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Dynamics of a thin film driven by a moving pressure source
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Motivated by the liquid metal coating on a divertor in a tokamak, we investigate the flow
of a thin film of incompressible fluid on an inclined substrate subjected to a localized
external pressure that oscillates parallel to the substrate. When the movement of the
pressure occurs on a timescale significantly longer than the characteristic time for the thin
film to equilibrate, the system is quasisteady. In the opposite extreme, where the pressure
oscillates much faster than the response time of the free surface, a multiple-scale analysis
shows that the free surface is exposed to an effective time-averaged pressure profile. Thus
the oscillations can act to spread the momentum load of the applied pressure, resulting
in smaller deformations of the liquid film. In the intermediate case, where the intrinsic
and external timescales are similar, we find that there exists a critical speed of oscillations
which maximizes the free-surface deflection and results in a possibly dangerous thinning
of the film. Further local maxima in the free-surface deflection are caused by a fascinating
nonlocal wave interaction mechanism.
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I. INTRODUCTION

Thin films of fluid are ubiquitous in both the natural world and industrial processes, and have
been studied extensively [1–3]. One industrial application of interest is the use of a thin film of liquid
metal to coat components within a tokamak, the vessel used to magnetically confine a plasma [4].
Matter produced from fusion reactions within a tokamak, as well as any impurities that find their
way to the plasma, is exhausted from the confined region and directed towards a component known
as the divertor. Due to the extreme heat load of the impacting plasma, a solid surface can suffer
severe surface damage, making its long-term use infeasible. One promising solution is to maintain
a constantly recycled thin film of liquid metal (typically lithium) to cover and protect the solid
substrate (see [5] and references therein).

The hot ions impacting the divertor impart mass, momentum, and thermal energy to the free
surface of the liquid film. The contribution of the mass is negligible [6] and will be ignored in this
paper. The transfer of thermal energy may be significant, but will be similarly neglected in this paper
in order to focus on the isothermal, purely hydrodynamical effect of the transfer of momentum. The
ions penetrate only the top surface of the thin film [7] and thus the transfer of momentum can be
adequately modeled as a pressure applied to the free surface. Moreover, the strike point, the location
at which the plasma exhaust is directed to impact the divertor, is controllable within the tokamak.
Of particular interest is the case when the strike point is oscillated, so as to spread the heat load.
To protect the solid substrate along the extent of the divertor, we must ensure that the liquid does
not thin or dry out due to the applied pressure. This requirement leads us to the focus of this paper:
What is the effect of a moving localized pressure applied to the free surface of a thin film of flowing
fluid?
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Previous work on the dynamics at the liquid-metal–plasma interface has focused on Kelvin-
Helmholtz [8], Rayleigh-Taylor [9], Rayleigh-Plateau [10], and electrohydrodynamic instabili-
ties [11], as well as boiling-induced droplet ejection [12]. Our approach is to model the liquid metal
as a thin film, using lubrication theory and incorporating electrodynamic effects through a Lorentz
body force.

In much of the previous work on thin films, the gas above the viscous liquid film was modeled as
a passive atmosphere at constant pressure. However, our model must include a pressure source that
varies in both space and time. Such a pressure term has been modeled previously in situations in
which an external flow has a significant effect on the behavior of the fluid film, such as jet stripping
and blade coating processes (see [13–15] and references therein). Applications in microfluidics have
used Marangoni forcing to achieve strikingly similar results [16]. These previous studies focused
primarily on pressure profiles that either are fixed or move at constant speed and on corresponding
steady or traveling-wave solutions for the thin-film response, when they exist. In this work we
instead consider fully time-dependent flow caused by an oscillating pressure profile. This approach
allows us to extend previous studies to find solutions in regions of parameter space where steady or
traveling-wave solutions do not exist.

We find that this problem contains two characteristic timescales: the timescale corresponding
to the motion of the pressure and the response timescale of the free surface. Thus the problem
is naturally separated into three regimes. When the timescale associated with the motion of the
pressure is much longer than the free-surface deformation timescale, the system is quasisteady:
The free surface adopts its steady-state profile and varies only parametrically with the location of
the applied pressure. At the other extreme, when the pressure oscillates much faster than the time
for the free surface to deform, a multiple-scale analysis shows that the free surface evolves under the
influence of an effective pressure, given by the average pressure over one period of its oscillation.
This means that the momentum load is spread across the sweeping range (along with the heat load),
and the resulting deflections in the free surface are correspondingly smaller.

Finally, when the two timescales in the problem are of similar magnitude, a direct numerical
simulation reveals that the deflections can become much larger than in the two extreme cases
described above. We explore the causes of this resonance and find that there are two mechanisms
leading to the increased deflection magnitude. The dominant mechanism comes into play when the
applied pressure sweeps at a speed close to the downstream wave propagation speed. In this case, the
pressure propagates at a similar speed to the trough that it has created, thus magnifying its thinning
influence. An unexpected secondary effect that also leads to a local maximum in the free-surface
deflection is a nonlocal wave interaction, whereby a trough generated upstream coincides on its
propagation downstream with a trough being generated later in the oscillation cycle.

We emphasize that, despite the inspiration for this study, and the numerical results presented
here, stemming from a magnetohydrodynamic flow, the phenomena described are essentially
hydrodynamic. Therefore, the results presented below would be qualitatively preserved in other
flow regimes, including magnetohydrodynamic flows with different field orientations and classical
hydrodynamic flows.

The paper is organized as follows. In Sec. II we outline the thin-film equation to be studied.
In Secs. III–V we explore the three regimes of low-, high-, and moderate-frequency sweeping,
respectively. In Sec. VI we summarize our findings.

II. THIN-FILM MODEL WITH MOVING PRESSURE SOURCE

We consider the two-dimensional flow of a film of incompressible fluid on a plate inclined at an
angle θ to the horizontal, as illustrated in Fig. 1. Provided the aspect ratio of the characteristic height
to the characteristic length of the fluid film is small, the lubrication approximation can be applied
to reduce the governing Navier-Stokes equations and boundary conditions to the so-called thin-film
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FIG. 1. Schematic of two-dimensional thin-film flow on an inclined plane subject to an externally applied
magnetic field B and pressure p.

equation

∂H

∂t
+ ∂

∂x

[
q(H )

(
1 − A

∂p

∂x
− β

∂H

∂x
+ ∂3H

∂x3

)]
= 0 (1)

governing the evolution of the free-surface height H (x, t ). Here p(x, t ) is the dimensionless
external applied pressure, with typical amplitude A, while β is defined by β = ε cot θ , where ε is the
small aspect ratio of the thin film and θ is the substrate inclination angle. Since θ is typically O(1)
in a divertor, β is usually small, which implies that transverse gravitational effects are negligible and
surface tension is the main mechanism opposing the free-surface deflections. The function q(H ),
denoting the purely local dependence of the fluid flux on the film height, depends on the precise
combination of physical effects included in the model. Versions of (1) were derived in, for example,
[1–3].

