpd) < f/(T) < fI(TB) forall T € (Tpd,TB).
Then it follows that

f/(T)eg —e1 <0 ifTe [Tpd,TB).
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Therefore, we have

v(f(T),T)-e<0 for all T € [Tp,, TB). (5.15)

Now we show that (5.15) leads to a contradiction. Let Py € I'shock[Pa, B]
be such that
o(Pp) = e(P). 5.16
bulP) = max  0u(P) (5.16)
Since ihock[Pa, P;] C Ishock[Pa, B] by Lemma 5.5(i), we obtain from (5.10)
that
bo(P1) = do(Pa) + 5, (5.17)

so that P, # Py. Also, by (5.13) and (5.17), we see that P, # B. Thus,
v(Py)-e <0 by (5.15). Now, by Lemma 5.1, P; cannot be a local maximum
point of ¢e relative to 2. Therefore, by Lemma 3.14, there exists a maximal
chain of radius rq, starting from P; and ending at some point P, € 02 which
is a local maximum point relative to 2, and ¢e(P1) < de(P).

Next, we show that

: 0
P, lieson Iy .

«c strictly between Py and B. (5.18)

Indeed, recall that there exists a minimal chain of radius r from Py to C* € I 3.
Also, Py lies on I3, strictly between Py and B. Then, from (5.17) and the
choice of r; (see the lines after (5.10)), we obtain from Lemma 3.15 that

either (5.18) holds or P; lies on I's between B and C* (possibly including B).
However, we use condition (A8) of Theorem 2.3, (5.13), and (5.17) to obtain

that, for any P € I,

Qbe(P) = ¢e(B) < ¢e(Pd) < ¢e(P1) < ¢e(P2)a

which implies that P, # P. This proves (5.18).
However, (5.18) contradicts (5.16) since ¢e(P1) < ¢e(P2). Now Claim 5.7.1
is proved.

3. Claim 5.7.2. It is impossible that e-v(B) > 0; see Figs. 5.2-5.3 for the
illustration of the argument below.

If e v(B) > 0, then, using e - ¥(Py3) < 0, there exists a point Py €
I'shock[Pa, B] so that e - v(Fy) = 0.

Then, from (5.14),

—e1+ f'(T)ea =0 at T = Tp,.

Now, since f”(T) < 0 by the convexity of I'yhock, we use Lemma 4.13 to find
that the function: T — —e; + f'(T)es is strictly monotone on (74, Tp), which
implies that point Py is unique.

Recall that e - v(Pyq) < 0 and e - v(Py) = 0. Then, following the proof of
(5.15), we have

v(f(T),T)-e<0 for all T € [Tp,, Tp,)- (5.19)
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e-v<0 ev>0
Tp, no max Tp, no min Tp

Py P; P P PO_ Py Po'f Py P, B

minimal chain

maximal chain

minimal chai

Fig. 5.2 Proof of Claim 5.7.2: The initial step of the iteration procedure
Similarly, using e - v(Py) = 0 and e - v(B) > 0, and arguing similar to the
proof of (5.15), we have

v(f(T),T)-e>0 for all T € (Tp,, Tg]. (5.20)
From (5.19)—(5.20) and Lemma 5.1, we conclude that

If P e 012 is a local maximum (resp. minimum) point of ¢, relative

_ (5.21)
to Q, then P ¢ (Fshock[Pd,Po])O (resp. P ¢ (Fshock[Po,B])O).

Next, since e - v(Py) = 0, then e = +7(Py). Moreover, by (5.1), we have

f/(TPd) - f/(TPO)
VU TR))? + 1) ((F(Tr))? +1)

because f”(T) < 0and Tp, < Tp, < Tp. Then, since v(Py)-e < 0, we conclude

v(Pa)-7(R) = >0,

e = —1(PR). (5.22)

With this, recalling that ¢ = 0 on Ighock, we use (5.6)—(5.7) and Lemma
4.13 to obtain the existence of two points P, and P, such that POi =
(f(TPOi), Tpoi) € Fshock([Pda B])O and

Tpd < TPO_ < Tp0 < TP[;(' < TB, (523)
er(P) <0 for all P € I'poek[Py , P ] and P # P. (5.24)

Then there exists > 0 such that

¢e(P(;)_5>¢e(PO) >¢e(PO+)+8 (525)
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Moreover, combining (5.21) with (5.24), we conclude

If P e 012 is a local maximum (resp. minimum) point of ¢, relative

to £2, then P ¢ I'wock[Pa, Py |\{Pa} (resp. P ¢ Isnock[Py , BI\{B}). 26)
Note that (5.26) improves (5.21), which follows from (5.23).
Let Py € shoek[Pa, Po] such that
GelP1) = | max  9elP).
By Lemma 5.5(i)—(ii) and (5.10),
Tp, <Tp+r <Tp,  ¢e(P1) = de(Fa) +6.
Moreover, from (5.23) and (5.25), we obtain
6e(P1) = ¢e(Fy ) = de(Po) +9.
Also, by (5.24), Tp, < TPO—. Combining all these facts, we have
T, < Tps < Tp, < Tp-, (5.27)
$e(P1) = do(Pa) + 0, Ge(Pr) = de(Po) + 0. (5.28)

From (5.26) with (5.23) and (5.27), Py cannot be a local maximum point of
¢e with respect to (2.

Therefore, by Lemma 3.14, we can construct a maximal chain of any radius
ro € (0,7r1] starting from P;. We choose 79 so that it works in the argument
below. For this, we use constant ¢ from (5.25), choose 75 the smaller constant
r} from Lemmas 3.15-3.17 determined by 4, and then define

ro := min{ry,fa}.

Fix a maximal chain of radius ry starting from P;. It ends at some point
Py € 012 that is a local maximum point of ¢e relative to £2. Moreover, by
(5.28), ¢e(P1) = ¢e(Pg) + 0; that is, (5.17) holds in the present case. Since
ro < r1, then the proof of (5.18) works in the present case so that P lies on
IS . strictly between Py and B. Since P, is a local maximum point of ¢

relative to {2, we obtain from (5.26) with (5.23) that P» lies strictly between
Py and B on I'yock. Combining with (5.28), we have

Tp, € (Tp+, Tn) < (Try, Tp), Pe(P2) > ¢e(P1) > ¢e(Fo). (5.29)
Let P53 be such that

TP3 € [TP07TP2]7 ¢9(P3) = Tpe[gr}gnTp ]¢e(P)-
04 Po
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By (5.24)-(5.25) and (5.28)-(5.29),
Tp3 € (TP(T’TPZ]’ (530)
Pe(Ps3) < be(Py) < de(Po) — 6 < de(P1) — & < ¢e(P2) — 0. (5.31)

Then, from (5.26) combined with (5.23) and (5.29), P; cannot be a local
minimum point of ¢e relative to 2.

Therefore, there exists a minimal chain of radius ro starting from P; and
ending at P, € 0f2. Recall that there exists a maximal chain of radius 7o
from Py to P,. Also, it follows from (5.31) that P3 # P so that P3 lies in
(Ishock[P1, P2])°. Moreover, ¢e(Ps) < ¢o(Pr) — § by (5.31). Using the choice
of 7y and Lemma 3.17, we conclude that Py € (I'shoek[P1, P2])" and is a local
minimum point of ¢, relative to 2. Then, from (5.26) combined with (5.23),
(5.27), and (5.29), we obtain

P4 € (FShOCk[Ply Poi])o- (532)

Moreover, combining the facts about the locations of points discussed above
together, we have

Tpd < TP(;" < Tp1 < Tp4 < TP(; < TP0+ < Tp3 < Tp2 <Tp. (533)

Now we follow the previous argument for defining points Py, ..., P, in-

ductively to construct points Pyg1, ..., Pigta for k=1,2,..., as follows (cf.
Fig. 5.3):

Pu Papss Paia By Py PG Purss Parso Pars

minimal chain

maximal chain

minimal chain

Fig. 5.3 Proof of Claim 5.7.2: The k-th step of the iteration procedure

Fix integer £ > 1 and assume that points Py;—; and Py, have been con-
structed with the following properties:

P4k:71 € (Fshock[PoerB])O; P4k € (Fshock[Pd7PJ])07 (534)
de(Pi—1) < de(Po) — 6, (5.35)
There exists a minimal chain of radius ro from Py;_1 to Pyg. (5.36)

From (5.23), it follows that (5.34) can be written as

Tpd < TP4k < TPO_ < TPO < TP0+ < TP4k_1 < Tg. (537)
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We first notice that, for £k = 1, points P; = Py,—1 and Py = Py satisfy
conditions (5.34)—(5.36). Indeed, for (5.34), the first inclusion follows from
(5.30) combined with (5.29), while the second inclusion follows from (5.32)
combined with (5.27). Property (5.36) for P; and Py follows directly from the
definition of these points above, and (5.35) for P3 follows from (5.31). Thus,
we have the starting point for the induction.

Now, for k =1,2,..., given Py, 1 and Py, we construct Py 1, ..., Pigia-
Choose

Pyjy1 € Isnock[Par, Po] 80 that ¢e(Pixr1) = MaXper,, . [Puy,Po] Pe(P)-

Combining (5.25) with (5.35)—(5.37), we obtain
Ge(Piks1) = 6e(Py) = ¢e(Po) + 0 = pe(Par—1) +20 > ¢o(Par) +20. (5.38)
In particular, Py;y1 # Py. Then, from (5.24) and (5.37),
Tpyy, € (TPM,TP(;). (5.39)
From (5.26),
Pyi+1 is not a local maximum point of ¢e relative to £2. (5.40)

Thus, there exists a maximal chain of radius 7o starting at Ps;+1 and ending
at some point Pyx.o € 012, which is a local maximum point of ¢, relative to

(2. Moreover,
Ge(Pak+2) > be(Pak+1)- (5.41)

By (5.38), ¢e(Pirs1) = ¢o(Pir_1) + 26. With this, using (5.36)—(5.37),
(5.39), the choice of r9, and Lemma 3.15, we obtain

Puy2 € (Tsnoek[Pak, Par—1])°-

Since Pji4o is a local maximum point of ¢, relative to 2, we use (5.26) and
(5.37) to obtain
TP4k-+2 € (TPOJraTPM,l)- (542)

Now choose
P4k+3 € Fshock [Po, P4k+2] so that gf)e (P4k+3) = minpepshmk[po’p“w] ¢e(P)

Note that Tp+ € (Tp,, Tp,y,») by (5.37) and (5.42). Then, from the definition
of Py+3, (5.25), and (5.38),

de(Pir+3) < de(Py) < do(Po) — 8 < do(Pars1) — 20. (5.43)

By (541) and (543), ¢e(P4k+3) < ¢e(P4k+2) so that P4k)+3 # P4k+2. AISO7 by
(5.23)-(5.24), Par+3 ¢ Isnock[Po, Py ]. Then, using (5.39), we have

