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Abstract. When solving stochastic partial differential equations (SPDEs) driven by additive spatial white noise,
the efficient sampling of white noise realizations can be challenging. Here, we present a new sampling
technique that can be used to efficiently compute white noise samples in a finite element method
(FEM) and multilevel Monte Carlo (MLMC) setting. The key idea is to exploit the finite element
matrix assembly procedure and factorize each local mass matrix independently, hence avoiding the
factorization of a large matrix. Moreover, in an MLMC framework, the white noise samples must be
coupled between subsequent levels. We show how our technique can be used to enforce this coupling
even in the case of nonnested mesh hierarchies. We demonstrate the efficacy of our method with
numerical experiments. We observe optimal convergence rates for the finite element solution of the
elliptic SPDEs of interest in 2D and 3D and we show convergence of the sampled field covariances.
In an MLMC setting, a good coupling is enforced and the telescoping sum is respected.
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1. Introduction. Gaussian fields are ubiquitous in uncertainty quantification to model
the uncertainty in spatially dependent parameters. Common applications are in geology, oil
reservoir modeling, biology, and meteorology [6, 23, 27, 33]. Here, let D \subset \BbbR d be an open
spatial domain of interest whose closure is a compact subset of \BbbR d. Consider the task of
sampling from a zero-mean Gaussian field u of Mat\'ern covariance \scrC ,

\scrC (x, y) = \sigma 2

2\nu  - 1\Gamma (\nu )
(\kappa r)\nu \scrK \nu (\kappa r), r = \| x - y\| 2, \kappa =

\surd 
8\nu 

\lambda 
, x, y \in D,(1.1)

where \sigma 2, \nu , \lambda > 0 are the variance, smoothness parameter, and correlation length of the field,
respectively, and \scrK \nu is the modified Bessel function of the second kind.

In practice, samples of u are needed only at discrete locations \bfitx 1, . . . ,\bfitx m \in D, and a
simple sampling strategy consists of drawing realizations of a Gaussian vector \bfitu \sim \scrN (0, C)
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WHITE NOISE COUPLING FOR NONNESTED MLMC 1631

with \bfitu i = u(\bfitx i) and covariance matrix Cij = \BbbE [u(\bfitx i)u(\bfitx j)]. The simplest approach is usually
computationally expensive as it requires the factorization of the dense covariance matrix
C \in \BbbR m\times m. In fact, if we let \bfitz \sim \scrN (0, I) be a standard Gaussian vector and factorize
C = HHT with H \in \BbbR m\times n, we can sample \bfitu as \bfitu = H\bfitz since

\BbbE [\bfitu \bfitu T ] = \BbbE [H\bfitz (H\bfitz )T ] = H \BbbE [\bfitz \bfitz T ]HT = HIHT = C.(1.2)

A basic form of this approach uses the Cholesky factorization of C. In this case, H is dense
and the factorization has a computational complexity of O(m3). If the field is smooth enough
so that the eigenvalues of C are rapidly decaying, this method can be made competitive by
using instead a low-rank approximation [22]. Usually, n is taken to be equal to m so that H is
square. However, this is not necessary for (1.2) to hold. For instance, the sampling strategy
we present in this work uses n > m.

Another family of sampling approaches is based on the expansion of the field u as a
(possibly finite or truncated) series of basis functions. Different choices of bases yield different
methods. Common choices are the basis of the eigenfunctions of \scrC (x, y) (Karhunen--Lo\`eve
expansion), the Fourier basis (circulant embedding [10]), and a finite element basis [5, 11, 27,
40]. The former method is the most flexible as it can be used to sample Gaussian vectors with
arbitrary covariance structure. However, it requires either the solution of a dense eigenvalue
problem or the factorization of a dense covariance matrix [22]. If we need only the largest
eigenvalues or a low-rank factorization, this approach is reasonably efficient [22]. However, if
the eigenvalues of \scrC (x, y) decay slowly (\nu small), such operations become expensive as more
terms are needed in the expansion. Circulant embeddings are exact and more efficient but rely
on the use of the fast Fourier transform, the computation of which typically requires simple
geometries and uniform structured meshes.

In this paper we consider the finite element basis method. Whittle showed in [32] that a
Mat\'ern field with covariance given by (1.1) is the statistically stationary solution that satisfies
the linear elliptic partial differential equation (PDE),\bigl( 

\scrI  - \kappa  - 2\Delta 
\bigr) k

u(x, \omega ) = \eta \.W(\cdot , \omega ), x \in \BbbR d, \omega \in \Omega , \nu = 2k  - d/2 > 0,(1.3)

where \.W is spatial Gaussian white noise in \BbbR d, k > d/4, and \Omega is a suitable sample space.
The notation \.W(\cdot , \omega ) indicates that \.W is almost surely a generalized function (on \BbbR d). Here
\eta is a scaling factor that depends on \sigma , \lambda , and \nu , d \leq 3, and the equality has to hold almost
surely and be interpreted in the sense of distributions. Boundary conditions are not needed as
the stationarity requirement is enough for well-posedness [27]. Equation (1.3) has to be solved
on the whole \BbbR d. However, this is generally not feasible, and \BbbR d is in practice truncated to
a bounded domain D. In this case, artificial boundary conditions must be prescribed on \partial D.
Homogeneous Dirichlet or Neumann boundary conditions are often chosen [5, 27], although
it usually does not matter for practical purposes as the error in the covariance of the field
decays rapidly away from the boundary [33]. After the meshing of D, (1.3) can be solved in
linear time with the finite element method (FEM) and an optimally preconditioned Krylov
solver. This approach thus scales well in terms of problem size and parallel computation [11].
Moreover, the approach is especially convenient if u appears as a coefficient in a PDE that isD
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solved using the FEM as it might be possible to reuse finite element bases and computations
for both equations.

The main focus of this paper is the generation of white noise samples \.W(\cdot , \omega ) for a given
sample point \omega \in \Omega . More precisely, we study the efficient sampling of the action \langle \.W, vh\rangle (\omega ) of
white noise onto a FEM test function vh. In this work, for the sake of simplicity we specifically
consider (1.3). However, the sampling techniques we describe apply to a wider range of
stochastic PDEs (SPDEs) with additive spatial white noise forcing (see, e.g., [12, 40]). While
solving such equations is relatively straightforward, the sampling of white noise realizations
is not, as it requires the sampling of a Gaussian vector with a finite element mass matrix M
as covariance. If the finite element spaces involved are other than piecewise constants, M
will be sparse but not diagonal. Hence, its Cholesky factor is usually dense, and the sampling
requires an offline computational and memory storage cost of O(m3) for the factorization, and
an online cost of O(m2) for each sample.