In a purely hydrodynamical flow, q(H ) = H 3/3. We will present results for the case of Hartmann
flow [17] of a magnetic liquid subject to a two-dimensional locally constant magnetic field with
components only in the (x, y) plane. In this case, as shown in the Appendix,

q(H ) = H

[
1 − tanh(Ha H )

Ha H

]
, (2)

where Ha is the Hartmann number, which we will take to be Ha = 10 in all of our calculations.
However, while the numerical results presented here are for this specific magnetohydrodynamic
flow, they are qualitatively the same as for the more common hydrodynamic flow: The phenomena
described are general, in that they are robust to a wide range of functions q.

In the absence of the applied pressure, i.e., when p = 0, the governing equation (1) admits an
exact solution where H = const = 1 without loss of generality. We therefore write

H (x, t ) = 1 + h(x, t ), (3)

and the deflection h of the free surface due to the applied pressure satisfies the equation

∂h

∂t
+ ∂

∂x

[
Q(h)

(
1 − A

∂p

∂x
− β

∂h

∂x
+ ∂3h

∂x3

)]
= 0, (4a)

where Q(h) = q(H ) = q(1 + h). We will consider applied pressure profiles p(x, t ) that are
strongly localized in x and assume that the influence on the free surface is likewise localized so
that

h → 0 as x → ±∞. (4b)

Finally, we focus on the case of a pressure source that oscillates to and fro in the x direction.
In a tokamak, the plasma exhausted from the core region towards the divertor may be controlled to
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sweep the so-called strike point, where the plasma jet impacts the divertor, up and down and thus
spread the heat load over a larger area. We are interested in the impact of this oscillating source of
momentum on the deflection of the free surface. The general form for such an oscillating pressure
will be

p(x, t ) = P (x − �S (ft)), (5)

where P is the stationary pressure profile, � is the sweeping amplitude, S is the 2π -periodic time
profile, and f is the frequency. For the sake of simplicity, and unless otherwise stated, we will use
for P a Gaussian centered at zero,

P (x) = e−x2
, (6)

and a sinusoidal sweeping profile

S (t ) = sin t. (7)

Later on we will demonstrate that the results are robust to changes in the pressure and time-sweeping
profiles.

To summarize, in this paper we will investigate how the deflection h of the free surface of a thin
film flowing along a solid substrate, governed by (4), depends on the movement of the pressure
source. We note that the problem contains two timescales: the intrinsic relaxation timescale of the
free surface and the timescale associated with the imposed pressure oscillations. The dimensionless
parameter f is the ratio of these two timescales and it is therefore natural to split the analysis into
three cases: f � 1, f ∼ 1, and f � 1. We will consider these cases separately. The cases of low
and high frequency, f � 1 and f � 1, respectively, admit a separation of timescales which allows
analytical progress to be made in Secs. III and IV, respectively. The intermediate case f ∼ 1 admits
no such simplifications, and a full numerical simulation will be carried out and the results described
in Sec. V.

III. SLOW SWEEPING

A. Quasisteady approximation

In this section we consider the case of low-frequency oscillations, that is, where f � 1. In this
regime, the time it takes for the applied pressure to move a nominal distance is much longer than the
time it takes for the free surface to respond to the pressure. Thus the problem becomes quasisteady:
To leading order in f , the free-surface deflection h attains a steady state which simply translates
with the location of the pressure source.

To justify this result formally, we transform to local variables that travel with the moving source
by defining

ξ = x − �S (ft), τ = ft (8)

so that (4a) becomes

f

(
∂h

∂τ
− �Ṡ (τ )

∂h

∂ξ

)
+ ∂

∂ξ

[
Q(h)

(
1 − AP ′(ξ ) − β

∂h

∂ξ
+ ∂3h

∂ξ 3

)]
= 0. (9)

Here and henceforth, the prime in P ′(ξ ) is used to denote ordinary differentiation. To leading order
in f , the first term in (9) is negligible and we are left with the ordinary differential equation

d

dξ

[
Q(h)

(
1 − A

dP
dξ

− β
dh

dξ
+ d3h

dξ 3

)]
= 0 (10)

for h(ξ ). To compute solutions of (10), we implement a full time-dependent solver designed for
lubrication-type equations [18] and run the simulation until the solution reaches steady state. An
ordinary differential equation solver that directly solves (10) was also implemented for the sake of
validation, particularly for cases where A is large.
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FIG. 2. Steady free-surface deflections h(ξ ) found by numerical solution of (10): (a) A ∈ {0.5, 1, 2, 3} and
β = 0, (b) A = 1 and β ∈ {0.1, 1, 2, 5}, and (c) A = β ∈ {0.5, 1, 2, 5}.

B. Results

From the numerical simulations shown in Fig. 2, we observe that all solutions are characterized
by a peak in the free surface upstream of the strike point ξ = 0 and a trough at or slightly down-
stream of the strike point. The magnitude of the free-surface displacement increases approximately
proportionally to the amplitude A of the imposed pressure source but decreases with increasing
transverse gravitational component β. In Fig. 2(c) we show how these effects compete when both A

and β are increased simultaneously. We see that the deflections become larger, suggesting that, in
this setting, the applied pressure is more dominant than transverse gravity. However, we note that,
unlike when A is increased in isolation, the upstream peak is significantly damped and more spread
out, so transverse gravity increases the far-field influence of the localized pressure peak. Since both
A and β scale with (sin θ )−2/3 as θ → 0 (see the Appendix), Fig. 2(c) could model the effects of
decreasing the inclination angle θ while keeping everything else constant.

We note that the solutions in Fig. 2 with relatively small values of β exhibit upstream oscillations
leading into the strike region, while those with larger values of β do not. To investigate the
far-field behavior of the solution, we seek decaying exponential solutions of the form h(ξ ) ∼ eλξ as
ξ → ±∞. Provided the pressure is a Gaussian (or similar) which vanishes faster than any
exponential, it follows from (10) that λ satisfies

λ3 − βλ = −Q′(0)

Q(0)
= −L, (11)
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FIG. 3. (a) Nascent δ functions P� given by (13) (solid curve) and (14) (dashed curve) where � = 0.2.
(b) Steady-state free-surface profiles, namely, solutions to (10), where A = 1, β = 0, and the applied pressures
match those from (a).

say. We assume that the flux is a monotonic increasing function of the film height and L is therefore
a positive constant [given by L = Ha (1 + sech2 Ha)/(Ha + tanh Ha) ≈ 10/11 for the Hartmann
flow flux function (2) with Ha = 10]. Equation (11) always has precisely one real negative
root and two other roots with a positive real part. We conclude that the downstream behavior
(as ξ → +∞) is unconditionally monotonic, while the upstream behavior is either monotonic
or oscillatory, depending on whether the two non-negative roots of (11) are real or complex.
Elementary manipulation of (11) then reveals that upstream oscillations occur if and only if

β3

L2
<

27

4
. (12)

For the Hartmann flow model used in our computations, (12) reduces to β � 1.77, and indeed we
see in Fig. 2(b) that the upstream oscillations are suppressed in the solutions where β � 2. As
pointed out in Sec. II, β is usually small in practice. Henceforth we will therefore take β = 0 in
our calculations, in which case (12) is satisfied identically, and we will always expect to observe
upstream free-surface oscillations.