Tp4k+3 € (TPJ7TP4k+2) < (TP4k+1’TP4k+2)‘ (544)
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In particular, Tp,,,, € (Tp,, Tp). Thus, by (5.26) and (5.37), Tp,, ., is not
a local minimum point of ¢, relative to £2. Then there exists a minimal chain
of radius 7o starting at P,;.3 and ending at some point Pyy4 € 312 that
is a local minimum point of ¢ relative to 2. Since there exists a maximal
chain of radius 79 from Pygi1 to Pagyo, we use (5.43)—(5.44) and Lemma
3.17 to conclude that Py 4 € (Ishock|[Paks1, Pars2])?. Since Py 4 is a local
minimum point of ¢ relative to 2, we use (5.26), (5.37), and (5.39) to obtain

TP4k+4 € (TP4k+1’TPO—) < (TPd’TPO_)' (5'45)

From (5.44) combined with (5.37) and (5.42), Tp,, ., € (TPO+,TB). From this

and (5.45), we see that points Py 3 and Py 4 satisfy (5.34) with k+1 instead
of k. Also, from (5.37), (5.39), and (5.45),

Tpd < Ty < Tp4k_+4 < TP&' (546)

Therefore, we obtain local minimum points Py, € [0, 4 k = 1,2,..., of
¢e which satisfy (5.46) for each k. Then there exists a limit P* = limg_, . Py
with Tpx € [Tpd,TPU—], which implies

P* € Fsohock'
Since Pyx € I'shock 18 & local minimum point of ¢e, 0r¢e(Psx) = 0, so that

dge(f(T),T)

=0 for k=1,2,....
dT ‘T:TPM o

From this, since {Tp,, } is a strictly increasing sequence by (5.46), we obtain

d"¢e(f(T),T)

=0 f =1,2,.... 5.47
dT™ ‘T:TP* arn=as (5.47)

The analyticity of functions ¢e and f(7T'), shown in Lemma 3.5, implies that
the function: T' — ¢e(f(T),T) is real analytic on (T4, Ts). Then we conclude
from (5.47) that ¢e(f(T),T) = const. on (Ta,Tg). By (5.22), we see that
e = —7(Fy), so that ¢e(Py) = ¢-(Py) = 0, where the last equality holds by
the first condition in (2.17). That is,

(be =0 on Fshock~

Then, using that ¢, = 0 along [shock by the first condition in (2.17) and that
e-v <0 at Py by Lemma 5.2, we obtain that D¢ = 0 at Pyq. This, combined
with (2.21) and the first condition in (2.17), implies that p = pg at P4, which
contradicts condition (A1) of Theorem 2.1. Therefore, Claim 5.7.2 is proved.

4. Combining Claim 5.7.1 with Claim 5.7.2, we finally conclude Lemma
5.7. O

Lemma 5.8. C* ¢ IV fori=1,2.
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Proof. Since C* is a local minimum point of ¢, then condition (A9) of T heo-
rem 2.3 and the regularity property ¢ € C1*(12) imply that ¢e = const. on I}.
Combining this with (A7)—(A8), we obtain that ¢ = const. on Iy U I (resp.

on Ih v fg) if i = 1 (resp. i = 2), where one or both of Iy and I'; may be
empty. Then, following Remark 5.6, we can assume without loss of generality

that C* € Iy (i.e., i = 2). In this case, B € I, U I3 so that ¢e(P) = ¢o(B)

for any P € I, U I's. From this and (5.12), we obtain that (5.13) holds in the
present case.

Then we are in the same situation as in Lemma 5.7. Therefore, the proof
of Lemma 5.7 applies, which yields a contradiction. O

Remark 5.9. Combining Lemmas 5.7-5.8, we obtain that, if condition (i)
of assumption (A10) holds, the only remaining possible location of C* is on
Tshock- On the other hand, if condition (ii) of assumption (A10) holds, then
the remaining possible locations of C* are either on I'syocx or at the common
endpoint Q* of Iy and Iy.

Lemma 5.10. Assume that condition (ii) of assumption (A10) holds, and let
Q* be the point defined there. Then C* # Q*.

Proof. Assume CF = Q*. If ¢ attains a local minimum or maximum relative
to 2 on I'Y, then condition (A9) of Theorem 2.3 and the regularity property

La () _ - . - s .
e . .
¢ € CH(£2) imply that ¢ = const. on I. Since B € I's by condition (ii) of
assumption (A10), we obtain that ¢e(P) = ¢e(B) for all P € I’;. Because of

Ck=Q*%e I, we can complete the proof as in Lemma 5.8 above.
Thus, we can assume that

e does not attain its local minimum or maximum relative to £2 on 1.
(5.48)

Then we consider three cases, depending on whether e - vy, (B) is positive,
negative, or zero. In the argument, we take into account that Iy =@ by
condition (i) of (A10) so that I has endpoints Q* and B.

If e-vgn (B) < 0, then we argue similar to the proof of Claim 5.7.1, replacing
I's by I, with the differences described below. First, we show (5.15) without
changes in the argument. Next, we choose P; € shock[Pa, B] satisfying (5.16)
so that the proof of (5.17) holds without changes in the present case, which
implies that P; # P4. However, since (5.13) is not available in the present
case, we cannot conclude that P; # B. That is, we now obtain that P; €
Fshock[deB]\{Pd}- If P1 € (Fshock[Pd;B])O; then, by (515) and Lemma 5.1,
P, cannot be a local maximum point of ¢e relative to 2. If P, = B, then
the same conclusion follows from condition (ii) of (A10) since e - vgp(B) < 0.
Thus, there exists a maximal chain of radius ro, starting from P; and ending
at some point P, € 02 which is a local maximum point relative to {2, and
Pe(P1) < ¢pe(P2). Now, instead of (5.18), we show a weaker statement,

P2 € Fshock[Pd7 B] (549)
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To prove (5.49), recall that there exists a minimal chain of radius rq from Py

to C%F = Q* € I. Also, P, € Tshock[Pa, B]\{P4}. Then, from (5.17) and the
choice of ry, we obtain from Lemma 3.15 that either (5.49) holds or P» lies on
I'Y between B and C*. On the other hand, the last case is ruled out by (5.48)
since P, is a local maximum point of ¢e relative to 2. Thus, (5.49) holds.
However, (5.49) contradicts (5.16) since ¢e(P1) < ¢e(P2). Therefore, we reach
a contradiction in the case that e - v(B) < 0.

If e - v(B) = 0, we use condition (ii) of (A10) and the fact that C* = Q*
to conclude

¢e(Pd) > ¢e(ck) = ¢e(Q*) = (be(B)a

which implies (5.13). Now we follow the argument of the proof of Claim 5.7.1
via replacing I's by I's, up to (5.18). Instead of (5.18), we can show (5.49) whose
proof, given above, still works in the present case without changes. Then, as
shown above, (5.49) contradicts (5.16). Therefore, we reach a contradiction in
the case that e - v(B) = 0.

Ife-v(B) > 0, then we argue as in Claim 5.7.2, via replacing Iy by I, and
with modifications similar to the ones described above. Specifically, (5.48) is
used to conclude that Ps ¢ fg . From this, we conclude that P, lies on [ypock
between P;" and B, possibly including B. However, we now cannot rule out
the possibility that P, = B as in the proof of Claim 5.7.2 (again, since (5.13)
is not available). Thus, instead of (5.29), we have

Tp, € (Tp+, Tel © (Tpy, Tl ¢e(P2) > ¢e(P1) > ge(F). (5.50)

From this, using (5.24)—(5.25) and (5.28), it follows that (5.30)—(5.31) hold.
From (5.31), P3 # P», and then (5.30) implies

T‘p3 € (TPJ"TPZ) C (TPW TB)

Then, from (5.26) combined with (5.23), P53 cannot be a local minimum point
of ¢ relative to £2. Thus, there exists a minimal chain of radius 7 starting from
Ps5. The rest of the proof of Claim 5.7.2 applies without changes. Therefore,
we obtain a contradiction in the case that e - ¥(B) > 0. This completes the
proof. O

Remark 5.11. Combining Lemmas 5.8 and 5.10, we obtain that, if condition
(ii) of assumption (A10) holds, then C* cannot lie within I'0 U {Q*} U IY.
Combining this with Lemma 5.7, we see that, if condition (ii) of assumption
(A10) holds, the only remaining possible location of C* is at I'shock-

From Remarks 5.9 and 5.11, in order to complete the proof of Theorem
2.3, it remains to show

Lemma 5.12. C* ¢ Ijock.
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Proof. The proof consists of two steps.

1. Recall that Iy,ock includes its endpoints A and B. Thus, we first consider
the case that C* is either A or B. Note that Lemma 5.7 does not cover this
case if either Iy or I 3, or both, are empty.

The argument below does not use condition (A10) of Theorem 2.3. Thus, as
discussed in Remark 5.6, we can assume without loss of generality that C* =
B. Then, since there is a minimal chain from Py to C* = B, we conclude that
(5.13) holds. Now the proofs of Claims 5.7.1-5.7.2 apply, with the following
simplification: From Lemma 3.15 and the definition of point P, in each of
these claims, we conclude that (5.18) holds. The rest of the proofs of Claims
5.7.1-5.7.2 work without changes. Therefore, we reach a contradiction, which
shows that C* is neither A nor B.

2. It remains to consider the case that C* € I'§ . Notice that C* is a
local minimum point of ¢e. Then, from Lemma 5.1, we see that e - v < 0 at
C1. Now the argument as in Claim 5.7.1, with point B replaced by point C*,
works without change. This yields a contradiction. Therefore, C* ¢ I . O

Proof of Theorem 2.3. Combining Lemmas 5.7-5.8 with Lemma 5.12, we ob-
tain that C* cannot lie on the set:

G:=Tb UT?UTY U s U Dihoek.

Since I'inock includes its endpoints, G covers all 012 except point Q* defined in
Case (ii) of (A10), if Q* exists. In Case (i) of (A10), point @* does not exist,
so that G' = 0f2, which implies that C* ¢ 0f2. In Case (ii) of (A10), point Q*
exists, and Lemma 5.10 implies that C* # Q*, so that C* ¢ 412 in this case as
well. However, the fact that C* ¢ 02 contradicts (5.11). This completes the
proof of Theorem 2.3. O

6 Proof of Theorem 2.2: Equivalence between the Strict
Convexity and the Monotonicity

Proof of Theorem 2.2. By the boundary condition (2.17), ¢ = 0 on Iihock-
Also, by assumption (Al), ¢, < 0 on Iyheex for the interior normal vector
v. Then the monotonicity property ¢ > 0 in I fhock for any unit vector e €
Con implies that assumption (A5) in Theorem 2.1 holds. Now it follows from
Theorem 2.1 that, under the assumptions of Theorem 2.2, the monotonicity
property is the sufficient condition for the strict convexity of the free boundary
Tshock in the sense of (2.18)—(2.19).