To resolve this challenge, different approaches have been adopted in the literature. The
generally adopted approach has been to use a diagonal mass matrix, i.e., an approximate
representation using piecewise constants or mass-lumping. Osborn, Vassilevski, and Villa [30]
use a two-field reformulation of (1.3) for k = 1 with Raviart--Thomas elements combined
with piecewise constants, while Lindgren, Rue, and Lindstr\"om [27] use continuous Lagrange
elements and mass-lumping. Both methods compute (or approximate) the action of white
noise on the FEM test functions. Another option, adopted in [11, 12, 33], is to approximate
the white noise itself by a piecewise constant random function that converges in an appropriate
weak sense to the exact white noise.

The sampling becomes more complicated when the Mat\'ern field u is needed within a
multilevel Monte Carlo (MLMC) framework [19, 20], which requires the coupling of the field
between different approximation levels (i.e., the same sample point \omega must be used on both
levels). In turn, this requires the white noise samples on each level to be coupled. Drzisga
et al. [11] enforce this coupling in the nested grid case with the use of a piecewise constant
approximation of white noise [34]. Osborn, Vassilevski, and Villa [30] present a technique that
enforces the coupling between nested meshes by using techniques from element-based algebraic
multigrid (AMG). Their approach does not require a user-provided hierarchy of nested grids as
the hierarchy is constructed algebraically. This operation aggregates the elements of a single
user-provided grid into clusters which then constitute the elements of the coarse meshes. The
resulting aggregated meshes are nonsimplicial. Furthermore, Osborn et al. [31] use a hierarchy
of nested structured grids on which they enforce the white noise coupling and solve the SPDE
(1.3). The techniques used for the coupling are the same as those presented in [30]. The
sampled Mat\'ern fields are then transferred to a nonnested agglomerated mesh of the domain
of interest via a Galerkin projection.

The main contributions of this paper are the following. First, we present a sampling tech-
nique for white noise that is exact and that is applicable for a wide range of finite element
families, including all types of Lagrange elements. Our technique does not require the expen-
sive factorization of a global mass matrix or a costly two-field splitting of the Laplacian, and
it has linear complexity in the number of degrees of freedom. Second, we introduce a coupling
technique for coupling white noise between nested or nonnested meshes, applicable for the
same class of finite element families. If nonnested meshes are used, this coupling techniqueD
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WHITE NOISE COUPLING FOR NONNESTED MLMC 1633

requires the use of a supermesh construction [15, 16, 17]. Third, the existing literature gener-
ally focuses on white noise coupling in the h-refinement case, i.e., when the MLMC hierarchy
is defined by meshes of decreasing element size [8, 9]. In this paper we also consider the
case in which the MLMC levels are defined by increasing the polynomial degree of the FEM
interpolant (p-refinement).

Although Osborn, Vassilevski, and Villa [30] also work with nonnested meshes, our ap-
proach differs significantly from theirs. They start from one single mesh and algebraically
coarsen it to obtain the grid hierarchy. The MLMC levels are thus generated algebraically.
Our approach operates on a given arbitrary mesh hierarchy, and the MLMC levels are defined
geometrically. In our case, every mesh in the hierarchy is simplicial, and it is thus possible to
use standard FEM error estimates (if available) to estimate a priori the MLMC convergence
parameters [8, 37].

We adopt the same embedded domain strategy as that in [30]. The advantage of this
strategy is that the sampled Mat\'ern field can be transferred to the computational domain
of interest exactly and at negligible cost. However, in practical applications defined over
complex geometries, a sequence of nested meshes might not be available, making the white
noise coupling challenging. This motivated us to design an algorithm that can be used to
enforce the coupling between nonnested meshes as well.

The paper is structured as follows. In section 2 we introduce notation and give a brief
description of the MLMC method. In section 3 we present an overview of the white noise
SPDE sampling approach for Mat\'ern fields and suggest a simple FEM scheme for the solution
of (1.3). Moreover, we describe the white noise sampling problem for the cases where both
independent and coupled realizations are needed. In section 4 we describe our new sampling
technique that allows efficient sampling of independent and coupled white noise realizations. In
section 5 we present numerical results corroborating the theoretical results and demonstrating
the performance of the technique. Finally, we summarize the results of the paper in section 6.

2. Notation and preliminaries.

2.1. Notation. In this paper we adopt the following notation.
\bfitL \bftwo inner product. For an open domain D \subseteq \BbbR d, we let (\cdot , \cdot ) denote the L2(D) inner

product, where L2(D) is the standard Hilbert space of square-integrable functions on D.
Real-valued random variables. For a given \sigma -algebra \scrA and probability measure \BbbP 

let (\Omega ,\scrA ,\BbbP ) be a probability space, and let L2(\Omega ,\BbbR ) indicate the space of real-valued random
variables of finite second moment.

Generalized stochastic fields. Following the definition introduced by It\^o [25] we denote
with L(L2(D), L2(\Omega ,\BbbR )) the space of generalized stochastic fields that are continuous linear
mappings from L2(D) to L2(\Omega ,\BbbR ). For a given \xi \in L(L2(D), L2(\Omega ,\BbbR )) we indicate the action
of \xi onto a function \phi \in L2(D) with the notation \xi (\phi ) = \langle \xi , \phi \rangle .

Subsets of compact closure. Given an open domain G \subseteq D, we write G \subset \subset D to
indicate that the closure of G is a compact subset of D.

Nested and nonnested meshes. Let Ta and Tb be two tessellations of D. We say that
Ta is nested within Tb if vertices(Ta) \subseteq vertices(Tb) and if for each element e \in Ta there exists
a set of elements E \subseteq Tb such that e =

\bigcup 
\^ei\in E \^ei. We say that Ta and Tb are nonnested if Ta

is not nested within Tb and vice versa.D
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Additionally, we will use the following definition of white noise.

Definition 2.1 (white noise; see Example 1.2 and Lemma 1.10 in [24]). Let D \subseteq \BbbR d be an
open domain. The white noise \.W \in L(L2(D), L2(\Omega ,\BbbR )) is a generalized stochastic field such
that for any collection of L2(D) functions \{ \phi i\} , if we let bi = \langle \.W, \phi i\rangle , then \{ bi\} are joint
Gaussian random variables with zero mean and covariance given by \BbbE [bibj ] = (\phi i, \phi j).