C. Varying the applied pressure

Next we demonstrate that the free-surface profile is robust to the form of the applied pressure P .
To see this, we consider two families of nascent δ functions, a Gaussian family given by

P�(x) = 1

�
e−(x/�)2

(13)

and a sinc family given by

P�(x) = 1

�
√

π
sinc

( x

�

)
= 1

x
√

π
sin

( x

�

)
. (14)

For all positive values of �, both (13) and (14) satisfy∫ ∞

−∞
P�(x)dx = √

π (15)

and, in the limit � → 0, they each approach a Dirac delta function.
The profiles (13) and (14) are qualitatively different, in that (13) is positive for all x, while (14)

and its derivatives change sign infinitely many times, as shown in Fig. 3(a). Despite this, the different
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FIG. 4. Steady-state free-surface profiles, namely, solutions to (10), where A = 1, β = 0, and the applied
pressure is given by (13) with � ∈ {0.001, 0.1, 0.2, 0.4}.

pressure profiles produce very similar free-surface deflections, as shown in Fig. 3(b). These results
highlight the fact that, provided the pressure source is localized, the free-surface profile is shaped
largely by capillarity and not by the particular form of P away from the origin. For the sake of
numerical simplicity, we will henceforth continue to use a Gaussian in simulations.

Furthermore, we note the similarity between free-surface profiles for a wide range of the
characteristic width parameter �, as illustrated in Fig. 4. For larger �, the pressure profile is more
spread out and the resulting deflection profile exhibits somewhat damped peaks and troughs. As
� decreases, we see a sharper transition local to the origin as Eq. (10) becomes singular there. In
the limit � → 0, we see that P approaches a δ function which forces a jump discontinuity in the
first derivative of h. The continuity of h(ξ ), as well as the jump discontinuity in h′(ξ ) of magnitude
A

√
π ≈ 1.77 when A = 1, can be observed in Fig. 4.

D. Large-amplitude applied pressure

The solutions plotted in Fig. 2 demonstrate that, unsurprisingly, the magnitude of the free-surface
deflection h increases as the amplitude A of the imposed pressure increases and as the gravitational
parameter β decreases. However, we will now argue that, however large the applied pressure, it is
impossible for the deflection ever to become so large that the film thickness H reaches zero, which
would correspond to drying out of the liquid film. To see this, we integrate (10), applying vanishing
boundary conditions to both the pressure and the deflection to give

1 − β
dh

dξ
+ d3h

dξ 3
= Q(0)

Q(h)
+ A

dP
dξ

. (16)

If the pressure gradient is large enough for the film thickness H = h + 1 to approach zero, then
the flux function Q(h) = q(H ) likewise approaches zero. For the Hartmann flow flux function (2)
used in our simulations, we have q(H ) = O(H 3) when H � 1/ Ha. A dominant balance in (16)
then suggests the scaling law

min H ∝
(

−A
dP
dξ

)−1/3

when − A
dP
dξ

� 1, H � 1/ Ha. (17)

There is also an intermediate regime where 1/ Ha � H � 1. In this case the flux function, to
leading order in (Ha H )−1, satisfies q(H ) = O(H ), and then a dominant balance in (16) suggests
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FIG. 5. Minimal film thickness as a function of the applied pressure amplitude A, where Ha ∈
{10, 20, 50, 100, 200, 1000} and β = 0.

that

min H ∝
(

−A
dP
dξ

)−1

when − A
dP
dξ

� 1, 1/ Ha � H � 1. (18)

Both of the scalings (17) and (18) can be observed in our numerical simulations. As illustrated
in Fig. 5, the minimum film thickness scales with A−1/3 as the amplitude A of the applied pressure
tends to infinity, while for large enough Ha there is an intermediate region where the minimum film
thickness scales with A−1.

In general, even if other physics is included, viscous hydrodynamic effects will usually dominate
when the film thickness is small. We can therefore expect the limiting behavior q(H ) = O(H 3),
and consequently the dependence (17) of the minimum thickness on the applied pressure gradient,
to be quite general, at least for flow with no slip on a rigid substrate. We conclude that, although
the minimum film thickness tends to zero as A → ∞, it can never reach zero as long as the applied
pressure remains finite.

IV. FAST SWEEPING

If f � 1, then the characteristic timescale on which the applied pressure sweeps is significantly
faster than the time it takes for the fluid to deform under the applied pressure. In this case we can
expect the sweeping to have the effect of spreading the momentum load just as it does the heat load.
To analyze this limit, we pose a multiple scales ansatz, where the slow-time variable t and the fast
variable τ = f t are considered independent. Moreover, we assume that h(x, t, τ ) is 2π periodic
with respect to τ and that the applied pressure has no slow-time dependence, that is,

p(x, τ ) = P (x − �S (τ )). (19)

We then pose the asymptotic expansion

h ∼ h0 + 1

f
h1 + · · · (20)

and find that the leading-order term is a function only of the slow timescale: h0 = h0(x, t ).
At O(1/f ), the solvability condition for h1 provides an evolution equation for the leading-order

film thickness, namely,

∂h0

∂t
+ ∂

∂x

[
Q(h0)

(
1 − A

dp

dx
− β

∂h0

∂x
+ ∂3h0

∂x3

)]
= 0, (21a)
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FIG. 6. (a) Sweeping profiles S (τ ): S (τ ) = sin τ is the solid curve and the dashed curve shows a triangle
wave that linearly interpolates the peaks and troughs of the sine curve. (b) Time-averaged applied pressure
profiles calculated from (21b) with both fast-time functions from graph (a) and � ∈ {0, 1, 2, 5, 10}. (c) Steady
multiple-scale solutions of (21) for the averaged profiles in graph (b) where A = 1 and β = 0.

where

p(x) = 1

2π

∫ 2π

0
p(x, τ )dτ. (21b)

Equation (21a) is identical to (4a) except that the applied pressure is replaced by a time-
independent effective applied pressure which has been averaged over the fast timescale. This
analysis therefore confirms the earlier stated intuition that the effect of sufficiently fast sweeping
is to spread the momentum load.

The solid curves in Fig. 6(b) show the effective pressure profile p(x) for a Gaussian underlying
pressure source (6), a sinusoidal sweeping profile (7), and various values of the sweeping amplitude
�. We observe that the larger the amplitude � of the oscillations, the smaller the magnitudes of
the maximal and minimal pressure and the wider the region over which the profile is spread, as
expected. For sufficiently large �, the effective pressure profile produced with a sinusoidal sweeping
profile S (τ ) exhibits a peak at either end, where S (τ ) is stationary, so the pressure maximum lingers
there. For comparison, we show using dashed curves the corresponding effective pressures when the
sweeping profile S (τ ) is a triangle wave, and these end peaks do not appear. Nevertheless, for small
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FIG. 7. (a) Time-dependent numerical solutions of the problem (4) with � = 10, evaluated at t = π (dashed
curve) and t = 2π (solid curve), with f = 0.02 (blue) and f = 0.05 (orange); the black dashed curve shows
the quasisteady solution to (10) valid in the limit f → 0. (b) Time-dependent numerical solution of the problem
(4) with � = 10 and f = 10 � 1, evaluated at t/π = 14 + (1/2 + i/5)/f , for i = 1, 2, 3, 4; the vertical lines
show the center of the applied pressure profile at each value of t . The black dashed curve shows the steady
solution of (21), valid in the limit f → ∞. Movies of the time-dependent simulations shown in this figure are
included in the Supplemental Material [19].

values of � it is the sinusoidal S (τ ) that produces the smaller magnitude effective pressure and
pressure gradient.