On the other hand, if the shock graph is strictly convex in the sense of
Theorem 2.1, then, at any point on Fsohock, the tangent vector T is not in
Con, where we have used the strict convexity in the sense of (2.19) to have
this property for the boundary directions of the cone. Then, using again that
¢r = 0 and ¢, < 0 on lgheek in (2.17) and condition (A1) in Theorem 2.1,
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it follows that ¢e > 0 on I, for any unit vector e € Con; that is, the
monotonicity property holds. This completes the proof of Theorem 2.2. O

Proof of the Assertion in Remark 2.5. By equation (3.2) and condition (A3)
in Theorem 2.1, ¢ satisfies the strong minimum principle in §2. This implies

e > min{ min ¢, min @e} in £2,
shock Ihouls
where we have used the assumption in Theorem 2.1 that ¢ is not a constant
state. Note that, by the assumption of Theorem 2.2, ¢ > 0 on [gpock, and ¢e
on I u I satisfies that either ¢ = 0 or ¢ cannot attain its local minimum
with respect to £2. Thus, ¢e > 0 in 2 U 19,4 O

7 Applications to Multidimensional Transonic Shock Problems

In this section, we apply Theorem 2.1 to prove the convexity of multidimen-
sional transonic shocks for two longstanding shock problems.

7.1 Shock reflection-diffraction problem

When a plane incident shock hits a two-dimensional wedge, shock reflection-
diffraction configurations take shape; also see Chen-Feldman [14].

The wedge is of the shape: {|z3| < x1tan6f,} with 6, € (0, 7). Then the
positive z1—axis is the symmetry axis of the wedge, the wedge vertex is at the
origin, and 6y, is the (half) angle of the wedge. The incident shock Sy separates
two constant states: state (0) with velocity vo = (0,0) and density po ahead
of Sy, and state (1) with velocity vi = (u1,0) and density p; behind Sy,
where p; > pg, and u; > 0 is determined by (po, p1,7) through the Rankine-
Hugoniot conditions on Sy. The shock, Sy, moves in the direction of the x1—
axis and hits the wedge vertex at the initial time. Also, the slip boundary
condition: v - v = 0 is prescribed on the solid wedge boundary, where v is the
velocity of gas. Since state (1) does not satisfy the slip boundary condition, the
shock reflection-diffraction configurations form at later time, which are self-
similar so that the problem can be reformulated in the self-similar coordinates
€ = (§1,&) = (%, %2). Depending on the flow parameters and wedge angle,
there may be various patterns of shock reflection-diffraction configurations,
including Regular Reflection and Mach Reflection. Because of the symmetry
of the problem with respect to the £;—axis, it suffices to consider the problem
only on the upper half-plane {£; > 0}.

The regular reflection configuration is characterized by the fact that the re-
flection occurs at the intersection point Py of the incident shock with the wedge
boundary. Figs. 7.1-7.2 show the structure of regular reflection configura-
tions in self-similar coordinates. The regular reflection solutions are piecewise-
smooth; that is, they are smooth away from the incident and reflected-diffracted
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shocks, as well as the sonic circle P; P, for the supersonic regular reflection case
across which v is only Lipschitz.
From the description of state (1) above, its pseudo-potential is

2
¢1(§) = —% +u1&1 +Ch.

A necessary condition for the existence of piecewise-smooth regular reflection
configurations is the existence of the constant state (2) with pseudo-potential
o that satisfies both the slip boundary condition on the wedge boundary
and the Rankine-Hugoniot conditions with state (1) across the reflected shock
S1 := {p1 = @2}. Owing to the constant state structure (2.10), it suffices to
require these conditions at Py. Thus, the conditions at P, are

D@Q Vy = Oa
Y2 = @1, (7.1)
p(|Dpsl?, p2)Dps - vs, = p1Der - v,

where vy, is the outward (with respect to the wedge) normal vector to the

wedge boundary, 6, is the wedge angle in the upper half-plane, and vg, =
D 1— %2
in expression (2.10) for ¢5. Since the piecewise-smooth regular reflection solu-
tion must satisfy (7.1) at Py with ¢ replaced by ¢o, then (p, Dp) = (p2, Do)
at Py, if @9 exists.

It is well-known (see e.g. [14, Chapter 7]) that, given the parameters of
states (0) and (1), there exists a detachment angle 63 € (0,%) such that
equations (7.1) have two solutions for each wedge angle 6y, € (65, %), which
become equal when 6, = 6. Thus, two types of two-shock configurations
occur at P, in the wedge interval 6, € (6%, %). For each such 6, state (2)
with the smaller density is called a weak state (2). The global existence of
regular reflection solutions for all 6,, € (6%, Z) with (p, D) at Py determined
by the weak states (2) has been established in [13, 14]. Below, state (2) always
refers to the weak state (2).

If state (2) exists, its pseudo-potential is

_le?
2

. Therefore, we have three algebraic equations for parameters (usg, v, Co)

p2(&) = + w2y + 1262 + Co,

where vo = ugtanfy,. In particular, state (2) satisfies the first condition in
(7.1) on the whole wedge boundary (in the upper half-plane {2 > 0}):

Dy vy, =0 on {& = & tan by, & > 0}. (7.2)

Depending on the wedge angle, state (2) can be either supersonic or subsonic

at Py. Moreover, for 6, near Z (resp. for 6, near 63 ), state (2) is supersonic

(resp. subsonic) at Pp; see [14, Chapter 7]. The type of state (2) at P, for a
given wedge angle 6y, determines the type of reflection, supersonic or subsonic,
as shown in Fig. 7.1 or Fig. 7.2 respectively, when u; < ¢;.
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Incident Shock
Tncident Shock|

(1) (0)/ (1) HN/

Reflected Shog

Reflected Shogk

Fig. 7.1 Supersonic regular reflection Fig. 7.2 Subsonic regular reflection

When u; > ¢1, besides the configurations shown in Figs. 7.1-7.2, there is
an additional possibility that the reflected-diffracted shock is attached to the
wedge vertex Ps, i.e., P, = P3; see Figs. 7.3-7.4.

Incident Shoc! Incident Shock|

(lj (0)/ mjo ,
Py /f’u

el Reflected Shock
Q
13 =

Py

Fig. 7.3 Attached supersonic regular Fig. 7.4 Attached subsonic regular
reflection reflection

The regular reflection problem is posed in the region:
A=RI\{€ : & >0,0 <& < & tanby},
where R? := R? n {&; > 0}.

Definition 7.1. ¢ € C%1(A) is a weak solution of the shock reflection-diffraction
problem if ¢ satisfies equation (2.5) in A, the boundary conditions:

O =0 on 0A (7.3)
in the weak sense (defined below), and the asymptotic conditions:
Aim o =2llo,a\Br(0) = 0, (7.4)

where
- {900 for & > &0, & > &itanby,
1 for & <&, & >0,

and €9 > 0 is the location of the incident shock Sp.
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In Definition 7.1, the solution is understood in the following weak sense:
We consider solutions with a positive lower bound for the density, so that (7.3)
is equivalent to the conormal condition:

p(IDg|?, )dup = 0.

Thus, a weak solution of problem (2.5) and (7.3) is given by Definition 2.1
in region A, with the following change: (2.11) is satisfied for any ¢ € C*(R?)
(whose support does not have to be in A).

Next, we define the points and lines on Figs. 7.1-7.2. The incident shock
is line Sy := {& = €9} with &) = 2 > 0. The center, Oz = (u2,v2),
of the sonic circle B.,(O2) of state (2) lies on the wedge boundary between
the reflection point P, and the wedge vertex P3 for both the supersonic and
subsonic cases.

Then, for the supersonic case, i.e., when |[Dgs(FPy)| = |PoO2| > c2 with
Py ¢ B.,(03), we denote by Py the upper point of intersection of 0B,., (O2) with
the wedge boundary so that Oz € P3P;. Also, 0B.,(Oz) of state (2) intersects
line S7, and one of the points of intersection, P; € A, is such that segment
PyP; is outside B.,(O2). We denote the arc of dB.,(O2) by Isonic = P1P;.
The curved part of the reflected-diffracted shock is Iyhock = Pi P>, where
P, € {& = 0}. Denote the line segments Iyym 1= PoPs; and [yedge := Ps3Pa.
The lines and curves Ighock; Lsonic, {sym, and Iiedge do not have common
points, except their endpoints P, ..., Py. Thus, Iihock U Lsonic Y Lsym U Twedge
is a closed curve without self-intersection. Denote by {2 the domain bounded
by this curve.

For the subsonic/sonic case, i.e., when |Dyga(Py)| = |PyO2| < c2 so that
Py € Bc,(02), the curved reflected-diffracted shock is I'shock = PoP> that
does not have common interior points with the line segments Iy, = P2Ps
and Iyedge = PoP3. Then Inock U LTsym U Iwedge is a closed curve without
self-intersection, and {2 is the domain bounded by this curve.

Furthermore, in some parts of the argument below, it is convenient to
extend problem (2.5) and (7.3), given in A by even reflection about the &—
axis, i.e., defining ™' (—¢£1, &) = (&1,&) for any € = (£1,&;) € A. Then
0% is defined in region A®*' obtained from A by adding the reflected region
A7 e, A% = AU {(£,0) : & < 0} u A~ In a similar way, region 2 and
curve ok © 082 can be extended into the corresponding region 2°** and
curve I’ < 002,

Now we define a class of solutions, with structure as shown on Figs. 7.1-7.2.
Definition 7.2. Let 6, € (0%, %). A function ¢ € C%*(A) is an admissible
solution of the regular reflection problem (2.5) and (7.3)—(7.4) if ¢ is a solution
in the sense of Definition 7.1 and satisfies the following properties:

(i) The structure of solutions is as follows:

— If|Dpa(Py)| > ca, then ¢ is of the supersonic regular shock reflection-
diffraction configuration shown on Fig. 7.1 and satisfies:



58 Gui-Qiang G. Chen et al.

The reflected-diffracted shock I'yoac is C? in its relative interior.
Curves I'snock, Lsonic; Lwedge, and I'sym do not have common points
except their endpoints.

p satisfies the following properties:

e CONA) n CH(A\(So v PyPL Py)),
e CH(12) N C*(\(Lsonic U {P2, P3})),
©0 for & > € and & > & tan,,

=1 ¢ for &1 < &Y and above curve PyP, P, (7.5)
P2 i region Py Py Py.