2.2. The multilevel Monte Carlo method. Let u(x, \omega ) for x \in \BbbR d, \omega \in \Omega be the solution
of an SPDE of interest, e.g., (1.3). Generally we are interested in computing an output
functional P of u, namely,

P (\omega ) = \scrP [x, u(x, \omega )](\omega ).(2.1)

Here we assume that P (\omega ) is scalar-valued with bounded second moment, i.e., P \in L2(\Omega ,\BbbR ).
For instance, \scrP could be the average or the L2 norm of u over its domain of definition. A
more complicated, yet common, case is when the computation of \scrP requires the solution of
an additional equation. A typical example is when u is a Mat\'ern field satisfying (1.3) and u
appears in the permeability coefficient of another elliptic PDE [9]. In this case, \scrP is usually
a functional of the solution of the latter equation [9]. Although the techniques we describe
apply to a wider range of problems, this is the framework considered in this paper.

To quantify the propagation of uncertainty from the input u to the output functional of
interest P , one may estimate the expected value \BbbE and variance \BbbV of P (\omega ). When P can be
approximated at different levels \ell = 1, . . . , L of increasing accuracy and cost, \BbbE [P ] and \BbbV [P ]
can be estimated efficiently with the MLMC method [19]. Letting P\ell be the approximated
value at level \ell , we can approximate \BbbE [P ] as

\BbbE [P ] \approx \BbbE [PL] =

L\sum 
\ell =1

\BbbE [P\ell  - P\ell  - 1], P0 \equiv 0.(2.2)

The telescoping sum on the right-hand side is at the heart of the MLMC strategy: by approx-
imating each term in the sum with standard Monte Carlo we obtain the MLMC estimator,

\BbbE [P ] \approx \=P =
L\sum 

\ell =1

\Biggl[ 
1

N\ell 

N\ell \sum 
n=1

(P\ell (\omega 
n
\ell ) - P\ell  - 1(\omega 

n
\ell ))

\Biggr] 
,(2.3)

where \omega n
\ell \in \Omega is the nth sample point on level \ell .

In the context of approximating u and a posteriori P using a FEM, the levels of accuracy
can be defined by using a hierarchy of meshes (h-refinement) or by increasing the polynomial
degree of the finite elements used (p-refinement). As the variance is yet another expectation,
the same strategy as described here for \BbbE [P ] applies to \BbbV [P ].

The increased efficiency of MLMC with respect to standard Monte Carlo relies on the
assumption that on coarse levels (small \ell ), many samples are needed for an accurate estimate
of the expected value, but each sample is inexpensive to compute. On fine levels (large \ell ),
sampling is expensive, but the variance is small because the levels are coupled; i.e., the sample
point \omega n

\ell is the same for both P\ell (\omega 
n
\ell ) and P\ell  - 1(\omega 

n
\ell ). The coupling makes P\ell (\omega 

n
\ell ) and P\ell  - 1(\omega 

n
\ell )

strongly correlated. This aspect diminishes the variance of their difference, and thereforeD
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fewer samples are required to estimate the expected value. An alternative interpretation is
that once \omega n

\ell is fixed, P\ell (\omega 
n
\ell ) and P\ell  - 1(\omega 

n
\ell ) are approximations of different accuracy of the

same deterministic problem, and hence their difference becomes smaller as the discretization
approaches the infinite dimensional solution.

MLMC can be seen as a variance reduction technique in which the coupling between the
levels is one of the key elements. If the coupling is not enforced correctly so that the samples
of P\ell and P\ell  - 1 become independent, then the variance of each term of the telescoping sum in
(2.3) increases, significantly harming its efficiency and convergence properties.

The convergence and cost of the MLMC estimator (2.3) is given by the following theorem.

Theorem 2.2 (MLMC convergence [9, 19]). Let C\ell be the cost of computing one sample of
P\ell on level \ell . Suppose there are positive constants \alpha , \beta , \gamma , such that \alpha \geq min(\beta , \gamma ) and
(1) | \BbbE [P\ell  - P ]| \lesssim 2 - \alpha \ell ,
(2) \BbbV [P\ell  - P\ell  - 1] \lesssim 2 - \beta \ell ,
(3) C\ell \lesssim 2\gamma \ell .

Then, for any \varepsilon < e - 1, there exists a value L and a sequence \{ N\ell \} L\ell =1 such that

error( \=P ) \equiv \BbbE [( \=P  - \BbbE [P ])2]1/2 \leq \varepsilon ,(2.4)

and the total cost Ctot satisfies

Ctot :=
L\sum 

\ell =1

N\ell C\ell \lesssim 

\left\{   
\varepsilon  - 2, \beta > \gamma ,
\varepsilon  - 2(log \varepsilon )2, \beta = \gamma ,

\varepsilon  - 2 - (\gamma  - \beta )/\alpha , \beta < \gamma .

(2.5)

The values of L and \{ N\ell \} L\ell =1 are estimated automatically in standard MLMC algorithms; for
further details see [19, 20]. The values of the MLMC parameters \alpha , \beta , \gamma are sometimes known
a priori [8, 37]; otherwise, they need to be estimated. In the uniform h-refinement case, we
have \gamma = d and h\ell \sim 2 - c\ell , where h\ell is the level \ell mesh size and c > 0 [9].

3. The finite element approach to Mat\'ern field sampling. In this section we describe
the practical aspects of the numerical solution of (1.3) when either independent (standard
Monte Carlo) or coupled (MLMC) Mat\'ern field samples are needed. As we will see, the main
complication lies in the sampling of white noise realizations.

Note that the results we present on white noise sampling can be applied to a wider class
of elliptic or parabolic SPDEs with additive spatial white noise (see, e.g., [12, 40]).

3.1. Finite element solution of elliptic PDEs with white noise forcing. The solutions
of the linear elliptic PDE (1.3) correspond to a Mat\'ern field with covariance given by (1.1).
In this paper we assume that k is a positive integer, although it is possible to work with
noninteger values as well [6]. The scaling factor \eta in (1.3) is given by

\eta =
\sigma 

\^\sigma 
, where \^\sigma 2 =

\Gamma (\nu ) \nu d/2

\Gamma (\nu + d/2)

\biggl( 
2

\pi 

\biggr) d/2

\lambda  - d,(3.1)

where \Gamma (x) is the Euler gamma function [27]. Note that if d = 2, then \^\sigma 2 = (2/\pi )\lambda  - 2, and
for \nu \rightarrow \infty , \^\sigma 2 = (2/\pi )d/2\lambda  - d.D
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Solving (1.3) over the whole of \BbbR d is generally not feasible. Instead, \BbbR d is typically
truncated to a bounded domain D \subset \subset \BbbR d, and some boundary conditions are chosen---usually
homogeneous Neumann or Dirichlet [5, 27]. In what follows, we assume that the Mat\'ern field
sample is needed on a domain G \subset \subset D. If D is sufficiently large in the sense that the distance
between \partial D and \partial G is larger than the correlation length \lambda , then the error introduced by
truncating \BbbR d to D is negligible [11, 33].