Since the effective pressure p(x) is time independent, the solution h0 of (21a) ultimately
converges to a steady state, as will be demonstrated below in Sec. V A by direct numerical
simulation. We compute the steady-state solution h0(x) of (21) using the same procedure as that
used for the regime where f � 1 in Sec. III, and results are illustrated in Fig. 6(c). We find that
the steady profiles, like the effective pressures, exhibit smaller deflections for larger values of the
sweeping amplitude �. Similarly to the pressure profiles, for small values of � sinusoidal oscillations
cause smaller free-surface deflections than the triangle-wave sweeping profile S (τ ), while for larger
values of � the situation is reversed.

In summary, the analysis of this section confirms that lateral oscillations of the pressure source
at sufficiently high frequency can indeed be used to spread the momentum load and significantly
reduce the deflection of the thin film.

V. INTERMEDIATE SWEEPING

A. Numerical investigation

In Secs. III and IV we have shown that the equilibrium free-surface deflection problem becomes
effectively steady in the limits of both low-frequency and high-frequency sweeping. In the former
case, the governing equation (10) is quasisteady and the free-surface deflection depends only
parametrically on the location of the pressure source; in the latter case, the governing equation (21a)
is driven by a steady time-averaged effective pressure p(x) and the deflection ultimately reaches a
steady state, possibly after some transient.

The accuracy of these asymptotic limits is illustrated in Fig. 7. In Fig. 7(a) we show time-
dependent numerical solutions computed with small but nonzero values of f . As the value of f

increases, the difference between the solutions evaluated at two different values of t tends to zero,
indicating that the solution is becoming quasisteady, and both converge to the solution of (10), which
is valid in the limit f → 0. In Fig. 7(b) we show time-dependent numerical solutions computed with
a large but finite value of f . The simulation is first run up to t = 14π , allowing initial transients
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FIG. 8. Extremal free-surface deflections lim inf h and lim sup h as functions of the sweeping frequency
f , where � = 10, A = 1, and β = 0. The extrema of the leading-order solutions as f → 0 and as f → ∞ are
marked by disks. Labels I and II mark anomalous local behaviors discussed in Sec. V D.

to decay, and then we plot time intervals corresponding to half-oscillations. We observe a small
localized ripple that follows the locus of the moving pressure source (indicated by the vertical lines),
but otherwise the solution remains close to the steady solution of the multiple-scale model (21), valid
in the limit f → ∞.

In this section we study the intermediate regime of moderate frequency by direct numerical
simulation of (4) to compute the deflection h(x, t ). When f = O(1), the applied pressure contains
an order-unity time dependence and there exists no steady-state solution for h(x, t ). To compare
results from this regime to those from Secs. III and IV, we must therefore consider some relevant
functionals of the solution h. In the context of a divertor, the main focus is to maintain small
deflections and thus it is natural to consider the supremal and infimal deflections supx,t h(x, t ) and
infx,t h(x, t ). To remove the dependence of these functionals on the arbitrary initial conditions,
we will consider the limit extrema limT →∞ sup|x|<X,t>T h(x, t ) and limT →∞ inf |x|<X,t>T h(x, t ) for
some large X and T . We compute these by running the simulations for large times, taking X � �,
and excluding an initial period of time T such that deflections caused by initial conditions have
propagated beyond the |x| < X window.

In Fig. 8 we plot the extreme values of the displacement, computed as described above, versus
the dimensionless frequency f with the other parameter values � = 10, A = 1, and β = 0. As f

becomes very small, both lim inf h and lim sup h become independent of f and approach constant
values in agreement with results of the f → 0 analysis from Sec. III, which are indicated by disks in
Fig. 8. For very large values of f , the extremal values of h likewise approach constant values, which
are somewhat smaller due to the spreading effect of the pressure sweeping, and also consistent with
results of the multiple-scale analysis from Sec. IV. However, as f increases from small to large
values, the extremal deflections do not vary monotonically, but increase to a significant peak at a
critical intermediate value of the frequency f before decreasing again. This apparent resonance
occurs when the applied pressure sweeps at a similar speed to the propagation speed of free-surface
deformations, so the pressure peak spends a long time at the trough in the free surface. We will
explore this effect in Sec. V B by analyzing traveling-wave solutions of (4) for the simpler case
where the pressure source moves at constant speed.

In Fig. 9 we show the effects on the response diagram of varying the pressure source ampli-
tude A and the sweeping amplitude �. Unsurprisingly, the free-surface response increases roughly
proportionally to the forcing amplitude A. As � increases, the principal peaks in the response occur
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FIG. 9. Extremal free-surface deflections lim inf h and lim sup h as functions of the sweeping frequency f ,
where α = 1, β = 0, and (a) � = 10 and A ∈ {0.1, 0.4, 0.7, 1} and (b) A = 1 and � ∈ {1, 2, 5, 10}.

at smaller values of f such that �f ∼ 1, corresponding to keeping the maximum sweeping velocity
constant. The magnitude of the response also increases with increasing �, since the pressure source
then spends longer moving close to the intrinsic propagation speed of free-surface disturbances. This
effect will be explored further in Sec. V C by studying the local behavior when the sweeping speed
is not constant but stationary at the intrinsic propagation speed. Finally, in Sec. V D we explore the
appearance of smaller local peaks in the free-surface response, for example, those labeled I and II
in Fig. 8.

B. Traveling waves

To investigate the origin of the peak in the response diagram in Fig. 8, we first consider traveling-
wave solutions with constant wave speed V . For applied pressure and free-surface deflection of the
forms p(x, t ) = P (ξ ) and h(x, t ) = h(ξ ), with ξ = x − V t , the governing equation (4) reduces to
the ordinary differential equation

d3h

dξ 3
= A

dP
dξ

− 1 + Q(0) + V h

Q(h)
(22)

when the transverse gravitational parameter β is assumed to be negligible. In principle, Eq. (22)
can be solved numerically, subject to h → 0 as ξ → ±∞. Versions of Eq. (22) have been studied
previously with various forms of the flux function Q and the forcing term P , for example, in
[14–16], all of which report that the solution of the steady nonlinear problem may exhibit
nonexistence and nonuniqueness. We are especially interested in how the amplitude of the response
depends on the traveling-wave speed V , and we will see that useful insight may be gained by
considering the linearized problem for small h.