— If |Dpa(Py)| < ca, then ¢ is of the subsonic regular shock reflection-
diffraction configuration shown on Fig. 7.2 and satisfies:
The reflected-diffracted shock I'yoac is C? in its relative interior.
Curves I'shock, L'wedge, and Isym do mot have common points except
their endpoints.
p satisfies the following properties:

@Y E Co’l(/l) N CI(A\FshOCk),
pE Cl(ﬁ) N CS(W\{P(% P27P3})a

©o for &1 > €Y and & > & tan b,
=1 Y1 for & < €9 and above curve PP, (7.6)
p2(Po)  at P,

Do(Fy) = D2 (F).
Furthermore, in both supersonic and subsonic cases,

s is Cloin its relative interior. (7.7)

(ii) Equation (2.5) is strictly elliptic in 2\ Isonic:
1Dp| < c(|Dpl* ) in 2\ Tonic,

where, for the subsonic and sonic cases, we have used notation Isonic =
{Po}-

(iii) dpr > Ou > 0 on Ighock, where v is the normal vector to Iihoek
pointing into {2.

(iv) w2 < <1 in 2.
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(v) Let eg, be the unit vector parallel to Sy := {¢©1 = @2}, oriented so that
€eg, * D(pg(Po) > 0:

(v2, Uy — u2)

(u1 — ug)? + v3 .

€es, = — (7.8)

Let e¢, = (0,1). Then

aes1 (901 - (P) < Oa 652 ((pl - 80) < 0 on Fshock- (79)
Below we continue to use the notational convention:

Tsonic := {Po}, P := Py, Py:= P, for the subsonic and sonic cases.
(7.10)

Remark 7.3. Since the admissible solution ¢ in Definition 7.2 is a weak
solution in the sense of Definition 7.1 and has the regularity as in Definition
7.2(1), it satisfies (2.16) classically in 2 with ¢ = p—p1, the Rankine-Hugoniot
conditions:

¢ =wv1, p(IDel*9)Dp-v =pDp1-v  on Tinock, (7.11)
and the boundary conditions:
dpp =0 on I'yedge Y Lsym. (7.12)
Note also that, rewriting (7.12) in terms of ¢ = ¢ — p1, we have

Oy = —uy sinfy, on Iyedge,

7.13
O =0 on Lsym. ( )

Remark 7.4. An admissible solution ¢ is not a constant state in §2 (recall
that 0y < %). Indeed, if @ is a constant state in {2, then ¢ = 3 in 2: This
follows from (7.5) for the supersonic case since ¢ is C* across Isonic, and from
the property that (v, Dy) = (w2, Dps) at Py for the subsonic case. However,
o does not satisfy (7.12) on I'yym since vo = (u2,v2) = (ug, us tanb,,) with
ug >0 and 0y € (0, 3).

Remark 7.5. Let ¢ be an admissible solution and ¢ := ¢ — 1. For a unit
vector e € R?, denote

W = Pe.

Then, from the regularity in Definition 7.2(i),
we C(2) n C*(\(Teonic U {Ps})),

where we have used (7.10) for the subsonic and sonic cases.

We first notice that w satisfies equation (3.2) in the (S,T)-coordinates
with basis {e,e}. Equation (3.2) has the same coefficients of the second-
order terms as equation (2.6), so that (3.2) is strictly elliptic in 2\ Tsonic
by Definition 7.2(ii).
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Furthermore, by [14, Lemma 5.1.3], w satisfies the following boundary con-
ditions on the straight segments I'wedge and I'sym: If €T # 0 for a unit tangent
vector T on Lyedge (resp. Isym), then

(e-v)( —7)
(e-7)(c®—¢2) 7

The coefficients are continuous and hence locally bounded, which implies that

these boundary conditions are oblique on Fvgedge (resp. Fsoym).

=0 on I'°

wy + wedge (1esD- T)- (7.14)

Sym

Lemma 7.6. Definition 7.2 is equivalent to the definition of admissible solu-
tions in [14]; see Definitions 15.1.1-15.1.2 there.

Proof. In order to show that the solutions in Definition 7.2 satisfy all the
properties in Definitions 15.1.1-15.1.2 of Chen-Feldman [14], it requires to
show that they satisfy:

§ip, &Py Lshock © (A\Be, (01)) n {&ip, <& < &ipy ), (7.15)
Oos, (1 =) <0, Og, (1 — ) <0 in §2, (7.16)

where O = (u1,0) is the center of sonic circle of state (1) and, in the sub-
sonic reflection case (see Fig. 7.2), we have used the notational convention
(7.10). Moreover, note that the inequalities in (7.9) hold on I'shock, while these
inequalities in (7.16) hold in the larger domain 2.

We first show both (7.16) and the stronger property:

Oes, (p1 =) <0,  Oe,(p1 — ) <0 in £2. (7.17)

The argument is the same as the one in the proof of Remark 2.5 (see §6) for
¢ = ¢ — 1 in the present case. We only need to check for e = eg, and e = e,
that, for any point & € 0f\I, ﬁlock, 0o satisfies that

either ¢e(€) = 0 or ¢ cannot attain its local minimum at &. (7.18)

Note that (?Q\Fsohock = Lionic U Iyvedge Y Tsymm U {P3}.

Consider first e = eg, . Since Dp(P3) = (0,0) by (7.12) and ¢ € C*(2), we
conclude that w(Ps) = 0. Next, eg, - T # 0 on I'wedge U Isym by [14, Lemma
7.5.12]. Then, by Remark 7.5, ¢ satisfies a homogeneous elliptic equation in
2 and the oblique boundary conditions (7.14) on I V?,Cdgc vl ;{,m, so that w
u o

cannot attain its local minimum on I"° sym» unless w is constant in {2

wedge
in which case w = w(P3) = 0 in 2. On Tyonic, (0, D) = (2, Dps) as shown
in Remark 7.4, where we have used notation (7.10). Also, eg, - D(p2 —¢1) =0
by (7.8). Thus, ¢es, = es, -D(p2 — 1) = 0 on I'yonic, which implies (7.18) for
€ =eg,.

Now we show (7.18) for e = eg,, i.e., w = ¢¢,. The argument is similar to
the previous case, with the following differences: First, e¢, - 7 = 0 on Iy so
that, instead of (7.14), we obtain that w = 0 on Iy by (7.13). Also, on I'sonic,
we use again that Dy = Do to obtain that w = ¢¢, = (p2 — p1)e, = v2 = 0.
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The rest of the argument is the same as above, which leads to (7.18) for
€ = €g,.

Repeating the proof of Remark 2.5 (see §6), in which ¢ is not a constant
state by Remark 7.4, we obtain (7.17). With this, (7.16) is proved.

Next we show (7.15). Since ok © A\Be, (O1), then ¢ is supersonic on
TIshock- This is a standard consequence of the Rankine-Hugoniot conditions
(7.11), combined with the entropy condition of Definition 7.2(iii).

It remains to show that &1 p, < &1p, and Linoek € {§1p, < & < &1p, }- From
(7.17), ¢¢, > 0in £2. Also, ¢ = 0 on Ishoek and ¢ < 0 in §2 by (iv). From these
properties and the regularity of curve Iynock, it follows that any vertical line
that has a non-empty intersection with [ynock intersects Ishock €ither at one
point or on a closed interval. Moreover,

If (£F,&5) € Isnock, then 2 0 {(&1,82) = &1 =&} < {(61,&) + &2 <&}
(7.19)
From these properties, we conclude that

Ihock € {min(&1p,, &1p,) < & < max(&1p,, &1p,)}-

It remains to show that &1 p, < & p,. Assume that & p, > &1 p,. Then, from
(7.19) and the structure of {2 described in Definition 7.2(i), we conclude that
Tihock is contained within the following subregion of {{1p, < & < &ip, )
Above Fsonic on {glPl < 51 < min(§1P2;£1P4)}a and above Fwedge on {£1P4 <
& < &ip,tif & p, = & p,. This implies that Ty © {2 > 0}. This contradicts
the fact that endpoint Ps of Iypoek lies on {€o = 0}. Now (7.15) is proved.

Therefore, we have shown that the solutions in Definition 7.2 satisfy all the
properties in Definitions 15.1.1-15.1.2 of [14].

Now we show that the admissible solutions defined in Definitions 15.1.1—
15.1.2 of [14] satisfy all the properties of Definition 7.2. For that, we need
to show that the admissible solutions in Definitions 15.1.1-15.1.2 of [14] sat-
isfy property (iii) of Definition 7.2. This is proved in [14, Lemma 8.1.7 and
Proposition 15.2.1]. O

From Lemma 7.6, all the estimates and properties of admissible solutions
shown in [14] hold for the admissible solutions defined above. We list some of
these properties in the following theorem.

Below we use the notation that, for two unit vectors e, f € R? with e # +f,

Con(e,f) := {ae + bf : a,b> 0}. (7.20)

Theorem 7.1 (Properties of admissible solutions).  There exits a constant

o = a(po,p1,7) € (0,1) such that any admissible solution in the sense of

Definition 7.2 with wedge angle 0, € (03, Z) has the following properties:

w32

(i) Additional regularity:
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— If |Dy2(Py)| > ca, i.e., when ¢ is of the supersonic regular shock
reflection-diffraction configuration as in Fig. 7.1, it satisfies

p € C7(\(Tsonic © {Ps})) n CHH(\{Ps}) 0 CH(02).

The reflected-diffracted shock PyPy Py (where PyPy is the straight seg-
ment and Py Py = I'yock) is C%P up to its endpoints for any B € [0, %)
and C* except Pj.

— If |Dpa(Po)| < ca, i.e., when ¢ is of the subsonic regular shock
reflection-diffraction configuration as in Fig. 7.2, it satisfies

p e CHA(2) 0 CL(\(Po}) n O (Q\{Po, P3})

for some B = B(po,p1,7,0w) € (0,a] which is non-decreasing with
respect to Oy, and the reflected-diffracted shock I'ynoac is CP up to
its endpoints and C* except Py.

Furthermore, in both supersonic and subsonic cases,

P e O (% U (TS

(ii) For each e € Con(es,,ee,),
de(p1 —¢) <0 in (2, (7.21)

where vectors eg, and eg, are introduced in Definition 7.2(v).

(iii) Denote by vy, the unit interior normal vector to I'yedge (pointing into

02), i.e., Vy = (—sinby,cosby). Then 0y, (p — p2) <0 in {2.

Proof. Below we use the equivalence shown in Lemma 7.6.

Assertion (i) follows from Definition 7.2(i) and [14, Corollary 11.4.7, Propo-
sition 11.5.1, Corollary 16.6.12]. Assertion (ii) is obtained in [14, Corollary
8.2.10, Proposition 15.2.1]. Assertion (iii) follows from [14, Lemma 8.2.19,
Proposition 15.2.1], where ny, = —vy,. O]

Remark 7.7. We note that vy, € Con(eg,,ee,) for any wedge angle 6y, €
(04, Z), which is proved in [14, Lemma 8.2.11].

w2
Now we state the results on the existence of admissible solutions.