After truncating the domain, (1.3) can be rewritten in the iterative form\left\{   
u1  - \kappa  - 2\Delta u1 = \eta \.W in D,
uj+1  - \kappa  - 2\Delta uj+1 = uj in D, j = 1, . . . , k  - 1,
uj+1 = 0 on \partial D, j = 0, . . . , k  - 1,

(3.2)

where u \equiv uk. This is the approach suggested by Lindgren, Rue, and Lindstr\"om in [27]. As
the main focus of this paper is on white noise sampling, we will restrict our attention to the
k = 1 case, and we will set \eta = 1 from now on, in which case (3.2) reduces to

u - \kappa  - 2\Delta u = \.W in D,

u = 0 on \partial D.
(3.3)

The existence and uniqueness of solutions to (3.3) were proven in [4] and [7], respectively.
We will solve (3.3) using the FEM. Let Vh = span(\phi 1, . . . , \phi m) \subseteq H1

0 (D) be a suitable finite
element approximation subspace (e.g., the \phi i could be continuous Lagrange basis functions
defined relative to a triangulation Dh of D). A discrete weak form of (3.3) then reads as
follows: find uh \in Vh such that

(uh, vh) + \kappa  - 2(\nabla uh,\nabla vh) = \langle \.W, vh\rangle for all vh \in Vh.(3.4)

The coefficients of the basis function expansion for uh, i.e., the ui such that uh =
\sum m

i=1 ui\phi i,
are given by the solution of the linear system

A\bfitu = \bfitb , with Aij = (\phi i, \phi j) + \kappa  - 2(\nabla \phi i,\nabla \phi j), bi = \langle \.W, \phi i\rangle .(3.5)

This linear system (3.5) can be solved in O(m) time by using an optimally preconditioned
Krylov solver such as the conjugate gradient method preconditioned with geometric or alge-
braic multigrid. We remark that since the elliptic operator is the same in all equations of
(3.2), the same finite element basis and solver can be reused to compute all \{ uj\} mj=1 for the
case where k > 1.

By Definition 2.1, \bfitb satisfies

\bfitb \sim \scrN (0,M), Mij = (\phi i, \phi j);(3.6)

i.e., \bfitb is a zero-mean Gaussian vector with the finite element mass matrix M as covariance
matrix. Sampling white noise realizations can thus be accomplished by sampling a Gaussian
vector of mass matrix covariance.

In section 4, we present a factorization of M in the form HHT (cf. (1.2)) that is both
sparse and computationally efficient to compute, and thus allows for efficient sampling of
white noise.D
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3.2. Multilevel white noise sampling/white noise coupling condition. We now consider
the case in which coupled Mat\'ern field realizations are needed in an MLMC setting; i.e., we
want to draw samples of u\ell (x, \omega ) and u\ell  - 1(x, \omega ) at two different levels of accuracy \ell and
\ell  - 1 for the same \omega \in \Omega . Since the only stochastic element present in (3.3) is white noise,
it is sufficient to use the same white noise sample on both levels to enforce the coupling
requirement.

More precisely, let V \ell and V \ell  - 1 be the finite element spaces on levels \ell and \ell  - 1,
respectively, for \ell > 1. We consider the following two variational problems coupled by
a common white noise sample: find u\ell \in V \ell = span(\phi \ell 

1, . . . , \phi 
\ell 
m\ell 

) and u\ell  - 1 \in V \ell  - 1 =

span(\phi \ell  - 1
1 , . . . , \phi \ell  - 1

m\ell  - 1
) such that for \omega n

\ell \in \Omega ,

(u\ell , v\ell ) + \kappa  - 2(\nabla u\ell ,\nabla v\ell ) = \langle \.W, v\ell \rangle (\omega n
\ell ) for all v\ell \in V \ell ,(3.7)

(u\ell  - 1, v\ell  - 1) + \kappa  - 2(\nabla u\ell  - 1,\nabla v\ell  - 1) = \langle \.W, v\ell  - 1\rangle (\omega n
\ell ) for all v\ell  - 1 \in V \ell  - 1,(3.8)

where the terms on the right-hand side are coupled in the sense that they are centered Gaussian
random variables with covariance \BbbE [\langle \.W, vl\rangle \langle \.W, vs\rangle ] = (vl, vs) for l, s \in \{ \ell , \ell  - 1\} , as given by
Definition 2.1.

Let \bfitu \ell \in \BbbR m\ell and \bfitu \ell  - 1 \in \BbbR m\ell  - 1 be the vectors of the finite element expansion coefficients
of u\ell and u\ell  - 1, respectively. Following the approach from section 3.1, we note that the
coefficient vectors solve the following block diagonal linear system:\Biggl[ 

A\ell 0

0 A\ell  - 1

\Biggr] \biggl[ 
\bfitu \ell 

\bfitu \ell  - 1

\biggr] 
=

\biggl[ 
\bfitb \ell 
\bfitb \ell  - 1

\biggr] 
.(3.9)

Alternatively, by letting \bfitu = [\bfitu \ell , \bfitu \ell  - 1]
T , \bfitb = [\bfitb \ell , \bfitb \ell  - 1]

T , and A = diag(A\ell , A\ell  - 1), we can
write this as

A\bfitu = \bfitb .(3.10)

This system can be solved in linear time with an optimal solver [13].
Furthermore, by Definition 2.1,

\bfitb \sim \scrN (0,M),(3.11)

where M can be expressed in block structure as

M =

\Biggl[ 
M \ell M \ell ,\ell  - 1

(M \ell ,\ell  - 1)T M \ell  - 1

\Biggr] 
, with M \ell ,k

ij = (\phi \ell 
i , \phi 

k
j ) and Mk

ij = (\phi k
i , \phi 

k
j ).(3.12)

If we were using independent white noise samples for (3.7) and (3.8), then the off-diagonal
blocks of M would vanish. Conversely, the presence of the mixed mass matrix M \ell ,\ell  - 1 stems
from the use of the same white noise sample on both levels. For this reason, we will refer to
(3.11) and (3.12) as the coupling condition.

Thus, the problem of sampling coupled Mat\'ern fields in the context of MLMC again
reduces to the sampling of a Gaussian vector with a mass matrix as covariance. However,D

ow
nl

oa
de

d 
12

/1
1/

18
 to

 1
63

.1
.8

1.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

1638 M. CROCI, M. B. GILES, M. E. ROGNES, AND P. E. FARRELL

two additional complications arise. First, M is potentially much larger and not necessarily
of full rank (consider the case in which V \ell = V \ell  - 1; then M \ell = M \ell  - 1 = M \ell ,\ell  - 1). Second, to
assemble M \ell ,\ell  - 1 we need to compute integrals involving basis functions possibly defined over
different, nonnested meshes, which is nontrivial. In section 4, we present a sampling technique
that addresses both issues. A supermesh construction [16, 17] is required in the nonnested
mesh case.