Let us therefore consider the case where the amplitude A of the applied pressure is small. The
free-surface deflection h is then likewise expected to be of order A, and to leading order in A

Eq. (22) reduces to the linearized equation

d3h

dξ 3
+ Lh = A

dP
dξ

, (23)

where

L = Q′(0) − V

Q(0)
. (24)
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FIG. 10. Solutions of the linear traveling-wave problem (23) with Gaussian applied pressure P (ξ ) = e−ξ2

given in (25), where L ∈ {0.01, 0.1, 1, 10}. The dashed curve shows the limit as L → 0 given by (26).

For a stationary frame, with V = 0, the definition (24) of L is equivalent to the previous definition
in (11) from Sec. III B. When V is nonzero L need not be positive but, provided the pressure profile
P (ξ ) is even, we can nevertheless restrict our attention to non-negative values of L by exploiting the
invariance of Eq. (23) under the transformation (ξ, L) �→ (−ξ,−L). Thus a solution of (23) with
L < 0 can be obtained by just flipping the sign of ξ in the corresponding solution where the sign of
L is flipped.

The solution of (23) with L > 0, subject to vanishing far-field conditions, may be written in the
form

h(ξ ) = − A

3L2/3

∫ ∞

0

{
e−sP

(
ξ − s

L1/3

)
+ 2e−s/2 cos

(√
3 s

2
+ π

3

)
P

(
ξ + s

L1/3

)}
ds. (25)

In Fig. 10 we plot typical solutions for h(ξ ), where we have used a Gaussian pressure profile. We
observe that the free-surface displacement scales with A/L1/3 and approaches a function of L1/3ξ

as L → 0, and the variables in Fig. 10 are scaled accordingly. The limiting behavior as L → 0
resembles that seen previously in Fig. 4: Decreasing the value of L increases the natural relaxation
length scale of the system, which effectively makes the applied pressure source more localized.
By approximating P by a δ function, the leading-order solution in this limit is thus found to be
given by

h ∼ −A
√

π

3L1/3

{
2eL1/3ξ/2 cos

(√
3L1/3ξ

2 − π
3

)
, ξ < 0

e−L1/3ξ , ξ > 0,
(26)

which is plotted as a black dashed curve in Fig. 10.
We deduce that, as L → 0, the solution h(ξ ) of the linear equation (23) becomes unbounded,

with magnitude of order L−1/3, while the minimum in the film thickness approaches the strike point
ξ = 0. This is true in particular when the applied pressure profile is Gaussian, but also whenever the
pressure is localized such that P (s/L1/3) approaches a δ function as L → 0. The linearization that
gave rise to Eq. (23) is only valid if the amplitude of the solution is sufficiently small, i.e., if A/L1/3

is sufficiently small. Traveling-wave solutions with O(1) amplitude satisfy the nonlinear equation
(22). However, in Fig. 11(a) we show that numerical solutions of (22) are well approximated by the
linearized solution (25), even for moderate values of A. Figure 11(b) shows numerical solutions of
the nonlinear traveling-wave equation (22) for different values of the wave speed V . The qualitative
behavior is similar to the linearized solutions shown in Fig. 10. There is an apparent symmetry as the
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FIG. 11. (a) Solutions of the nonlinear traveling-wave equation (22) (solid curves) compared with solutions
of the linearized equation (23) (dashed curves) where V = 0.2 and the applied pressure profile is the Gaussian
(6) with amplitude A ∈ {0.3, 0.5, 0.7}. (b) Solutions of the nonlinear traveling-wave equation (22) with A = 1,
Gaussian pressure profile (6), and values of V as indicated.

signs of ξ and L ≈ 1 − V are switched, and the amplitude of the response increases dramatically as
V approaches 1, corresponding to L ≈ 0.

The analysis of this section shows that, for a pressure source moving at constant speed, the
maximum negative free-surface deflection is expected to occur when the parameter L is small, i.e.,
when the propagation speed V is close to the characteristic speed Q′(0) of the underlying hyperbolic
version of the partial differential equation (PDE) (4). For the case of sinusoidal sweeping of the
pressure source, the propagation speed is obviously not constant, but it is instantaneously stationary
at its maximum and minimum values, namely, ±Vmax where Vmax = �f . We therefore hypothesize
that the minimum film thickness in this case should occur when �f = Q′(0) ≈ 1 for the Hartmann
flux function (2) with Ha � 1. This hypothesis is confirmed in Fig. 12(a), where we plot the value
of f that minimizes h versus �. Since the magnitude of the response increases with increasing �,
we use gradually decreasing values of the pressure amplitude A such that the film thickness does

10−3

10−2

10−1

101 102 103

−3.0

−2.5
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−1.5

−1.0

1.5 2.0 2.5 3.0 3.5
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FIG. 12. (a) Sweeping frequency f that minimizes the film thickness h in the full nonlinear simulation
plotted versus sweeping amplitude A for a range of values of the pressure amplitude A. The black dashed curve
shows the behavior �f ∼ 1 predicted for � � 1. (b) Minimal deflection h normalized by A, computed from
the full nonlinear simulation, as a function of �2/11, for various values of the pressure amplitude A. The black
dashed curve shows the asymptotic prediction (35), which corresponds here to min h/A ∼ −0.856 681�2/11.
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not become too small. It is evident that, as � increases, the behavior converges to the predicted trend
�f ∼ 1, which is marked as a black dashed curve.

In Fig. 12(b) we show how the minimum film thickness varies with the sweeping amplitude �;
as in Fig. 12(a), steadily decreasing values of A are used to prevent h from becoming too small. We
note that the results computed with different values of A appear to collapse when h is normalized
with A. Moreover, as � increases, the minimum film thickness decreases, in agreement with Fig. 9.
Figure 12(b) indicates that min h/A scales with �2/11 when � is large, for reasons that will be
explained in the next section, by exploring in more detail the behavior when the propagation speed
is stationary but not constant.

C. Perturbed traveling-wave problem

We recall that the free-surface displacement h in a frame that propagates with the moving
pressure source is governed by the PDE (9), which may be written in the form

f
∂h

∂τ
+ ∂

∂ξ

[
−�f Ṡ (τ )h + Q(h)

(
1 − AP ′(ξ ) + ∂3h

∂ξ 3

)]
= 0, (27)

when the parameter β is neglected. To investigate the behavior seen in Fig. 9, we wish to consider
solutions where the sweeping amplitude � is large but the frequency f is small such that their
product is order one. At first glance, it appears that the first term in (27) is then negligible,
and the problem becomes quasisteady, reducing to the traveling-wave equation (22) with the
propagation speed V depending parametrically on τ . However, we have argued above in Sec. V B
that large-amplitude response is expected when V is close to the characteristic speed Q′(0) and
indeed the linearized equation (23) has no bounded solutions when V = Q′(0). We therefore seek
in this section a distinguished limit where V (τ ) is stationary at the critical value Q′(0) and the local
behavior is fully unsteady.

