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1 Introduction

Conventional models
in economics have
necessarily made
vastly unrealistic
assumptions about
human behaviour

Over recent decades, and particularly since the financial crisis of 2008, there has been a
growing sentiment within the social sciences that a fundamental shift in economic
theory is necessary. Classical mathematical models in economics make a number of
unrealistic assumptions, including that humans have the foresight, information, and
reasoning abilities to understand the full consequences of any decision they take. Such
simplifying assumptions were necessary in order that the resulting mathematical models
could be solved using simple, explicit methods. However, the rapid growth in the
availability of computing power over the past thirty years has gone some way in making
such assumptions unnecessary. This has opened up the arena to new models previously
dismissed on the basis of their complexity and analytical intractability; models that are
more loyal to the true nature of human behaviour and the complex adaptive system that
is human society, within which both local and global economies are embedded. The
need to develop, understand, and equip policy-makers with such models has never been
so apparent to economists as it has been since the financial crisis of 2008 – largely
considered to be the worst economic disaster since the Stock Market Crash of 1929. Many
economists believe that the effects of the crisis could have been mitigated had
policy-makers had access to models that more faithfully represented the behaviours and
nature of economic agents. It is for this reason that there is significant interest within the
social sciences in the study of agent-based models for a broad range of social systems.

What is an agent-based model?
At its most basic level, an ABM consists of the following components:

1. a set of autonomous and possibly heterogeneous decision-making entities – the
model’s agents;

2. the relationships and interactions between the agents of the model;
3. an environment, if such a component is relevant for the purposes of the model.Agent-based models

can be used to
simulate directly the
agents in an economy
(e.g. people, firms,
banks, or
governments) and
their interactions.

An agent in an economic model can be any animate object: an investor, a bank, a
government etc. The agents we choose to include in an ABM depend on the aspect of an
economy we are interested in. Agents interact with each other and the environment, if
one is defined, according to: (i) a set of rules governing the information agents have
access to, (ii) the procedure by which the agents process this information, and (iii) and
the course of action the agents consequently choose.

Finally, the environment within which the agents interact may be explicitly defined, if it
is of relevance to the model – for example, it could be a spatial environment containing
obstacles, natural resources, or transportation networks – or an explicit environment may
not bedefined, inwhich case only the abstract relationships between the agents are deemed
relevant.

Agent-based models
are expensive to run
and are hard to
initialise in such a way
that the true state of
the world is reflected
accurately.

Challenges in agent-based modelling
Agent-basedmodels do not generally have explicit solutions: they are so complex that they
have to be implemented computationally and defined in terms of an algorithm. As with
many computer programs, a problem with ABMs – which becomes more true the more
complex the models become – can be the time it takes to run the simulation, known as the
computational cost. This can restrict the ability of policy-makers to use them in “what-
if” scenario analyses, which will typically involve multiple simulations of the model. A
further challenge is that often the answer to the question “What initial conditions should
be imposed?” is not easily obtained, and is important to address since different starting
conditions can lead to vastly different dynamics. This typically involves the collection and
use of real-world data to pin down accurate starting conditions.

Agent-based models
involve many
parameters for which
values must be
chosen. This is the
problem of parameter
estimation.

A third challenge with ABMs is that of parameter estimation. Parameters in a model
are introduced to characterise the relationship between variables. For example, we might
have a model of the economy built around the statement that “lifetime earnings increase
linearly with the number of years spent in education”. This model includes a parameter
that represents the slope of this relationship, and we need to estimate a value for this
parameter on the basis of some real-world data.

Our aim is to explore a selection of approaches to performing parameter estimation for
models that generate time series that are of interest to Improbable, a games company
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dedicated to the generation of large-scale complex simulations and virtual worlds for the
purpose of assisting real-world decision making.

Glossary of terms
� ABM: An agent-based model, or the practice of agent-based modelling.

� Time series: A sequence of values in which each successive value is a later record
of the same quantity.

� Random variable:Amathematical variablewhose true value is unknownor changes
randomly over time.

� Probability density function:A distribution that gives the probability of observing
a random variable to assume a value within some range of values.

� Markov chain: A model that generates a time series in which the probability of
observing a given value in the current time step depends only on the value observed
in the previous time step.

� Bayesian network: A Bayesian network is a network representation of the random
variables in a mathematical model.