3.3. Embedded meshes and nonnested grids. We adopt the embedded mesh strategy
presented by Osborn, Vassilevski, and Villa [30]. We assume that the Mat\'ern field sample
is needed on a user-provided mesh Gh of the domain G, and we take D to be a larger d-
dimensional box such that the distance between \partial G and \partial D is at least \lambda . With modern
meshing software, such as Gmsh [18], it is possible to then triangulate D and obtain a mesh
Dh in such a way that Gh is nested within Dh; i.e., each element and vertex of Gh is also an
element or vertex of Dh. We then refer to Gh as embedded in Dh or to Gh as an embedded
mesh (in Dh). The main advantage of an embedded Gh in Dh is that once (3.3) is solved
on Dh, the sampled Mat\'ern field u can be exactly transferred onto Gh at negligible cost.
Conversely, if Gh is not embedded in Dh, an additional interpolation step would be required,
and this would increase the cost of each sample.

In the MLMC framework with h-refinement, we assume that we are given a possibly
nonnested user-provided mesh hierarchy \{ G\ell 

h\} L\ell =1. We accordingly generate a hierarchy of
meshes \{ D\ell 

h\} L\ell =1 on which to perform the sampling. If the \{ D\ell 
h\} L\ell =1 are nested, then the

techniques used in [11] and [30] can be used to couple the white noise between MLMC levels.
However, in the case in which the user-provided meshes \{ G\ell 

h\} L\ell =1 are nonnested, these methods
are not compatible with the embedded mesh strategy.

Clearly, nonnested grid hierarchies appear naturally in practical computations on complex
geometries. For instance, grid hierarchies generated from CAD geometries or through coars-
ening of a single fine mesh are generally nonnested. Thus, tackling couplings across nonnested
meshes is crucial for nontrivial applications. As we will see in the next section, such couplings
can be achieved at a small offline cost.

4. White noise sampling. In this section we introduce a new technique for efficient sam-
pling of white noise. We first address the basic case, in which independent white noise samples
are needed, before considering the more complicated case in which coupled samples are re-
quired.

4.1. Sampling of independent white noise realizations. As discussed in the previous
section, the sampling of independent white noise realizations defined over a meshed domain
can be cast as the sampling of a Gaussian vector \bfitb of covariance matrix given by a finite
element mass matrix M \in \BbbR m\times m. In turn, efficient sampling of such a Gaussian vector
typically involves computing a factorization of M = HHT . If a Cholesky factorization is
used, such sampling may become costly, with an O(m3) factorization cost and O(m2) cost
per sample. In what follows, we present an alternative factorization strategy which has O(m)
fixed cost and O(m) cost per sample.

The core idea is to work elementwise instead of factorizing a global mass matrix. To
illustrate this idea, we consider a standard finite element assembly of M over a mesh withD
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n elements (i.e., cells) and me degrees of freedom on each element. Local mass matrices Me

of size me \times me are computed on each mesh element e before aggregation to form the global
mass matrix M . The overall assembly operation can be written in matrix form

M = LT diage(Me)L(4.1)

(see, e.g., [39]), where diage(Me) is a block diagonal matrix of size nme \times nme with the local
mass matrices on the diagonal, L is a Boolean assembling matrix of size nme \times m such that
LT = [LT

1 . . . LT
n ], and the \{ Le\} ne=1 are Boolean matrices of size me \times m that encode the

local-to-global map. Note that each row of L has exactly one nonzero entry [39].
We can now factorize each local mass matrix Me independently with a standard Cholesky

factorization to obtain Me = HeH
T
e for each element e. We then have

M = LT diage(HeH
T
e )L = (LT diage(He))(L

T diage(He))
T = HHT ,(4.2)

with H \equiv LT diage(He), and we can sample \bfitb by computing

\bfitb = Hz, with z \sim \scrN (0, I), z \in \BbbR men,(4.3)

since (cf. (1.2))

\BbbE [\bfitb \bfitb T ] = H \BbbE [\bfitz \bfitz T ]HT = (LT diage(He))I(L
T diage(He))

T = M.(4.4)

Remark 4.1. This sampling strategy allows the splitting of a large global sampling problem
into separate small local sampling problems. In fact, if for each element e we let \bfitz e \sim \scrN (0, I)
be a small standard Gaussian vector of length me, we can rewrite \bfitb = H\bfitz as

\bfitb = H\bfitz =

n\sum 
e=1

LT
e He\bfitz e =

n\sum 
e=1

LT
e \bfitb e,(4.5)

where \bfitb e \sim \scrN (0,Me) is sampled locally. The problem of sampling a global mass matrix co-
variance Gaussian vector then eventually reduces to the sampling of n independent local mass
matrix covariance Gaussian vectors. This sampling approach is therefore trivially paralleliz-
able.

Note that this sampling strategy is efficient since the local Cholesky factorizations can be
computed in O(m3

en) time, and the Le factors can be applied matrix-free for a total O(m3
en)

factorization cost and an O(m2
en) memory and sampling cost.

Remark 4.2. In the case in which the transformation to the reference element is affine (such
as with Lagrange elements on simplices) this operation can be made much more efficient by
noting that the local mass matrices on each element are always the same up to a multiplicative
factor, namely Me/| e| = const for all e, where | e| is the measure of the element. It is therefore
sufficient to factorize a single local mass matrix and to store its Cholesky factor, yielding
negligible O(m3

e) and O(m2
e) factorization and memory costs, respectively.D
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We note that the standard Gaussian vector \bfitz used to compute \bfitb is of size men, which is
larger than if a Cholesky factorization were used.1 In fact, unlike the Cholesky factor, the
matrix H here is not square. However, in comparison to the cost of solving (3.3), the sampling
cost of the extra Gaussian variables is negligible.

4.2. Sampling coupled white noise realizations for MLMC. We now consider the case
of sampling coupled white noise. In what follows, we consider the general setting in which the
MLMC levels are defined using h-refinement and the mesh hierarchy is nonnested. At the end
of this section, we provide some remarks on the simpler cases in which the function spaces
that define the hierarchy are nested (e.g., the grids are nested or p-refinement is used).

4.2.1. Supermesh construction and global mass matrix assembly. Consider the case of
sampling \bfitb \sim \scrN (0,M), where M \in \BbbR m\times m is given by (3.12). The assembly of the off-diagonal
blocks of M requires the computation of inner products between basis functions of different
FEM approximation subspaces. To address this problem, we use a supermesh construction
defined as follows.