Theorem 7.2 (Global solutions up to the detachment angle for the case:
up < ¢1). Let the initial data (po, p1,7) satisfy that uy < ¢1. Then, for each
O € (09, 5), there exists an admissible solution of the regular reflection prob-
lem in the sense of Definition 7.2, which satisfies the properties stated in The-
orem 7.1.

Proof. The existence of admissible solutions directly follows from Lemma 7.6
and [14, Theorem 2.6.7 and Remark 2.6.8]. O
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When w; > ¢, the results of Theorem 7.2 hold for any wedge angle 6,
from Z until either 6% or 6 € (6%, %) when the shock hits the wedge vertex
Ps.

Theorem 7.3 (Global solutions up to the detachment angle for the case:
uy > c¢1). Let the initial data (po,p1,7y) satisfy that uy > c¢y. Then there
is 05, € [0, %) such that, for each Oy € (0%,%), there exists an admissible
solution of the regular reflection problem in the sense of Definition 7.2, which
satisfies the properties stated in Theorem 7.1.

If 65, > 04 then, for the wedge angle 0, = 05, there exists an attached
shock solution ¢ with all the properties listed in Definition 7.2 and Theorem
7.1(i1)—(iii) ezcept that P3 = Py (we denote Ps for that point below). In addi-

tion, for the regularity of solution , we have

— For the supersonic case with 0y, = 05,,
¢ € CT(\(Tsonic v {P3})) 0 CHH\{Ps}) n C*H(92),

and the reflected shock PyP, Py is Lipschitz up to the endpoints, C*® for
any B € [0, %) except point P3, and C™* except points Py and Ps.

— For the subsonic case with 0y = 65,
p € C*(OQ\[Po, P3}) 0 CYP(Q\{Ps}) n C*1 (D)

for B as in Theorem 7.1, and the reflected shock PyPs is Lipschitz up to
the endpoints, CY? except point Py, and C* except points Py and Ps.

Proof. The existence of admissible solutions directly follows from Lemma 7.6
and [14, Theorem 2.6.9 and Remark 2.6.8], where we note that [14, Remark
2.6.8] applies to the case: u; > ¢; as well, although this is not stated explicitly.

O

Now we show that the admissible solutions satisfy the conditions of Theo-
rems 2.1-2.3.

Lemma 7.8. The following statements hold:

(i) Any admissible solution in the sense of Definition 7.2 satisfies the con-
ditions of Theorems 2.1 and 2.3.

(ii) Any regular reflection-diffraction solution in the sense of Definition 7.1
with properties (1)—(iv) of Definition 7.2 and with shock I'shock being a
strictly convex graph in the sense of (2.18)—(2.19) satisfies property (v)
of Definition 7.2.

Proof. We divide the proof into seven steps: Assertion (i) is proved in Steps
1-6, while assertion (ii) is proved in Step 7.

1. We use A, I'¥t . and ¢®* defined before Definition 7.2. Combining
the structure of equation (2.5) with the boundary conditions (7.3) on the
negative & —axis yields that the reflected/extended function ¢®** is a weak

solution of equation (2.5) in A®**. By the boundary conditions (7.3), state (1)
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satisfies 0,1 = 0 on the £;—axis. Then the structure of the constant state (see
§2.1) implies that ¢1(—&1,&) = ©1(£1,&2) in R? so that ¢$<¢ = ¢;. We also
note the regularity of ¢°** in Theorem 7.1(i). Thus, the extended shock I'$<
separates the constant state 1 from the smooth solution p®** of equation (2.5)
in 2°¢* and the Rankine-Hugoniot conditions (7.11) are satisfied for p®** and
pron I

2. Region {2 satisfies the conditions in Framework (A). Indeed, for the
supersonic reflection case (see Fig. 7.1), the required piecewise-regularity holds,
since I'yedge and Iym are straight segments, Iyonic is an arc of circle, and Iynock
has the regularity stated in Theorem 7.1(i). The fact that all the angles of the
corners of {2 are less than 7 is verified as follows:

Consider first the supersonic case. Since curve PyP P, is C2? at P;, and
Py Py is a straight segment, we use that the center of sonic circle of state (2)
ison I V?,edge and P, is outside that circle to conclude that the angle at P; is
between (5, ), and the angle at Py is 5. Also, since (7.7) shows that I $
is smooth near P, it follows that the interior angle to {2 at P, is 5. Finally,
the angle at P3 is 7 — 0 € (5, ).

For the subsonic reflection case, the angles at P, and P3 are handled sim-
ilarly. The angle at Py is in (0, 5) for the following reason: By [14, Lemma
8.2.11, Proposition 15.2.1], for any 6y, € (0%, %), v € Con(es,, eg,) so that,
using the regularity of I'shock in Theorem 7.2(i), property (iii) in Theorem 7.2,
and ¢ = @1 on [ghock, we conclude that Iyhock is a graph:

Lok ={(f(T),T) : Tr, <T <Tpy}

of a function f(T) € C?*([Tp,,Tr,)) n CY#([Tp,,Tp,]), where the (S,T)-
coordinates are along the normal and tangent directions to Iyedge-

3. The entropy condition (A1) of Theorem 2.1 follows directly from prop-
erty (iii) of Definition 7.2, where state (0) in Theorem 2.1 is state (1) in the
regular shock reflection problem.

From the regularity of ¢ and I'shock in Theorem 7.1(i), we see that condi-
tions (A2) and (A4) of Theorem 2.1 hold.

Property (ii) of Definition 7.2 implies that condition (A3) of Theorem 2.1
holds.

4. Using the notations of the endpoints of ek as in Framework (A) by
A:= Py and B = Py, we see from the properties of Definition 7.2(i) that

TA = €5, B = €¢,.

As we discussed in Step 2, [ghock is orthogonal to the &;—axis at Pp. From
this and [14, Lemma 7.5.12], e;, # *eg,. Also, combining property (ii) of
Theorem 7.1 with the fact that I'ypock is the level set ¢ — 1 = 0, we obtain
that {P + Con} n 2 = ¢ for all P € I'yock- Thus, condition (A5) of Theorem
2.1 is satisfied.

5. Next, we discuss condition (A6) of Theorem 2.1. We recall that ¢ :=
@ — 1. All the local minima and maxima discussed below are relative to (2.
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Also, we discuss the supersonic and subsonic/sonic cases together below, and
use notations (7.10) for the subsonic/sonic case. Furthermore, since conditions
(A1)—(A5) have been verified, we can use Lemma 3.2 in the argument below.

Fix e = vy, where vy is defined in Theorem 7.1(iii). By Remark 7.7,
e € Con. We first notice that, by Remark 7.5, w = ¢, satisfies equation (3.2),
which is strictly elliptic in 2 u I, sohock U Tyym L I v?,edge. Furthermore, since
T = e, on Iy so that e- 7 = —sinf, # 0 on Iy, then w satisfies (7.14)
on I S(;,m, and this boundary condition is oblique. Thus, by Hopf’s lemma, the
local maximum and minimum of ¢, relative to £2 cannot be attained on Iy,
unless ¢e is constant. '

We now show the similar property on I'yedge U Isonic- From (7.2) and (7.12),
ae(@ - 302) = au(@ - 902) = 0 on Fwedge- A1507 D90 = D(P2 on I sonic by
Definition 7.2(i). Thus, de(¢ — ¢2) = 0 on I'ywedge Y Isonic, Which is the global
maximum over {2 by Theorem 7.1(i). Then de(¢ — ¢2) cannot attain its local
minimum at some P € I'yedge U L sonic unless de(¢ — 2) = 0 in (2. Indeed, if
P € I'yedge Y Lsonic is a point of local minimum of (¢ — ¢2), then, since P
is also a point of global maximum and de(p — ¢2)(P) = 0 as shown above,
we obtain that de(¢ — ¢2) = 0 in B,.(P) n {2 for some r > 0. Since Je(¢ —
©2) = Oc(p — p1) + Oc(1 — Y2) = Oed + uy sinby, (where we have used that
Dy - vy, = 0) so that 0e(p — p2) satisfies the strictly elliptic equation (3.2) in
{2, the strong maximum principle implies that de( — ¢2) = 0 in §2. Recalling
that 0e¢ = 0o — @) — uy sin by, we conclude that ¢ = —uq sinfy, in £ if
¢e attains its local minimum at some P € [edge Y 1 sonic-

Combining the two cases discussed above, we conclude that, if ¢ attains
its local minimum at some point P € I'yedge U Lsonic U 1, Soym’ then ¢ is constant
in £2, specifically ¢o = —uq sinfy, =: a.

Now we show that, if ¢ = a in 2 for an admissible solution ¢, then ¢ is
a uniform state in 2. To fix notations, we consider first the supersonic case.
We use the (S, T)-coordinates with basis {e,e'} and the origin at P for et
determined as in Lemma 3.2 for e = vy, i.c., et = —(cos 0y, sin 6, ). We recall
that A = P; and B = P,; see Step 4. Then Tp = Tp, > Tp, = 0> Tp, =
T4 > Tp,. Also,

Tsonic = {S = fSO(T)v Te (TP4’ TPI)}? Fsoym = {S =Ttanby, T € (TPsv TP2)}7

where fi, € C*((Tp,, Tp,)) and fso > 0 on (Tp,, Tp,). The function, fe, from
Lemma 3.2(i) for e = vy, satisfies that fo(7T") > max(T tan 6y, 0) on (Tp,, Tp,).
Also,

Q={(8,T): Te(Tp,, Tp,), max(Ttanby, 0) <S < f(T)},
where f € C(Tp,, Tp,) satisfies

f=fo on(Te, Tp),  f=feon (Tp, Tr,).

Let ¢ = a in 2. Then, from the structure of {2 described above, ¢(S,T) =
aS + g(T) in 2 for some g € C'(R). Since ¢¢, = 0 on Iyym by (7.13), we
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see that ae-eg, + ¢'(T) e’ -eg, = 0 for all T € (Tp,, Tp,), where we have
used the expression of I'),, in the (S, T)-coordinates given above. Note that

el eg, = —sinfy, # 0. Thus, ¢'(T) is constant on (Tp,, Tp,), which implies
that ¢(S,T) = aS + bT + ¢ in 2 for some b, ¢ € R, where

Q = {(S,T) :Te (TP37 TPz)v maX(Ttanaw’ 0) <5< f(T)} < £2.

Since ¢ is real analytic in {2 by Lemma 3.5, it follows that ¢(S,T) = aS+bT+c
in 2. That is, ¢ = @2 + ¢ is a constant state in {2, which contradicts Remark
74.

For the subsonic/sonic case, the argument is the same, except that the
structure of {2 now becomes

Q={(ST):Te(Tp, Tpr,), max(Ttanby, 0) < S < fo(T)}.