� Autoregressive model:A sequence of variables in which the current value depends
randomly on a linear combination of some number of previous values.

� Probabilistic programming languages: A class of languages that enable the
construction of probabilistic models (models involving one or more random
variables), inference on which may then be performed automatically.

� Auxiliary variable:Arandomvariable in aBayesiannetwork that is neither observed
nor of interest to the inference task.

2 Representing models as Bayesian networks
Weconsider a real-world process thatwe observe periodically and fromwhichwe generate
a time series. We suppose that we have some idea about the underlying mechanisms that
generate this time series. Suppose further that we construct a mathematical model on this
basis, within which we express unknown quantities as random variables, and introduce
parameters that control the relationship between these variables. One way to represent
this model is with a Bayesian network. A network consists of a set of objects (nodes) and
the relationships between them (links): in a Bayesian network, these objects are all of the
variables and parameters of our mathematical model, and the links indicate the direct
dependence of a random variable on another random variable or parameter.

As a simple first example of this framework, we consider an autoregressivemodel of order
p � 2, herein called AR(2). In this model, there is a time series X1, X2, . . . , XT that we
observe, and we assume that the mechanism underlying the generation of this sequence
of observations depends randomly on the linear combination of the two previous values
in the sequence, with the outcome drawn from a Gaussian probability density function
centered on this linear combination. Themodel includes 3 parameters: the two coefficients
of the linear combination (φ1 and φ2) and the standard deviation σε of the Gaussian
probability density function. Since the Xt depend directly on these parameters, we can
represent this probabilistic mathematical model with a Bayesian network; we show this
representation in Panel (a) of Figure 1.

Many members of a class of programming languages – probabilistic programming
languages – enable the construction of Bayesian networks. They further have algorithms
in place to help answer questions such as “Given some initial belief for the values of the
parameters, and also given a set of observations, what probability should now be
assigned to the parameters taking on certain values?” Mathematically, this involves using
Bayes’ rule, which relates the updated beliefs – captured by the posterior probability
distribution – to the old beliefs – captured by the prior probability distribution – after
including new information from our observations, encoded in the likelihood function.

In our first set of simulations, we attempt to recover the true values of parameters φ1, φ2,
and σ2

ε given T � 200 observations from an AR(2) process by representing the process
with a Bayesian network. Using the observations generated by some AR(2) process with
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Figure 1 – Panel a): Representation of the AR(2) process as a Bayesian network (left), and
the network after observing a time series: shaded nodes indicate observed variables (right).
Panel b) Representation of the ARMA(2,2) process as a Bayesian network (left), and the
ARMA(2,2) Bayesian network following observation of a time series (right). The four scalar
AR and MA coefficients are represented as a single multivariate node to reduce clutter.

known parameter values, we construct the likelihood function for this process and these
observations in a probabilistic programming language and sample from the posterior
distribution of the parameters, which is proportional to the product of the likelihood and
the parameter prior distributions. In Figure 2, we show the posterior distributions for the
three parameters having initially stated, via our prior distributions, that we believe φ1,
φ2, and σε lie in the ranges [0, 1], [0, 1], and [0, 2], respectively, with equal probability. We
show the mean, median, andmaximum value of the distributions with orange, green, and
red lines, respectively, and the true parameter values by the black vertical lines. We see
that representing the process with a Bayesian network and making use of Bayes rule has
enabled us to recover the true values quite accurately.
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Figure 2 – Posteriors for the three parameters in our AR(2) model (blue lines). The true
parameter values, distribution mean, distribution median, and distribution maximum are
indicated by black, orange, green, and red lines, respectively.

To more fully understand the merit of this representation, we increase the model
complexity; a natural progression to the previous model being a mixed autoregressive
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moving-averagemodel of order (p, q), herein called ARMA(p, q). In this model, there are
two sequences: the time series of interest (X1, . . . , XT ) as before; and another (ε1, . . . , εT )
for which each value in the sequence is drawn randomly from a Gaussian distribution
with mean zero and some user-defined variance. We refer to this sequence as the noise
sequence. We choose p � 2, q � 2, so that each Xt depends randomly on a linear
combination of the previous two values in that sequence (the autoregressive component),
plus a linear combination of the previous two values of the noise sequence (the moving
average component), plus the current value in the noise sequence. In this experiment, we
wish to recover the true values of the coefficients φ1 and φ2 of the linear combinations
for the autoregressive component, as well as the coefficients θ1 and θ2 for the linear
combination in the moving average component, given a time series generated by an
ARMA(2,2) process as the observations we use to construct the likelihood function.