Definition 4.1 (supermesh [16, 17]). Let D \subset \subset \BbbR d be an open domain, and let Ta, Tb be two
tessellations of D. A supermesh S of Ta and Tb is a common refinement of Ta and Tb. More
specifically, S is a triangulation of D such that

1. vertices(Ta) \cup vertices(Tb) \subseteq vertices(S),
2. volume(eS \cap e) \in \{ 0, volume(eS)\} for all elements eS \in S, e \in (Ta \cup Tb).

The first condition means that every parent mesh vertex must also be a vertex of the
supermesh, while the second states that every supermesh element is completely contained
within exactly one element of either parent mesh [17]. As stated in [17, Lemma 2], supermesh
elements always lie within the intersection of a single pair of parent mesh elements. The
supermesh construction is not unique [17]. We show an example of supermesh construction
in Figure 1. Efficient algorithms for computing supermeshes are available from [29].

Remark 4.3 (on the complexity of the supermesh construction). If the supermesh construc-
tion is performed with a local supermeshing algorithm, then its complexity is O(n\ell + K),
where n\ell is the number of elements of D\ell 

h and K is the number of intersecting elements [15].
The number of supermesh elements is proportional to the number of intersecting elements
and it is therefore O(K). Theoretically, K is bounded by K \leq c(d)n\ell n\ell  - 1, where n\ell  - 1 is
the number of elements of D\ell  - 1

h , c = 4 in 2D and c = 45 in 3D [15, 17]. In practice, this is
a pessimistic bound. If a typical element of the first mesh intersects with \=k elements of the
second mesh, then the total number of intersections is K = O(\=kn\ell ). For instance, the lib-
supermesh software [29] uses heuristics to eliminate near-degenerate supermesh elements and
ensures that \=k is always bounded by a constant. For practical computations, the supermesh
construction and the number of supermesh elements is therefore O(n\ell ).

Evaluating (3.12) involves L2 inner products of functions that are only piecewise poly-
nomial on each element of D\ell 

h and D\ell  - 1
h . This lack of smoothness affects the convergence

of standard quadrature schemes. The supermesh construction provides a resolution to this

1A Cholesky factor would be of size m\times m, yielding a standard Gaussian vector of length m.D
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Figure 1. An example of a supermesh construction. The first two meshes on the left are the parent meshes,
and the mesh on the right is a supermesh. As stated in [17, Lemma 2], every supermesh element is completely
contained within a unique pair of parent mesh elements.

problem: on each element of a supermesh of D\ell 
h and D\ell  - 1

h the integrands are polynomial, and
standard quadrature schemes apply.

Overall, our strategy for evaluating (3.12) is to construct a supermesh of each pair of
meshes D\ell 

h, D
\ell  - 1
h . Note that since each supermesh element lies in the intersection of exactly

one pair (e\ell , e\ell  - 1) of parent mesh elements e\ell \in D\ell 
h, e\ell  - 1 \in D\ell  - 1

h , we need only account for
the basis functions that are nonzero over e\ell and e\ell  - 1. Let me\ell and me\ell  - 1

denote the number
of degrees of freedom defined by the finite element spaces V \ell and V \ell  - 1 over elements e\ell and
e\ell  - 1, respectively. Then, only the inner products between me = me\ell +me\ell  - 1

basis functions
will be nonzero.

We can thus assemble M given by (3.12) by the following two-step algorithm.
1. Let n be the number of supermesh elements. For each supermesh element e, use quadra-

ture rules over e to compute the local mass matrix

Me =

\Biggl[ 
M \ell 

e M \ell ,\ell  - 1
e

(M \ell ,\ell  - 1
e )T M \ell  - 1

e

\Biggr] 
, (M \ell ,\ell  - 1

e )ij =

\int 
e
\phi \ell 
i\phi 

\ell  - 1
j dx,(4.6)

where \{ \phi \ell 
i\} 

me\ell 
i=1 and \{ \phi \ell  - 1

j \} 
me\ell  - 1

j=1 are sets of the basis functions of V \ell and V \ell  - 1, respec-

tively, that have nonzero support over e. Me is of size me\times me, M
\ell 
e is of size me\ell \times me\ell ,

M \ell  - 1
e is of size me\ell  - 1

\times me\ell  - 1
, and M \ell ,\ell  - 1

e is of size me\ell \times me\ell  - 1
.

2. Let L\ell and L\ell  - 1 be the supermesh assembling matrices of the finite element spaces
V \ell and V \ell  - 1, respectively, mapping the local supermesh cell degrees of freedom to the
global degrees of freedom of V \ell . Assemble the local supermesh contributions together
as follows:

M =

\Biggl[ 
(L\ell )T diage(M

\ell 
e)L

\ell (L\ell )T diage(M
\ell ,\ell  - 1
e )L\ell  - 1

(L\ell  - 1)T diage(M
\ell ,\ell  - 1
e )TL\ell (L\ell  - 1)T diage(M

\ell  - 1
e )L\ell  - 1

\Biggr] 
.(4.7)

Observe that (4.7) and (3.12) agree since

M l = (Ll)T diage(M
l
e)L

l for l \in \{ \ell , \ell  - 1\} ,
M \ell ,\ell  - 1 = (L\ell )T diage(M

\ell ,\ell  - 1
e )L\ell  - 1.

(4.8)
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Note that the above is again just the assembly of the contributions of each supermesh element
to the global mass matrices in matrix form. As we will see next, we actually do not need to
assemble M but only the local mass matrices M \ell 

e and M \ell ,\ell  - 1
e for each supermesh element e.

4.2.2. From global to local: The local coupling condition. We again use a divide-
and-conquer strategy to split the global sampling problem into smaller local subproblems
(cf. Remark 4.1). Suppose that we can sample a local Gaussian vector \bfitb e \sim \scrN (0,Me) on each
supermesh element e. We can then separate \bfitb e into two Gaussian vectors \bfitb \ell e and \bfitb \ell  - 1

e such
that \bfitb e = [(\bfitb \ell e)

T , (\bfitb \ell  - 1
e )T ]T and

\bfitb \ell e \sim \scrN (0,M \ell 
e), \bfitb \ell  - 1

e \sim \scrN (0,M \ell  - 1
e ), \BbbE [\bfitb \ell e(\bfitb \ell  - 1

e )T ] = M \ell ,\ell  - 1
e .(4.9)

Since (4.9) is the local equivalent of (3.11), we refer to it as the local coupling condition.
Finally, we can use the same approach as that in (4.5) and assemble the coupled vectors \bfitb \ell 

and \bfitb \ell  - 1 as

\bfitb \ell =

n\sum 
e=1

(L\ell 
e)