We simplify matters by again linearizing for small |h| and A and restrict our attention to
sinusoidal sweeping with S (τ ) = sin τ . The sweeping velocity V (τ ) = �f Ṡ (τ ) ≈ �f (1 − τ 2/2)
is stationary at τ = 0, and we take �f = Q′(0) so that the stationary velocity is equal to the
characteristic value Q′(0). Thus, close to τ = 0, Eq. (27) may be approximated by

f

Q(0)

∂h

∂τ
+ �f

2Q(0)
τ 2 ∂h

∂ξ
+ ∂4h

∂ξ 4
= AP ′′(ξ ). (28)

We normalize (28) with the scalings

τ =
(

Q(0)

Q′(0)

)1/11

�−3/11T , ξ =
(

Q(0)

Q′(0)

)3/11

�2/11X, h = A

(
Q(0)

Q′(0)

)3/11

�2/11Y. (29)

When � � 1, the scalings (29) correspond to asymptotically small values of τ , which justifies
a posteriori our Maclaurin expansion of the propagation speed V (τ ). Moreover, the scale for ξ

is asymptotically large, which implies that the pressure forcing term P (ξ ) may be approximated by
a δ function over O(1) values of X, as in the small-L limit from Sec. V B. Thus, to lowest order as
� → ∞, Eq. (28) reduces to the canonical PDE

∂Y

∂T
+ T 2

2

∂Y

∂X
+ ∂4Y

∂X4
= √

πδ′′(X). (30)

The solution of (30) subject to Y (X, T ) → 0 as X → ±∞ and as T → −∞ may be written in
the form

Y (X, T ) = − 2√
π

∫ ∞

0
G

(
X

s
− T 2s3

2
+ T s7

2
− s11

6

)
ds, (31)
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FIG. 13. Solution Y (X, T ) given by Eq. (31) plotted versus X for (a) larger values of |T | and (b) smaller
values of |T |. In (a), the variables X and Y are scaled with |T |2/3 to reflect the self-similarity, and the limiting
solution as |T | → ∞, given by (33), is plotted as a dotted black curve; the solutions for T = −4 and T = 5
are virtually indistinguishable from the limiting solution.

where

G(z) :=
∫ ∞

−∞
k2e−k4+ikzdk = �(3/4)

2
0F2

(
1

4
;

1

2
;

z4

256

)
− �(1/4)

16
z2

0F2

(
3

4
;

3

2
;

z4

256

)
, (32)

with 0F2 denoting a generalized hypergeometric function. The solution (31) is plotted versus X for
various values of T in Fig. 13. As |T | → ∞, the solution becomes self-similar, with

Y (X, T ) ∼ −21/3√π

3|T |2/3

{
2eX|T |2/3/24/3

cos
(√

3X|T |2/3

24/3 − π
3

)
, X < 0

e−X|T |2/3/21/3
, X > 0,

(33)

which matches with the traveling-wave solution (26). In Fig. 13(a) we scale X and Y with |T |2/3 to
demonstrate convergence to the similarity solution (33), which is plotted as a dashed black curve.

It follows from (33) that the behaviors as T → −∞ and as T → +∞ are equivalent but, as
shown in Fig. 13(b), the behavior when T = O(1) does not respect this symmetry. In particular, we
observe that the minimum value of Y occurs at X = 0 when T ≈ 1. This observation is supported
by Fig. 14, where we plot the normalized displacement at the origin Y (0, T ) versus T . The red
dashed curves demonstrate convergence to the similarity solution (33), with

Y (0, T ) ∼ −21/3√π

3|T |2/3
as |T | → ∞. (34)

The minimum value of Y (0, T ) is approximately −0.881 655 when T ≈ 1.195 18. By undoing the
scalings (29), we infer that the minimal free-surface displacement h should behave like

min h ∼ −0.881 655

(
Q(0)

Q′(0)

)3/11

�2/11, (35)

when � � 1 and �f ∼ Q′(0). Figure 12(b) shows fairly good convergence of our computed
numerical solutions to the predicted behavior (35), which is plotted as a black dashed curve. Because
of the very small exponent 2/11, extremely large values of � are needed for the predicted behavior
(35) to convincingly emerge.

Since we have only analyzed the linearized version of the problem, these results are only strictly
valid while the free-surface displacement remains relatively small; this is why we reduce the value
of A while increasing the value of � in the results shown in Fig. 12. Nevertheless, our analysis
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FIG. 14. Normalized free-surface displacement at the origin Y (0, T ) versus normalized time T ; the large-
|T | behavior (34) is shown by the red dashed curves.

explains and quantifies the behavior observed in Fig. 9: The extremal response occurs when �f ∼ 1
and increases with both the amplitude A of the applied pressure and the sweeping amplitude �.

D. Higher-order resonances

In this section we explain the occurrence of the smaller local kinks and peaks in the response
diagram of extremal displacement h versus frequency f , labeled I and II in Fig. 8.

The behavior of the solution h(x, t ) in the (x, t ) plane as the frequency is varied is shown
in Fig. 15. Figures 15(a) and 15(b) show solutions at values of f that maximize the maximal
film thickness and minimize the minimal film thickness, respectively. These both occur close to
f = Q′(0)/� ≈ 0.1 here, in agreement with the traveling-wave analysis from Sec. V B. In particular,
we observe in Fig. 15(b) a blue wave, corresponding to a local minimum in the film thickness, which
appears to detach and propagate downstream from each inflection point in the pressure source locus.
Again, this supports our hypothesis from Sec. V B that the minimum film thickness should occur
when the translation velocity of the pressure source is stationary at the linear wave speed Q′(0) ≈ 1.

Figure 15(c) shows the solution at the particular frequency marked I in Fig. 8. The maxima in
h are indicated by the red contours in Fig. 15(c), and we observe that, at this critical frequency
f0 ≈ 0.15, the locally maximal values of h upstream and downstream of the pressure source exactly
coincide. Thus the slope discontinuity in the response diagram seen in Fig. 8 occurs when the
location of the global supremal displacement switches, from the upstream maximum for f < f0 to
the downstream maximum for f > f0. This switch is illustrated more explicitly in Fig. 16, where
we show several local extrema competing to be the global extremum as f is varied.

The local peak in the response marked II in Fig. 8 is caused by a global wave interaction.
The corresponding solution in the (x, t ) plane is shown in Fig. 15(d). Consider the blue wave,
corresponding to a local minimum, shed from the pressure source close to its leftmost position
x ≈ −10 at f t ≈ 3π/2. This wave propagates downstream at the intrinsic wave speed Q′(0) ≈ 1
and interacts with the pressure source for a second time near its rightmost position x ≈ 10 at
f t ≈ 9π/2. What distinguishes this particular value of the frequency is that the blue wave is tangent
to the locus of the pressure source twice and so benefits twice from the amplification effect discussed
in Sec. V B, where the propagation speed and the intrinsic wave speed coincide.