We test the ability of a
Bayesian network
representation to
facilitate easier
estimation of model
parameters.

To do so, we once again construct the corresponding Bayesian network, illustrated in
Panel (b) of Figure 1, with a probabilistic programming language. We assert via our prior
distributions that we initially believe they each lie in the range [0, 1], and construct the
parameter posterior distributions as the product of the likelihood and the prior
distributions. We show these posterior distributions in Figure 3. In this simulation, we
see greater disagreement between the three estimates of the true value, with the mean
and median generally recovering the parameters more accurately than the maximum. We
also report far greater difficulty in obtaining accurate estimates of the true values in this
only-slightly-more complex model. This is in part due to the presence of the εt , neither
observed nor of interest to us: so-called auxiliary variables. Such variables will be
plentiful in models of even greater complexity, and the difficulty that we experienced of
estimating in their presence does not bode well for the generalisability of this approach.

Posterior probability 
distribution for !"

after observing 
#", … , #&

Posterior probability 
distribution for !'

after observing 
#", … , #&

Posterior probability 
distribution for ("

after observing 
#", … , #&

Posterior probability 
distribution for ('

after observing 
#", … , #&

Figure 3 – Posterior distributions for the four parameters in our ARMA(2,2) model (blue
lines). The true parameter values, distribution mean, distribution median, and distribution
maximum are indicated by black, orange, green, and red lines, respectively.

3 Optimisation-based approaches
We also consider a
handful of
optimisation-based
methods for
recovering the
parameters of time
series-generating
models.

An optimisation problem is the mathematical problem of finding the location of the
minimum value of some function L(ψ), where the values of ψ are restricted to the set
of allowed values Ψ. We cast the problem of estimating parameters for an ABM as an
optimisation problem: we seek input parameters to our ABM such that some properties
of our simulated time series, written X1:TS , matches corresponding properties of some
real-world data y1:T , whose data-generating mechanism we model with our ABM. While
many choices of loss function exist, we compare three that capture the following ideas:

KL Ideally, we would like to find input parameters ψ for our ABM such that the
probability of observing y1:T in the real world exactly matches the probability of
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observing it as output from our ABM; that is, their likelihoods match. However,
there are two problems: ABMs are typically so complex that it is in practice
impossible to obtain their likelihoods, making it impossible to compare to the real
world; and, more importantly, we do not know the real-world likelihood to begin
with. We address these problems by assuming that some simpler, known
likelihood function, whose shape is controlled by parameters ω, adequately
approximates the true likelihood for our ABM, and then determine the ψ that
maximises the likelihood of observing y1:T under the approximating likelihood.

AC One limitation of the previous method is that we restrict ourselves to a class of
distributions that may be summarised with parameters ω, which is a small subset of
the full range of distributions available. Amore flexible approach is one in which no
parametric form is assumed for the distribution of data: anon-parametric approach.
Oneway to do this is by comparing the real-world data y1:T to the ABMoutput X1:TS
according to the similarity of the time series to its past self. If we are able to find
ABM input parameters such that the similarity of the real and simulated data sets
to their past selves match well, this may be sufficient criteria to label the ABM as
“calibrated”.

L2 Finally, we consider the average of the squared-differences between the real and
simulated data at each time step. An advantage is that this captures trends in the
data; however, here it serves primarily to set an absolute scale for the performance
of the previous loss functions.

The first simulation we perform for the purposes of comparing these three methods
proceeds as follows. First, we generate “real-world” data y1:T from an ARMA(2,2) model.
Then, we choose the ARMA(2,2) model as our “complex ABM” that generates time series
X1:TS , for which we wish to estimate values for the autoregressive coefficients. We then
use the AR(2) likelihood as the “simpler model with known likelihood” required for the
purposes of the KL loss. Finally, we search for the ABM input parameters that minimise
each of the losses. In Panel (a) of Figure 4 we show boxplots summarising the distribution
of two quantities (the L1 error and the L2 error) that measure the inaccuracy of the best
estimates for each loss function over many trials. We see that the estimates obtained
by minimising the KL and AC losses are comparably accurate, and both significantly
outperform the L2 loss.