Therefore, we have shown that ¢ cannot attain its local minimum on I'yedge U

Fsonic v ]:Oym
Then we define Il := (Iwedge U L sonic Y Fs(Jym)\{Pl} = 0f2\Ishock, and I 1=

& in both the supersonic and subsonic/sonic cases. Clearly, I is connected.
Now Case (iii) of condition (A6) of Theorem 2.1 holds in both the supersonic
and subsonic/sonic cases.

6. We now check the conditions of Theorem 2.3. Since the conditions of

Theorem 2.1 have been checked, the conclusions of that theorem hold; in par-
ticular, Prr = 0 on Ighock-

Let Iy :=I"% ..u{P,} in the supersonic case, and I := & in the subsonic
case. Let I := Fv?/cdgc v {Ps}, Iy := Fsoym, and I3 := (. In the supersonic

case, for any nonzero e € R?, ¢o = D(p2— 1) € on I'onic, i-€., Pe is constant
on . Then (A7)-(A8) hold.

Let e € R? be a unit vector. We have shown in Step 5 that ¢e is not a
constant in 2. Then, by (7.14), ¢ can attain a local minimum or maximum
on 10 onlyife -1y =0, i.e., e = *vy,. In that case, by (7.13), ¢e is constant

wedge
on I'yedge. This verifies (A9) on I := I“‘S U {Ps}. On I} := FS(Jym, (A9) is

checked similarly. On I := I .. U {Ps} in the supersonic case, Dy = Dy
so that ¢e = (Dp2 — Dy1) - € = const. Now (A9) is proved.

To check condition (ii) of (A10) at point B = P», we note that, by Step
1, ¢t 1= ™' — o satisfies equation (2.16) in 2°' and conditions (2.17)
on I'S* .. Also, we have shown above that the original problem in {2 satisfies
hypotheses (A1)—(A3) of Theorem 2.1. It follows that the problem for ¢°** in
02° gatisfies (A1)—(A3) of Theorem 2.1.

Now it follows that the extended problem in £2°%* satisfies the conditions
of Lemma 3.1. Also, P, is an interior point of the extended shock Fscﬁ‘(fck.
Furthermore, using (7.7), we have

v Py) = vgn(P2),

edge

where vg,(P2) is defined in (A10). Since ¢rr = 0 on Iypock as noted above,
which implies that ¢-,(P2) = 0 from the regularity of ¢ in Theorem 7.2, we
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apply Lemma 3.1 for the extended problem to conclude that, if vy, (Ps) e < 0,
then ¢e cannot attain its local maximum at Py. If v, (P;) - € = 0, we use that
Ven(P2) = e¢, by (7.7) to conclude that e = +eg, in that case. Then we use
the C*(£2)-regularity of ¢ to conclude that ¢ = 0 on I'sym by (7.13). Thus,
Pe(P2) = ¢e(Ps) if v(P2) - e = 0, so that condition (ii) of (A10) holds.

7. Now we show assertion (ii). Any admissible solution has a strictly convex
shock by Theorems 2.1 and 2.3, since we have verified the conditions of these
theorems in Steps 1-6 of this proof. Then it remains to show that any regular
reflection-diffraction solution in the sense of Definition 7.1, with properties
(i)—(iv) of Definition 7.2 and with shock I'shock being a strictly convex graph
in the sense of (2.18)—(2.19), satisfies property (v) of Definition 7.2.

Recall that (2.18) holds in the present case with A = P; and B = P, as
discussed in Steps 2 and 4. Then, using the properties of Definition 7.2(i), we
find that, in the coordinates of (2.18),

_ (1, f(Ta)) (1, /(Ts))

TN @ % T T T

Also, from the strict concavity of f in the sense of (2.19), we obtain that
f'(Ta) > f(T) > f'(Tg) and f(T) < f(Th) + f'(Tu)(T —Ty) for all T, T} €
(T4, Tg). From this, we see that {P+Con}n {2 = & for any P € Iy0ck- Then,
since ¢ < 7 in {2 from Definition 7.2(iv) and ¢ = ¢1 on I'ghock by (7.11), we
obtain that e = Oy for any e € Con, which implies (7.9). O

From Lemma 7.8 and Theorems 2.1-2.3, we have

Theorem 7.4. If ¢ is an admissible solution of the shock reflection-diffraction
problem, then its shock curve I'ghock 1S uniformly convex in the sense described
in Theorem 2.3.

Furthermore, if a weak solution in the sense of Definition 7.1 satisfies prop-
erties (1)—(iv) of Definition 7.2, then the transonic shock Lshock 1S a strictly
convex graph in the sense of (2.18)—(2.19) if and only if property (v) of Defi-
nition 7.2 holds.

Proof. The uniform convexity of I'ghock for admissible solutions follows from
Lemma 7.8 and Theorems 2.1 and 2.3.

Moreover, if a shock solution in the sense of Definition 7.1 satisfies prop-
erties (i)—(iv) of Definition 7.2, and its shock is a strictly convex graph, then,
by Lemma 7.8(ii), the solution satisfies property (v) of Definition 7.2. O

7.2 Reflection problem for supersonic flows past a solid ramp

The second example is the Prandtl-Meyer reflection problem. This is a self-
similar reflection that occurs when a two-dimensional supersonic flow with
velocity v, = (U, 0), uy > 0, in the direction along the wedge axis hits the
wedge at ¢ = 0. The slip boundary condition on the wedge boundary yields
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Fig. 7.5 Supersonic Prandtl-Meyer Fig. 7.6 Subsonic Prandtl-Meyer
reflection reflection

a self-similar reflection pattern; see Figs. 7.5-7.6. Also see Bae-Chen-Feldman
2, 3].

We consider this problem in the self-similar coordinates. Using the sym-
metry with respect to the £;—axis, the problem can be posed in the region:

A=RI\{€ : & > max(0,& tanby)}.

Denote by ¢, the pseudo-potential of the incoming state.

Definition 7.9. ¢ € C%'(A) is a weak solution of the Prandtl-Meyer reflection
problem if  satisfies equation (2.5) in A, the boundary conditions (7.3) on 04,
and the asymptotic conditions:

A e = ¢allewansaon =0

along ray Lg := {& = &y cot0,& > 0} for each 0 € (0, 7) in the weak sense
(as in Definition 7.1).

We consider the solutions with the structure shown in Figs. 7.5-7.6. These
solutions are piecewise-smooth and equal to the constant states outside region
{2 described below.

The constant states are defined as follows (see [3, §2] for the details and
proofs): Given the constant self-similar state with velocity v, = (4, 0) and
density py. which is supersonic at the origin (the wedge vertex), there exist the
detachment wedge angle 63 € (0, %) and the sonic wedge angle 65, € (0,65),
which depend only on (p,uy ), such that, for any wedge angle 6, € (0,64),

(i) There exists a unique constant state @, which determines the normal
reflection state of ¢, from the wedge boundary oW := {£ > 0,& =
&1 tan By, }; that is, s satisfies that d,pan = 0 on W, half-line Sy :=
{€ © oy = @} N {& > 0} lies in A and is parallel to 0W, and the
Rankine-Hugoniot condition holds on Sys:

PO P = PNOLON on Syr.

(ii) There exists a constant state po such that 0,0 = 0 on W, half-line
So :==1{& : po = pu} N {2 > 0} lies in A, the wedge vertex is on So
(i.e., 0 € Sp), and the Rankine-Hugoniot condition holds on Sp:

PrOvPor = POOu PO on So.

In fact, there exist two states for p», weak and strong, and we always
choose the weak one with the smaller density (so that the unique state
o is often referred).
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(iii) @ is supersonic (resp. subsonic) at the origin for all 6y, € (0,65,) (resp.
0, € (65,0)). This determines the supersonic and subsonic Prandtl-

w? YW

Meyer reflection configurations below.

Next, we define the points, lines, and regions in Figs. 7.5-7.6 for a given
wedge angle 0, € (0,0%) as follows:

(a) The sonic arcs I'N... and I'C . are the arcs (defined below) of the sonic
circles of the constant states par and o, respectively, with the centers on
O0W , since these states satisfy the slip boundary condition on 0W:

— st(\fnic is the upper arc of 0B., (Ox) between lines 0W and Spr. It
follows that I'N. .. c A, since 0B, (Oy) intersects the full line Sy at
two points. Denote the endpoints of FSN by P, and P5, which lie on

onic
Sn and 0W, respectively.

— Arc I'9 . is defined only for the supersonic reflection configurations,
i.e., for 6, € (0,65,). In this case, 0B, (Op) intersects half-line Sy at
two points within A, and I'9 . is the lower arc of dB.,(Oo) between
lines W and So. Then I'9 ;. © A. Denote the endpoints of I'S .. by
P, and Py, which lie on Sp and 0W, respectively.

— For the supersonic configurations, So s is segment OP;. Note that
SO,seg C S@.

— SN seg is the portion of Snr with the left endpoint P, i.e., Sarseg =
Sn n{& > &p -

(b) I'wedge is the segment of 0W between points P; and Py for the supersonic

case (resp. between 0 and Ps for the subsonic case).

(¢) There exists a smooth shock curve I'ypoex with the following properties:

— For the supersonic reflection configurations, Iynocx has endpoints Py

and Py;

— For the subsonic reflection configurations, I'shock has endpoints P, and
0;

— Tahoctr TN s Twedge, and IS, do not have common points except at

their end points.

(d) 2 is the domain bounded by the curve formed by Iinock, I, sj(\)/nic, Iwedge:
and Fs(gnic.

(e) For the supersonic reflection configurations, 2o is the region bounded by
arc I'C . and the straight segments OP; and OP;.

sonic

(f) 2y is the unbounded region with the boundary consisting of arc Fhf(\)/nic,
and the straight half-lines OW n {&{; > &1p,} and Sy n {61 = &ip, )

(g) 2y = AN\Qo U 2 U N2y for the supersonic case, and 2, := AN\ U 2y
for the subsonic case.

Now we define a class of solutions of the Prandtl-Meyer reflection problem
with the structure as in Figs. 7.5-7.6.
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Definition 7.10. Let (p, (us,0)) be a supersonic state in 2, and let 6%
and 65, be the corresponding detachment and sonic angles. Let 0, € (62, %)
A function p € C%1(A) is an admissible solution of the Prandtl-Meyer reflec-
tion problem if ¢ is a solution in the sense of Definition 7.9 and satisfies the

following properties:
(i) The structure of solution is the following:

— If 0y €(0,65), then the solution is of supersonic reflection configura-
tion as in Fig. 7.5 and satisfies

p € CH (S0 seg U Tehock U SN seg); (7.22)

peC3 () n C?](INITC,,, U TN ) nCHR), (7.23)
Voo in 2y,

=1 vo in No, (7.24)
oN in Qn;

— If O, € [65,,02), then the solution is of subsonic reflection configura-
tion as in Fig. 7.6 and satisfies

p € CH(MTinock U SN seg); (7.25)

e C3 () n C*(A\{O} u TN ) n CH(R), (7.26)
Por in 2,

p=19vo(0) atO, (7.27)
ON in 2y,

Dp(0) = Dpo(0). (7.28)

(ii) The shock curve I'shoax is C? in its relative interior.