This kind of long-range interaction can occur when a characteristic with speed dx/dt = Q′(0)
is tangent to the sweeping profile x = � sin(f t ) at f t1 = 3π/2 + φ and again at f t2 = (2n +
1/2)π − φ, where φ ∈ (0, π/2] and n is a positive integer. It is straightforward to show that φ
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FIG. 15. Time-dependent solutions of (4) for the free-surface displacement h(x, t ) with zero initial
conditions and various values of the sweeping frequency parameter f , where A = 1 and β = 0. The values of
h in each case are indicated by the color bar at the top of the figure. The pressure, given by (5), is a sinusoidally
moving Gaussian with � = 10. Each plot contains an inset duplicate of Fig. 8 with small disks marking the
extrema for the corresponding value of f . Each solution was evolved until time t = 20/f and the time axis
scaled to show the same number of oscillations in each case. The values of f were chosen to exhibit the special
features of the response diagram in Fig. 8: (a) f = 0.095, the global maximum; (b) f = 0.12, the global min-
imum; (c) f = 0.15, the first gradient discontinuity; and (d) f = 0.45, the local peak due to wave interaction.

must satisfy the transcendental equation

φ + cot φ =
(

n − 1

2

)
π (36)
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FIG. 16. Local and global minima of the free-surface displacement h plotted versus the sweeping frequency
f , with A = 1, β = 0, and � = 10. The dashed curves show local minima from regions upstream (x < 0) and
downstream (x > 0) and local maxima from regions upstream (x < 0), downstream beyond the center of the
applied pressure (x, ξ > 0), and downstream preceding the center of the applied pressure (x > 0 > ξ ). The
underlying solid curves show the global extrema.

for an interaction where the pressure completes approximately 2n − 1 lengths of the sweeping re-
gion in time to coincide downstream with the deflection that it created upstream. The corresponding
critical frequency is then given by

�f = Q′(0) cosec φ. (37)

The first interaction mode n = 1 gives φ = π/2 and �f = Q′(0), which just reproduces the critical
frequency for the principal response peak. The second mode n = 2 gives φ ≈ 0.219 and hence
�f ≈ 4.6Q′(0), which is indeed close to the critical value of f identified in Fig. 15(d) when � =
10 and Q′(0) ≈ 1. In principle, higher-order interaction modes should occur when �f/Q′(0) ≈
7.79, 10.9, 14.1, . . ., but in practice the effect appears to be swamped by nonlinearity and damping,
and we have been unable to discern any further local maxima in the response.

VI. CONCLUSION

In this paper we considered the flow of a thin film of isothermal incompressible liquid driven by
gravity down a substrate in the presence of a moving applied pressure. The problem exhibits two
natural timescales: that characteristic of the motion of the applied pressure and that characteristic
of the free surface deforming under the pressure. This allows us to consider three separate regimes:
where the pressure moves on a timescale significantly slower or faster than the relaxation time and
where these timescales are similar.

When the pressure moves slowly, the problem is quasisteady and the free-surface deflections
are given by a steady-state profile that varies parametrically with time. When the pressure moves
quickly, a formal multiple scales analysis shows that the momentum is spread along the length of
the pressure oscillation. This results in the free surface deforming under an effective pressure given
by the time-averaged pressure profile, which results in smaller pressure gradients and therefore
causes smaller deflections than in the quasisteady case. When the pressure moves in the intermediate
regime, the deflections can be significantly amplified. This large response is primarily caused by the
pressure moving at a speed similar to the speed at which deflections of the free surface propagate
downstream, so the pressure remains close to the trough it has created for a long time.
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We used linearized models to quantify how the amplification of the free-surface response depends
on the amplitude and frequency of the pressure oscillations. We demonstrated that the linear theory
gives surprisingly good agreement with numerical solutions of the full nonlinear model for a
wide range of parameter values. Nonetheless, it must be acknowledged that there are fundamental
differences between the linear and nonlinear theories. The linear traveling-wave equation (23)
admits bounded solutions that vanish in the far field for all values of L apart from the critical value
L = 0, corresponding to V = Q′(0), i.e., to the propagation speed being equal to the underlying
characteristic wave speed. In contrast, as shown in [14], for example, the nonlinear version (22) in
general exhibits nonexistence of solutions for a range of values of V close to Q′(0). Our unsteady
simulations, however, in principle allow us to find solutions for any parameter values, including
those regions of parameter space where steady or traveling-wave solutions do not exist.

While the numerical simulations presented in this paper were for a particular magnetohydrody-
namic flow, the phenomena described are generic and apply to magnetohydrodynamic flows with
different field orientations, as well as the classical hydrodynamic case. It is for this reason that the
Marangoni forcing in [16], although it is derived from a different mechanism entirely, results in a
term analogous to the pressure gradient in our model and has a similar effect on the free surface.

There may be applications in which it is desirable to induce large resonant deflections. However,
in the nuclear fusion context introduced here, the goal is to maintain a uniform coating of the
substrate. In this case, the smallest possible deflections are desirable and are obtained by sweeping
the pressure with high frequency and sufficiently large amplitude. If the system is unable to attain
such high frequencies, then low frequencies should be used instead, to avoid the resonant range in
which dangerous thinning of the film may occur.

In compliance with EPSRCs open access initiative, the data in this paper are available from
Ref. [20].
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APPENDIX: DERIVATION OF THE THIN-FILM MHD MODEL

In this Appendix we give a brief derivation of the thin-film equation (1) and the flux function (2)
for thin-film Hartmann flow. We consider the two-dimensional geometry illustrated in Fig. 1,
with velocity u(x, y, t ) = (u(x, y, t ), v(x, y, t ), 0), where (x, y) are planar Cartesian coordinates
parallel and normal to the fixed substrate at y = 0. Similarly, we consider a two-dimensional
magnetic field B = (Bx (x, y, t ), By (x, y, t ), 0). It follows from Maxwell’s equations that the
electric field and the current must be purely in the z direction (out of the page in Fig. 1).

It is helpful to perform the decomposition

B = Ba + Bi (A1)

of the magnetic field B into the applied field Ba and the induced field Bi. The applied field is
imposed externally (in a tokamak by using an array of electromagnets) and therefore is assumed
to be known and steady; moreover, Ba must satisfy the free-space Maxwell equations ∇ · Ba = 0
and ∇ × Ba = 0. We substitute (A1) into pre-Maxwell’s equations (having negligible displacement
currents) and Ohm’s law for the magnetic field B, electric field E, and current in a liquid metal
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flowing with velocity u to obtain [17]

∇ · Bi = 0, ∇ × Bi = μ j = μσ (E + u × B),
∂ Bi

∂t
= −∇ × E, (A2)

where σ and μ denote conductivity and magnetic permeability, respectively.
Now we use (A2) to estimate the magnitudes of the magnetic and electric fields induced by the

flow of the liquid metal. Denoting by L , U , and B typical scales for the length, the velocity, and
the applied magnetic field, we find that

Bi ∼ Rm B, E ∼ Rm U B, (A3)

where Rm = μσU L is the so-called magnetic Reynolds number. Since Rm is invariably small
for laboratory-scale liquid metal flows, we deduce that the induced magnetic field is small in
comparison with the applied field. Thus (A2) reduces to

∇ · B = 0, ∇ × B = 0, j = σ u × B (A4)

to lowest order in Rm, where B ∼ Ba is now assumed to a known function of position. The velocity
u and pressure P in the fluid satisfy the incompressible Navier-Stokes equations with an additional
Lorentz body force caused by the applied magnetic field, i.e.,

∇ · u = 0, (A5a)

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇P + ρν∇2u + ρg + j × B, (A5b)

where ρ and ν are the density and the kinematic viscosity, respectively, and g = g(sin θ,− cos θ, 0)
is the acceleration due to gravity.