T\bfitb \ell e, \bfitb \ell  - 1 =

n\sum 
e=1

(L\ell  - 1
e )T\bfitb \ell  - 1

e ,(4.10)

where n is the number of supermesh elements. This enforces the correct distribution since
sums of Gaussian random variables are Gaussian, and the covariance structure is correct. In
particular,

\BbbE [\bfitb l(\bfitb l)T ] =
n\sum 

i,j=1

(Ll
i)
T \BbbE [\bfitb li(\bfitb lj)T ]Ll

j =

n\sum 
i=1

(Ll
i)
T \BbbE [\bfitb li(\bfitb li)T ]Ll

i

= (Ll)T diagi(M
l
i )L

l = M l for l \in \{ \ell , \ell  - 1\} 

(4.11)

and

\BbbE [\bfitb \ell (\bfitb \ell  - 1)T ] =
n\sum 

i,j=1

(L\ell 
i)

T \BbbE [\bfitb \ell i(\bfitb \ell  - 1
j )T ]L\ell  - 1

j =
n\sum 

i=1

(L\ell 
i)

T \BbbE [\bfitb \ell i(\bfitb \ell  - 1
i )T ]L\ell  - 1

i

= (L\ell )T diagi(M
\ell ,\ell  - 1
i )L\ell  - 1 = M \ell ,\ell  - 1,

(4.12)

where we have used the facts that \bfitb li and \bfitb lj are independent for i \not = j for l \in \{ \ell , \ell  - 1\} and

that \bfitb \ell i is independent of \bfitb 
\ell  - 1
j if i \not = j. Thus, again the global sampling problem can be recast

as a series of much smaller, independent, local sampling problems.
Finally, it remains to devise a strategy for sampling realizations of the local vectors \bfitb e on

a given supermesh element e. The following result demonstrates that the covariance matrix
of \bfitb e is singular and how such a sampling can be simplified.

Lemma 4.2. Let V \ell and V \ell  - 1 be finite element spaces over two tessellations D\ell 
h, D

\ell  - 1
h of

the same domain. Let S be a supermesh of D\ell 
h and D\ell  - 1

h . Let \phi \ell 
i , \phi 

\ell  - 1
j for i = 1, . . . ,me\ell ,

j = 1, . . . ,me\ell  - 1
be the basis functions of V \ell and V \ell  - 1, respectively, that have nonzero support

over e. Let V \ell | e = span(\phi \ell 
1| e, . . . , \phi \ell 

me\ell 
| e) and V \ell  - 1| e = span(\phi \ell  - 1

1 | e, . . . , \phi \ell  - 1
me\ell  - 1

| e) be theD
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restrictions of V \ell and V \ell  - 1 to e. Assume that V \ell  - 1| e \subseteq V \ell | e, i.e., that the restrictions are
nested and that M \ell 

e as defined in (4.6) is nonsingular; then

rank(Me) = rank(M \ell 
e) and M \ell  - 1

e = (M \ell ,\ell  - 1
e )T (M \ell 

e)
 - 1M \ell ,\ell  - 1

e .(4.13)

Proof. Since V \ell  - 1| e \subseteq V \ell | e, then we have that, for all j, \phi \ell  - 1
j \in V \ell | e, which in turn means

that there exists a set of coefficients rji \in \BbbR such that \phi \ell  - 1
j =

\sum 
i rji\phi 

\ell 
i . Now, let Re be an

me\ell \times me\ell  - 1
matrix such that (Re)i,j = rji, and define the vector functions

\bfitphi \ell  - 1 =

\left[   \phi \ell  - 1
1
...

\phi \ell  - 1
me\ell  - 1

\right]   , \bfitphi \ell =

\left[   \phi \ell 
1
...

\phi \ell  - 1
me\ell 

\right]   .(4.14)

We then have that

\bfitphi \ell  - 1 = RT
e \bfitphi 

\ell .(4.15)

This implies that we can now rewrite M \ell  - 1
e as

M \ell  - 1
e =

\int 
e
\bfitphi \ell  - 1(\bfitphi \ell  - 1)Tdx = RT

e

\int 
e
\bfitphi \ell (\bfitphi \ell )Tdx Re = RT

e M
\ell 
eRe(4.16)

since Re is constant. Similarly, for M \ell ,\ell  - 1
e we have

M \ell ,\ell  - 1
e =

\int 
e
\bfitphi \ell (\bfitphi \ell  - 1)Tdx =

\int 
e
\bfitphi \ell (\bfitphi \ell )Tdx Re = M \ell 

eRe.(4.17)

Combining (4.16) and (4.17) with the assumption that M \ell 
e is invertible thus yields the

second equation in (4.13) since

(M \ell ,\ell  - 1
e )T (M \ell 

e)
 - 1M \ell ,\ell  - 1

e = RT
e M

\ell 
e(M

\ell 
e)

 - 1M \ell 
eRe = RT

e M
\ell 
eRe = M \ell  - 1

e .(4.18)

Pulling (4.6), (4.16), and (4.17) together, we can now express Me as

Me =

\Biggl[ 
M \ell 

e M \ell 
eRe

RT
e M

\ell 
e RT

e M
\ell 
eRe

\Biggr] 
=

\Biggl[ 
I 0

RT
e I

\Biggr] \Biggl[ 
M \ell 

e 0

0 0

\Biggr] \Biggl[ 
I Re

0 I

\Biggr] 
,(4.19)

where we have used the fact that M \ell 
e is symmetric. Since Me is symmetric and the two block

triangular matrices on the right-hand side of (4.19) are invertible, Sylvester's law of inertia
[36] gives that

rank(Me) = rank

\Biggl( \Biggl[ 
M \ell 

e 0

0 0

\Biggr] \Biggr) 
= rank(M \ell 

e),(4.20)

which concludes the proof.D
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The assumptions of Lemma 4.2 are mild and are satisfied by most finite element families,
e.g., Lagrange elements (continuous piecewise polynomials defined relative to the tessellations).

Using Lemma 4.2, we can now sample \bfitb e = [(\bfitb \ell e)
T , (\bfitb \ell  - 1

e )T ]T by enforcing the local coupling
condition (4.9) as follows. For each supermesh element e, do the following:

1. Compute M \ell ,\ell  - 1
e and the Cholesky factorization M \ell 

e = HeH
T
e .