(iii) Equation (2.5) is strictly elliptic in Q\(I'N... 0 I'9 ) for the supersonic

sonic

case and in O\(I'N .. U {O}) for the subsonic case.

(iv) Ovps > Oup > 0 on Ighock, where v is the normal vector to I'ghock
pointing into (2.

(V) Oes, (P — ) < 0 and Geg,. (¢ — ) < 0 in 2, where vectors es,, and
es, are parallel to lines So and Sy, respectively, oriented towards the
interior of I'shock from points Py and Py, respectively;

Remark 7.11. A version of Remark 7.3 holds in the present case, with the
only difference that the potential function of the incoming state is @, here,
instead of 1.

Remark 7.12. ¢ in {2 is not a constant state. Indeed, if ¢ is a constant
state in (2, then ¢ = p in 2, which follows from (7.24) and (7.27) in the
supersonic and subsonic cases, respectively. On the other hand, we obtain that
© = pe in 2, which follows from both (7.24) for the supersonic case (since
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¢ is O across T'S...) and the property that (¢, D) = (p2, Dp2) at O for
the subsonic case. However, po and pa are two different states, which can be
seen from their definitions, since line Sy is parallel to OW (so that these lines

do not coincide), while So intersects OW at point O.

Lemma 7.13. Definition 7.10 is equivalent to the definition of admissible
solutions in [3]; see Definition 2.14 there.

The proof of Lemma 7.13 follows closely the proof of Lemma 7.6 with
mostly notational changes, so we skip this proof here.

From Lemma 7.13, the results of [2, 3] for the existence and properties of
admissible solutions apply to the solutions in the sense of Definition 7.2. We
list some of these properties in the following theorem.

Theorem 7.5. Let (py, (U, 0)) be a supersonic state in 2., and let 63 and
03, be the corresponding detachment and sonic angles. Then any admissible
solution of the Prandtl-Meyer reflection problem with wedge angle 0y, € (0,0%)
has the following properties:

(i) Additional regularity:

— If 0y € (0,63), i.e., when the solution is of supersonic reflection
configuration as in Fig. 7.5, then ¢ € O (2o U 2 U Ny) and p €
CH (NG v T, SJ(\)/nic);

— If0y € [65,0), i.c., when the solution is of subsonic reflection config-
uration as in Fig. 7.6, then p € CL2(Q2 U Qx) n CHLH2 U 2 \{O})
and p € C*(\({O} u TN ..)) for some o € (0,1), depending on

(P, Uss, By) and non-increasing with respect to 0.

(ii) The shock curve Ishock 18 C™ in its relative interior.

(iii) Tyhock has the following regularity up to the endpoints: In the supersonic
case, the whole shock curve So seg U Ishock U SN e 45 C?PB for any B €
(0,1). In the subsonic case, curve Ishock U Snseg 08 C1* with v as in

(1).

(iv) For each e € Con(eg,,€s, ),

Oc(pr —p) <0 in £2, (7.29)

where vectors eg, and eg,, are introduced in Definition 7.10(v), and
notation (7.20) has been used.

(v) Denote by vy, the interior unit normal vector to Iyedge pointing into {2,
i.e., Uy = (—sin by, cosby). Then

Ov, (¢ —00) <0, Ou (p—pn) <0  inf

Proof. Properties (i)—(iii) are from [3, Theorem 2.16]. Properties (iv) and (v)
are shown in [3, Lemmas 3.2 and 3.6], where the results are stated in a rotated
coordinate system, in which the £;—variable is in the direction of vy,. O
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Theorem 7.6. Let (p., (uy,0)) be a supersonic state in §2.., and let 03 be
the corresponding detachment angle. Then, for any 0 € (0,03), there exists
an admissible solution of the Prandtl-Meyer reflection problem.

The existence of solutions follows from [3, Theorem 2.15].
Now, similar to Lemma 7.8, we have

Lemma 7.14. The following statements hold:

(i) Any admissible solution in the sense of Definition 7.10 satisfies the con-
ditions of Theorems 2.1 and 2.3.

(ii) Any global weak solution of the Prandtl-Meyer reflection problem in the
sense of Definition 7.9 with properties (1)—(iv) of Definition 7.10 and with
shock Iinock being a strictly convex graph in the sense of (2.18)—(2.19)
satisfies property (v) of Definition 7.10.

Proof. We first discuss the proof of assertion (i).

Conditions (A1)—(A5) follow directly as in Lemma 7.8. In particular, in
(A5), Con = Con(eg,,es, ), where we have used (7.20). Also, A = P; and
B = Py, where P; := O in the subsonic/sonic case.

For condition (A6), we choose e = vy, where vy is defined in Theorem
7.5(v). Then e € Con, which can be seen from the fact that up > 0 and
vo > 0 with Z—g > tanfy, and eyr = —(cos Oy, sinby,).

In the argument below, the local extrema are relative to £2. Also, we discuss
the supersonic and subsonic/sonic cases together and define I'S, . := {O} and
Py := O for the subsonic/sonic case.

Recall the boundary conditions:

O =0, Oppo =0, 0Oppon =0 on Iyedge-

Also, Dy = Dy on E by Definition 7.10(i). Thus, de(p — 90) = 0 on
ﬁdgeu%, which is the global maximum over §2 by Theorem 7.5(v). Since
( is not a constant state, arguing as in Step 5 of the proof of Lemma 7.8,
we find that, if ¢ attains its local minimum on [yedge U 1, o then ¢, is

sonic?
and arguing as

constant in §2. Similarly, using that Dy = Dy on TN

sonic

above, we conclude that ¢ cannot attain its local minimum on stgnic, unless
¢e is constant in 2. Combining all the facts together, we conclude that, if e
attains its local minimum on I S/(\)fnic U Lyedge U 1, S(gnic, then ¢, is constant in 2.

We now show that, if ¢ is constant in {2, then ¢ is a constant state
in £2. To fix notations, we consider first the supersonic case. Since conditions
(A1)—(Ab) have been verified, we can apply Lemma 3.2. We work in the (S, T')—
coordinates with basis {e,e'} and origin O, where the orientation of e' is as
in Lemma 3.2. Then Tp, < Tp, < T'p, < Tp,, where we have used that A = P;

and B = P,. Also,

Fs(gnic = {S = fO(T)7 Te (TP4’ TPl)}7 Fs"g/nic = {S = fN(T)’ Te (TP27 TPS)}7
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where fo € C*((Tp,, Tp,)) and far € C*((Tr,, Tp,)) are positive. With this,
we obtain

2= {(Sa T) :Te (TP47 Tp3), Se (O, f(T))}7
where f € C(Tr,, Tp,) satisfies

fAZ fO on (TP47 TP1)7 f: fe on (TP17 TP2)7 f: fN on (TP2u TP3)7 (730)

Let ¢ = a in 2. Then, from the structure of {2 described above, ¢(S,T) =
aS + g(T) in §2 for some g € C*(R). Then, noting that Dy = Dpxr on I“Sfc\)fnic,
we obtain

G(T) = 0oL p(far(T),T) = D(on — ) -€t  for all T € (Tp,, Tr,),

where we have used that D(pax — @) is a constant vector. Thus, ¢'(T) is
constant on (Tp,, Tp,) so that ¢(S,T) = aS + bT + ¢ in 2 = {(S,T)
T € (Tp,, Tp,), S € (0, far(T))} < 2. Then, arguing as in Step 5 of the
proof of Lemma 7.8, we conclude that ¢ is a constant state in {2, which is a
contradiction. For the subsonic/sonic case, the argument is the same, except
the structure of {2, where now Py = P; = O, and fo is not present in (7.30).
Therefore, Case (iii) of (A6) holds with e = vy, I = v ufwedgeufo

sonic sonic
for the supersonic case (resp. I := stgnic U Lyedge \{ P2} for the subsonic case),
and I, = .

We now show that conditions (A7)~(A10) are satisfied with I, = TN . \{Py},
I = F‘S,edge, \{Py} for the supersonic case (resp.

ﬁQ = ¢, and ﬁ3 = Fs(cg)nic
I's = J for the subsonic case). Indeed, then (A7) clearly holds. Also, (A8)
and Dy = Dye on I'©

sonic

holds since Dy = Dy on IV for the supersonic

sonic’?

case.
Condition (A9) on I = F‘gedge can be checked as follows: If e - 7 # 0 on
I vgcdgc, then the argument of Step 5 in the proof of Lemma 7.8 applies here
to yield that ¢ cannot attain the local minima or maxima on Fvgedge. In the
other case, when e = +v,,, we use the boundary condition:
O =0 on Fvgedge
to derive that d,¢ = —ugy sinfy, on I'yedge, similar to (7.13). Also, on Iy =

IN \{P2}, Do = Doy so that ¢e = 0e(on — ¢or) = const. The argument
on Iy = [0, \{P.} in the supersonic case is similar. This verifies (A9). Case
(i) of (A10) clearly holds here.

To prove assertion (ii), we follow directly the argument of Step 7 in the
proof of Lemma 7.8 with mostly notational changes, e.g., now ., replaces

$1- 0

Therefore, we have
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Theorem 7.7. If v is an admissible solution of the Prandtl-Meyer reflection
problem, then its shock curve I'spock s uniformly convex in the sense described
in Theorem 2.3. Moreover, for a weak solution of the Prandtl-Meyer reflection
problem in the sense of Definition 7.9 with properties (1)—(iv) of Definition
7.10, the transonic shock I'shock @S @ strictly convex graph as in (2.18)—(2.19)
if and only if property (v) of Definition 7.10 holds.

Appendix A Paths Connecting Endpoints of the Minimal and
Maximal Chains

For A c R", we denote
={€e A : dist(&dA) > r}. (A1)

Lemma A.1. Let A c R™ be an open set such that A, is connected for each

€ [0,70] with given ro > 0. Let P,Q € A be such that B,.(P) n A, and
B, (Q) n A, are connected for each 0 < p < r < ro. Then there exists a
continuous curve S with endpoints P and Q such that S° ¢ A. More precisely,
S = ¢([0,1]), where g € C([0,1];R™), g is locally Lipschitz on (0,1), g(0) = P,
g(1) =Q, and g(t) € A for allt € (0,1).

Proof. We first note that, after points P and @ are fixed, we can assume that
A is a bounded set; otherwise, we replace A by A n B, where B is an open ball
and P,Q) € B.

We divide the proof into three steps.