We impose the standard no-slip condition at the substrate, i.e.,

u = 0 at y = 0. (A6)

At the free surface of the film, denoted by the graph y = H (x, t ), we impose the usual dynamic and
kinematic boundary conditions, i.e.,(−P + 2ρν ∂u

∂x
+ p + γ � ρν

(
∂u
∂y

+ ∂v
∂x

) − τ

ρν
(

∂u
∂y

+ ∂v
∂x

) − τ −P + 2ρν ∂v
∂y

+ p + γ �

)(− ∂H
∂x

1

)
= 0 at y = H (x, t ),

(A7a)

v = ∂H

∂t
+ u

∂H

∂x
at y = H (x, t ),

(A7b)

where p(x, t ) and τ (x, t ) are the externally applied pressure and shear stress due to the plasma
wind, respectively, γ is the surface tension, and �(x, t ) is the curvature of the free surface. In (A7a)
we have neglected the contribution from the jump in the Maxwell stress, which is proportional to
the magnetic susceptibility and therefore very small in the liquid metals of interest (of order 10−5

for lithium, for example).
By integrating (A5a) with respect to y and imposing (A6) and (A7b), we obtain the exact

conservation relation

∂H

∂t
+ ∂

∂x

( ∫ H

0
u dy

)
= 0. (A8)

Armed with this evolution equation for the free-surface height, we need not solve for v. Our aim is
to use asymptotic analysis to approximate the horizontal velocity u and then substitute into (A8) to
obtain an evolution equation for H (x, t ).
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TABLE I. Dimensionless parameters, with the velocity and length scales defined by (A10). Typical
parameter values for liquid lithium have been used [21,22], μ = 1.3 × 10−6 H/m, σ = 3 × 106 S/m, ν =
10−6 m2/s, γ = 0.4 N/m, and ρ = 500 kg/m, along with a typical field strength B = 1 T, film height
H = 0.1 mm, divertor inclination θ = π/6, gravitational constant g = 9.8 m/s2, and plasma pressure P = 50
Pa [23].

Dimensionless quantity Definition Typical value

aspect ratio ε = H
L

0.04

Reynolds number Re = ρgL sin θ

νσB2 2

magnetic Reynolds number Rm = μρgL sin θ

B2 7.8 × 10−6

Hartmann number Ha = BH
√

σ√
ρν

7.7

pressure amplitude A = P
ρgL sin θ

= P
(γH )1/3(ρg sin θ )2/3 8.3

transverse gravitational parameter β = ε cot θ = ( ρgH 2

γ
)
1/3

cos θ

(sin θ )2/3 0.07

We nondimensionalize via

x �→ L x, (A9a)

u �→ U u, (A9b)

P �→ (ρgL sin θ )P, (A9c)

p �→ Pp, (A9d)

H �→ εL H, (A9e)

y �→ εL y, (A9f)

v �→ εU v, (A9g)

B �→ BB, (A9h)

τ �→ Pτ, (A9i)

t �→ L

U
t, (A9j)

where ε = H /L is the small aspect ratio of the thin film and P is the typical magnitude
of the localized external stress profile. Suitable choices for the velocity and length scales,
namely,

U = ρg sin θ

σB2
, L =

(
γH

ρg sin θ

)1/3

, (A10)

are found from dominant balances in (A5b) and (A7a). With this choice of length scale, the aspect
ratio is given by ε = (ρgH 2 sin θ/γ )1/3, i.e. the cube root of the Bond number.

Substitution of (A9) into the governing equations and boundary conditions (A4)–(A7) produces
a number of dimensionless parameters, which are listed in Table I. We neglect small terms of order
ε, ε2 Re, and Rm to obtain the leading-order lubrication equations

∂P

∂x
= 1

Ha2

∂2u

∂y2
+ 1 − uB(x)2, (A11a)

∂P

∂y
= −β, (A11b)

114801-22



DYNAMICS OF A THIN FILM DRIVEN BY A MOVING …

where B(x) = Ba
y (x, 0) defines the dimensionless vertical component of the applied magnetic field

evaluated on the divertor. The corresponding boundary conditions are

u = 0 at y = 0, (A11c)

P = Ap − ∂2H

∂x2
at y = H (x, t ), (A11d)

∂u

∂y
= 0 at y = H (x, t ). (A11e)

Here we retain the apparently small term of order 1/ Ha2 in (A11a), since the problem (A11)
is singular in the limit Ha → ∞. In this paper we are mainly interested in situations where the
inclination angle θ is O(1) so that the flow is driven principally by the downslope component of
gravity. Nevertheless, for the moment, we also retain in (A11b) the transverse gravitational term
β = ε cot θ , which might be non-negligible in cases where θ is O(ε).

By integrating (A11b) and imposing (A11d), we obtain the leading-order pressure

P = Ap + β(H − y) − ∂2H

∂x2
. (A12)

Substitution of (A12) into (A11a) gives an equation for u, namely,

1

Ha2

∂2u

∂y2
− uB2 + C(x, t ) = 0, (A13a)

where

C(x, t ) = 1 − A
∂p

∂x
− β

∂H

∂x
+ ∂3H

∂x3
. (A13b)

Equation (A13), along with boundary conditions (A11c) and (A11d), has the solution

u(x, y, t ) = C(x, t )

B(x)2

[
1 − cosh{Ha B(x)[H (x, t ) − y]}

cosh[Ha B(x)H (x, t )]

]
. (A14)

By substituting (A14) into (A8), we obtain the equation governing the evolution of the free surface,
namely,

∂H

∂t
+ ∂

∂x

[
q(H ; x)

(
1 − A

∂p

∂x
− β

∂H

∂x
+ ∂3H

∂x3

)]
= 0, (A15)

where

q(H ; x) = H

B(x)2

[
1 − tanh[Ha B(x)H ]

Ha B(x)H

]
. (A16)

Since the external magnetic field B varies on the length scale of the entire divertor, which is of
order 1 m � L , we expect B to be approximately constant (and equal to 1 by our choice of
nondimensionalization) over the range of values of x relevant in this paper. Therefore, (A15) and
(A15) reduce to (1), with q given by (2).

In the limit Ha → 0, corresponding to a weak applied magnetic field, the velocity (A14) reduces
to the classical quadratic profile

u|Ha�1 = Ha2 C

2
y(2H − y). (A17)

The corresponding flux function q = Ha2 H 3/3 is independent of B and varies cubically with H . In
the opposite limit Ha → ∞, relevant to the strong magnetic fields found in a divertor, the horizontal
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velocity profile is approximately uniform outside a boundary layer at y = 0, typical of Hartmann
flow, and is given by

u|Ha�1 = C

B2
. (A18)

In this limit, the flux function is given by q = H/B(x)2. In general, the flux q is a decreasing
function of |B|: The larger the y component of the applied field, the slower the horizontal velocity,
as the magnetic forces retard the flow.
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