In a second experiment, we consider a more complex model. We propose a model
of opinion dynamics (OD) in a social network, in which the agents’ opinions evolve
according to their friendship circle and its evolution. We follow a similar procedure. First,
we generate real-world data y1:T from the OD ABM. Then, we use the OD ABM as our
“complex ABM” that generates time series X1:TS and for which we seek estimates for two
parameters governing the evolution of the agents’ opinions. Next, we propose a Markov
chain as the “simpler model with a tractable likelihood”, required for the KL method.
Finally, we search over some Ψ for the ABM input parameters that minimise each of the
losses. In Panel (b) of Figure 4, we show the distribution of the two inaccuracy measures
for each loss function over over many estimation attempts. We see that all three methods
perform comparably, with AC performing best on average.

4 Discussion, conclusions & recommendations
We have considered the problem of estimating the parameters governing a set of
time-series generating models as a first step in the problem of parameter estimation for
agent-based models. The methods we considered consisted of a Bayesian approach –
representing a probabilistic model as a Bayesian network – and optimisation-based
approaches – seeking parameter values that minimise some loss function. We performed
several sets of numerical experiments to explore which methods might work well.

We observed that, while it was possible to recover accurate estimates for the
autoregressive coefficients of AR(2) and ARMA(2,2) models, the presence of auxiliary
variables in the latter case made obtaining estimates computationally difficult. This is a
computational challenge broadly true for Bayesian approaches to learning, and a
limitation that exists alongside further general issues with Bayesian network
representations of ABMs, including the requirement that the size of the network be
known at compile time, which is unsuitable for many ABMs involving processes such as
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Figure 4 – Boxplots for the distribution of the inaccuracy of estimates obtained with
loss functions KL, AC, and L2, described in Section 3, for the ARMA(2,2)-AR(2) model
combination (Panel (a)) and OD-Markov chain combination (Panel (b)). The white boxes,
divided into two parts by a horizontal line, indicate the values of three common quantities
describing distributions of data. The bottom edges of the boxes indicate the first quartile,
Q1, of the data set: the value in the data set below which 25% of the data lies. The top edges
of the boxes indicate the value of the third quartile, Q3, of the data set, below which 75% of
the data lies. The horizontal bars dividing the boxes indicate the median value of the data
set: the data point belowwhich 50% of the data lies in value. The horizontal lines bounding
the vertical lines below and above the boxes indicate the lowest and highest values of the
data set that lie within 1.5(Q3 −Q1) of Q1 and Q3, respectively. Red stars indicate any points
in the data set outside of this range.

birth-death dynamics that make the size of the graph unknown a priori. We also compare
the ability of three loss functions to recover the true parameter values for an ARMA(2,2)
process and a simple ABM of opinion dynamics. We observed that two of these losses –
KL and AC – were able to recover parameter values with comparable accuracy in the first
case, though they performed only marginally and inconsistently better than a naive
mean-of-squared-differences loss in the case of a true ABM.

However, the work presented here is not conclusive, and both sets of approaches to
parameter estimation warrant further investigation. In particular, it would be informative
to explore the robustness of the KL method to the choice of “simpler model with known
likelihood” used for a given “complex ABM”. Further, exploring alternative methods for
mapping from theABMinput parameters to the simplemodel’s likelihoodparametersmay
enhance the performance of this method. Finally, and more broadly within the parameter
estimation problem, the development of a set of standardised tests to determine whether
the parameters for an ABM can be estimated in principle will be invaluable to modellers
seeking to understand the parameter space of their ABMs.

5 Potential impact
Ourworkwill form the basis for further research onABM calibrationmethods. Suchwork
will better enable researchers, bothwithin andoutside Improbable, to develop empirically-
validated models of social systems, increasing their usefulness to policy-makers.

Dr. Christoforos Anagnostopoulos, Head of Research at Improbable, commented:

“Joel quickly picked up a number of novel concepts and enthusiastically contributed to the research
pursued, in particular by pursuing a last-minute pivot from an ecological ABM to an opinion
dynamics one which greatly improved the suitability of the methods under investigation to the use
case in question. He ran a very large number of numerical experiments that offered us confidence
that there is scope for further work with possible industrial and scientific impact in the study of
calibration techniques for disinformation modelling, a topic which is very timely and important.”
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