1. We notice that, if P,Q € A, for some r € [0,7¢), then there exists a
piecewise-linear path & with a finite number of corner points connecting P
to @ such that S < A, /5. This is obtained via covering A, by balls Bra(&:),
i=1,...,N, with each & € A, and via noting that, since A, is connected,
then any fl and &; can be connected by a piecewise-linear path with at most
N corners, each section of which is a straight segment connecting centers of
two intersecting balls of the cover.

Thus, the path connecting &; to &; lies in u,iV:lBr/g(ﬁk) < Ayjg. Then we
connect P to @ by first connecting P (resp. ) to the nearest center of ball
& (resp. &) via a straight segment that lies in B, (&) (resp. By,(§;)), and
next connect & to §; as above. In this way, the whole path S between P
and @ is Lipschitz up to the endpoints and lies in A, /. Clearly, there exists
g € C¥1([0,1];R™) with g(0) = P, g(1) = Q, and g(t) € A, for all ¢ € [0,1]
such that & = ¢([0, 1]. Therefore, this lemma is proved for any P,Q € A.

2. Now we consider the case when P € 04 and @ € A. Since A is open, there
exists a sequence P,, —» P with P,, € Aform =1,2,.... Then P,, € A, with
m > 0 and 1, — 0. Thus, taking a subsequence, we can assume without loss
of generality that 0 <7, < 7% for all m.
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As proved in Step 1, P; can be connected to @ by a Lipschitz curve that
is parameterized by g € C%'([%,1];R") with

g(%) =P, g(1)=Q, g¢g(t)e A; forall t e [0,1],

where 7 > 0. Since (B,(P) n A). = B, .(P) n A for all € € [0, 5), then
the assumptions of this lemma allow to apply the result of Step 1 to sets
Bryym(P) n A for m = 1,2,.... Thus, for each m = 1,2,..., we obtain a
Lipschitz path between P, and P,,;1 which lies in B, /,,(P) n A and is pa-
1 1

terized b 0,1 _1 ypn th
rameterized by g € C ([m+2,m+1]’ )WI
1 1
= P, — Py,
g(m—i-l) g(m+2) +1
g(t) € B (P) n Ay, forall te [5, 1<),

Combining the above together, we obtain a function g : (0,1] — R™ such that
ge C([0,1;R™) n C21((0,1]; R™) with

loc

tlir&g(t) =P, ¢g(1)=Q, g(t)eA forallte(0,1].

This completes the proof for the case when P € 04 and @ € A.

3. The remaining case for both P, @) € 04 now readily follows, by connecting
each of P and @ to some C € A and taking the union of the paths. O

Lemma A.2. Let 2  R? satisfy the conditions stated at the beginning of §3.3,

and let r* be the constant from Lemma 3.10. Let £2, be defined as in (A.1).
Then there exists ro € (0, %] such that sets (2, are connected for all p € [0,7¢],
and sets B.(E) n 2, are connected for any E € 2 and 0 < p < r < rg.

Moreover, if 0 < p <1 < 27y, P e (2, and dist(P,002) < r, then
dist(E, 002 n B,.(P)) < Cp for each E € 02, n B,.(P), (A.2)
where C' depends only on the constants in the assumptions on (2.

Proof. Throughout this proof, C' denotes a universal constant, depending only
on 2. We divide the proof into two steps.

1. We first describe the structure of df2, for sufficiently small p > 0 and
show that (2, is connected for such p and (A.2) holds.

Denote by I, i = 1,...,m, the smooth regions of 02 up to the corner
points. Then, for P € {2, we have

dist(P, 012) = rlnin dist(P, I5).

Denote
2, ={Pe 2 : dist(P,002) = dist(P, I;)}.
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Using that each I is C1 up to the corner points, and the angles at the corner
points are between (0, 7), we now show that there exists ro > 0 such that, for
any p € (0,79) and ¢ = 1,...,m, the set:

I’ :={Pef; : dist(P,002) = p}

is a Lipschitz curve. In addition, I’/ is close to I; in the Lipschitz norm in the
sense described bellow.

Consider first a curve I' = {(s,t) € R? : s = g(t)} for some g € C1*(R).
Let p > 0and I'? = {(s,t) € R? : s> g(t), dist((s,t),I") = p}. Fix tp € R
and r > 10p, and denote L := |g||co.1 ([ty—2r,t+2])- Then we find that, for any

t1 € [to — r,to + 7], there exists s1 € [g(t1) + p, g(t1) + pVL? + 1] such that
(s1,t1) € I'? and

I’ n{(s,t)eR? : [t—to| <7, s>s51 + L[t —t1]} = &
by noting that B,(s1,t1) n I = . From this,
" ={(s,t)eR? : 5s=g°(t)}

with g € COH(R) and [g — 9|l L= (=) < PVL? + 1. Moreover, fix P e I'7.

loc

Then there exists @ € I" such that dist(P, Q) = p. It follows that

B,(P)nT'=¢, B,(Q)nI’=g.

From this, for any 7 € (0, 1), we find that there exists ro € (0, {5] depending

only on 7, a, and L := lglcr.e(q3r,3r) such that, if p € (0,70], then, for any
P = (g°(tp),tp) € I'” n {t € [-r,r]}, we have

9°(t) = g’ (tp) +¢'(tQ)(t — tp) — Lr|t — tp|
g

=
> g°(tp) + ¢ (tp)(t — tp) — L(r™ + p*)|t — tp|

for any t € [—2r,2r], where Q := (¢(tg),tg) a point such that dist(P, Q) = p.
Then, noting that

l9(t) — g(tp) — g (tp)(t — tp)| < Lr*|t —tp|  for any ¢ € [~2r,2¢],

and ||g — ¢l ((—r,) S P L? + 1, we have

”g - gp”CO’l([—r,r]) < IA/pa + p\/?—l—l

Thus, for any € € (0, 1), reducing rg, we obtain
lg = 9°llcor(—rm) < e if p < 7o. (A3)

From this, under the conditions of Case (a) in the proof of Lemma 3.10,
when (3.17) holds, we follow the argument in the proof of Lemma 3.10 and
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choosing sufficiently small 7y and ¢ in (A.3) to obtain that, for any positive
p < min{r, ro},

20 Qy = () € Qg 5 5> g"(B),
002" N Qar ={(s,1) € Qar : s =g"(1)}.
Furthermore, under the conditions of Case (b) in the proof of Lemma 3.10,

when (3.18)—(3.19) hold, we repeat the argument there by choosing small 7
and ¢, and conclude that, for any positive p < min{r, ro},

2° 0 Qanr = {(5,1) € Qany = 5> max(g](t), g5(t))},
082° n Q3Nr = {(S,t) € Q3NT S = max(gf(t)vgg(t))}>

where g{ and g¢5 satisfy (A.3) with g1 and g, respectively, and that there
exists t, € (—=Cp, Cp) such that

(A4)

(A.5)

gl (t) > gh(t) fort <t,, gl (t) < gb(t) fort>t,. (A.6)

We adjust ¢ so that ro < %. Then, from (A.4)-(A.6) with r = r*, we ob-
tain that, for each p € (0,7¢], 012, is a Lipschitz curve without self-intersection.
It follows that {2, is simply-connected.

Also, combining (A.4) with (3.17) and (A.5)—(A.6) with (3.18)—(3.19) for
r = 1, choosing ¢ small in (A.3) for g, g1, and g2, and adjusting ro, we have

dist(042,,082) < Cp for each p € (0,7°).
Then we conclude (A.2).

2. Now we show that B,.(E) n §2, is connected for any E € {2 and 0 < p <
r<rg.
Assume that dist(E, 012) < 2r (otherwise, the result already holds). Since

ro < %7 we obtain (3.17)—-(3.19) for 2r instead of r, so that (A.4)—(A.6) hold
for 2r instead of r. Then, arguing as in the proof of Lemma 3.10 and possibly
reducing rg, we obtain the following:

— If B.(F) n {2 has expression (3.21), then
2, 0 Bo(E) ={(s,t) : te(t,,t,), max(f (t),g"(t)) <s < fr (1)},

where t1 € (%,7] and t; € [—r,—9) with [tF — ] < Cp, f+ > g on
(t, ty), and f* < gP on [—r,r]\[t,,t;];

— If B,(F) n {2 has expression (3.28), then
2, 0B (E) ={(s,t) : te(t,,t;), max(f~(t),97(t),95(t)) < s < fF (1)},
where ¢ € [t* —r,t*) and ¢} € (t*,t* + 7] with [t —t*| < Cp, and
f() > max(gy (), g5(t)) on (¢, ,t).

The facts above imply that sets B,.(E) n {2, are connected. O
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In the next lemma, we use the minimal and maximal chains in the sense
of Definition 3.7.

Lemma A.3. Let 2 c R? satisfy the conditions stated at the beginning of §3.3,
and let ro be the constant from Lemma A.2. Let E1, Es € 2, and let there exist
a minimal or mazimal chain {E*}Y., of radius v1 € (0,7¢] connecting Ey to
Es in 2, i.e., E° = E1 and EN = E,. Denote

N
A=|JB.(E)n Q2
1=0

so that Ei,E5 € 0A. Then there exists tq > 0 such that set A and points
{E1, Es} satisfy the conditions of Lemma A.1 with radius 7.

Proof. We divide the proof into two steps.

1. We first show the existence of 7y € (0,71) such that A, is connected for
each p € (0, 7]. We recall that r; < rg < r* so that the conclusions of Lemma
3.10 hold for B, (EY).

Since, for each P € A,

N
dist(P,04) = min {dist(P, o(| | B, (E"))), dist(P, 092)},
=0

then
N .
Ay = Br—o(E") 0 92, (A7)
=0

By Lemma 3.10(ii) and property (b) of Definition 3.7, we see that, if r; <
r*, then B, (E) n B,,(E"™) "2 # @ fori =0,...,N —1. Note that all the
sets in the last intersection are open. Then, recalling that r; < r¢ and using
(A.2) in Lemma A.2, we obtain that there exists 7° € (0,71) such that, for any

pE (07720)7

By p(EY) N B p(EN) " 02, # & fori=0,...,N—1.

Also, from Lemma A.2, sets B, _,(E") n {2, are connected, since r; < ro. Then
N

we obtain that U By,—,(E") n 2, is connected by using the argument in the

i=0
proof of Lemma 3.12(i). Thus, by (A.7), we conclude that A, is connected for
all pE (0, 720)

2. Since B, (E°) n 2 < A, then we use (A.7) to obtain

B.(E°)n A, = B.(E°)n 02, for all r € (0, 15] and p € (0,r).

710

Sets B,.(E®) n £2, with r and p as above are connected by Lemma A.2. Thus,
the assumptions of Lemma A.1 with radius {§ hold for point £y = EY. For

point Ey = EN, the argument is similar. [
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