2. Sample \bfitz e \sim \scrN (0, I) of length me\ell and set \bfitb \ell e = He\bfitz e.
3. Compute \bfitb \ell  - 1

e as \bfitb \ell  - 1
e = (M \ell ,\ell  - 1)TH - T

e \bfitz e.
Note that the \bfitb \ell e and \bfitb \ell  - 1

e sampled this way satisfy the local coupling condition (4.9) since,
by (4.13) and the fact that He is the Cholesky factor of M \ell 

e , we have that, first,

(4.21) \BbbE [\bfitb \ell e(\bfitb \ell e)T ] = He \BbbE [\bfitz e\bfitz T
e ]H

T
e = M \ell 

e ;

second,

\BbbE [\bfitb \ell  - 1
e (\bfitb \ell  - 1

e )T ] = (M \ell ,\ell  - 1
e )TH - T

e \BbbE [\bfitz e\bfitz T
e ]H

 - 1
e M \ell ,\ell  - 1

e

= (M \ell ,\ell  - 1
e )T (HeH

T
e )

 - 1M \ell ,\ell  - 1
e

= (M \ell ,\ell  - 1
e )T (M \ell 

e)
 - 1M \ell ,\ell  - 1

e = M \ell  - 1
e ;

(4.22)

and third,

(4.23) \BbbE [\bfitb \ell e(\bfitb \ell  - 1
e )T ] = He \BbbE [\bfitz e\bfitz T

e ]H
 - 1
e M \ell ,\ell  - 1

e = HeH
 - 1
e M \ell ,\ell  - 1

e = M \ell ,\ell  - 1
e .

In the case in which the transformation to the reference element is affine (such as with
Lagrange elements on simplices), the sampling can be made more efficient by sampling white
noise directly on the supermesh and then interpolating it onto the parent meshes. This
strategy exploits the following result.

Corollary 4.3 (of Lemma 4.2). Let V \ell and V \ell  - 1 be FEM approximation subspaces over
two triangulations D\ell 

h, D
\ell  - 1
h of the same domain. Let S be a supermesh of D\ell 

h and D\ell  - 1
h , and

let V S be a FEM approximation subspace over S. With the same notation as that in Lemma
4.2, for each supermesh element e let V S | e, V \ell | e, and V \ell  - 1

e be the restrictions of V S, V \ell , and
V \ell  - 1 to e. Let MS

e be the local mass matrix over V S | e. Assume that V \ell | e, V \ell  - 1| e \subseteq V S | e,
i.e. that the parent mesh restrictions are nested within the supermesh restriction. Then there
exist local interpolation matrices (R\ell 

e)
T and (R\ell  - 1

e )T such that

M \ell 
e = (R\ell 

e)
TMS

e R
\ell 
e, M \ell  - 1

e = (R\ell  - 1
e )TMS

e R
\ell  - 1
e , M \ell ,\ell  - 1

e = (R\ell 
e)

TMS
e R

\ell  - 1
e .(4.24)

Proof. Let l \in \{ \ell , \ell  - 1\} . The proof for the first two equations in (4.24) follows from the
first part of the proof of Lemma 4.2 by replacing \ell  - 1 with l and \ell with S. This argument
gives us that

\bfitphi l = (Rl
e)

T\bfitphi S ,(4.25)

from which we also obtain the last relation in (4.24) since

M \ell ,\ell  - 1
e =

\int 
e
\bfitphi \ell (\bfitphi \ell  - 1)Tdx = (R\ell 

e)
T

\int 
e
\bfitphi S(\bfitphi S)Tdx R\ell  - 1

e = (R\ell 
e)

TMS
e R

\ell  - 1
e .(4.26)
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By using this result and the strategy highlighted in Remark 4.2, we can sample \bfitb le for
l \in \{ \ell , \ell  - 1\} by computing

\bfitb le = (Rl
e)

THr| er|  - 1/2| e| 1/2\bfitz e with \bfitz e \sim \scrN (0, I)(4.27)

since Remark 4.2 yields the relation MS
e /| e| = HrH

T
r /| er| = const, where Hr is the Cholesky

factor of the local mass matrix over the reference element er. Note thatHr has to be computed
only once. The advantage of performing this operation is that it avoids the assembly and
factorization of each supermesh element local mass matrix.

Remark 4.4 (simpler cases: nested meshes and p-refinement). In the case in which the
meshes of the MLMC hierarchy are nested, everything discussed is still valid by taking the
supermesh to be the finer of the two meshes that define the MLMC level. In the case in
which the MLMC hierarchy is constructed by using p-refinement, there is only one mesh in
the hierarchy, and everything still applies by taking this mesh to be the ``supermesh."" In both
cases, a supermesh construction is not required in practice.

Remark 4.5. The coupling approach presented can also be used to couple the same white
noise sample over the whole hierarchy of meshes. This enables the use of geometric full-
multigrid [38] to solve the problem given by (3.7)--(3.8) on the finer grid with optimal multigrid
complexity.

5. Numerical results. In this section we investigate the performance of the techniques
presented. We consider the PDE

 - \nabla \cdot (eu(x,\omega )\nabla q(x, \omega )) = 1, x \in G = ( - 0.5, 0.5)d, \omega \in \Omega ,
q(x, \omega ) = 0, x \in \partial G, \omega \in \Omega ,

(5.1)

where u is a Mat\'ern field as given by (1.1) with mean and variance chosen so that eu(x,\omega )

has mean 1 and standard deviation 0.2. We choose D = ( - 1, 1)d as the outer computational
domain on which to solve (3.3). The output functional of interest we consider here is the
L2(G) norm of q squared, namely P (\omega ) = \| q\| 2L2(G)(\omega ).

We solve (3.3) and (5.1) with the FEniCS software package [28] and discretize the two
problems by using continuous Lagrange finite elements of the same degree. For the linear
solver, we use the BoomerAMG algebraic multigrid algorithm from Hypre [14] as a precondi-
tioner and use the conjugate gradient routine of PETSc [3] for all equations. As a convergence
criterion for the solver we require that the absolute size of the preconditioned residual norm be
below a tolerance of 10 - 15. We use the libsupermesh software package [29] for the supermesh
constructions.

When using h-refinement, we construct the MLMC mesh hierarchies \{ D\ell 
h\} L\ell =1 and \{ G\ell 

h\} L\ell =1

in such a way that G\ell 
h is embedded within D\ell 

h for all \ell , but D\ell  - 1
h and G\ell  - 1

h are not nested,
respectively, within D\ell 

h and G\ell 
h for all \ell > 1. As the meshes are nonnested, a supermesh

construction is required to couple each MLMC level. The mesh hierarchies we use are com-
posed of L = 9 meshes in 2D and L = 5 meshes in 3D. The coarsest mesh in each hierarchy
is uniform, while the other meshes are nonuniform and unstructured. Since the convergence
behavior of the FEM is dependent on the quality of the mesh used, we try to obtain numerical
results that are independent of grid quality by choosing meshes whose quality indicators doD
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not vary excessively throughout the hierarchies. Basic properties of the different meshes and
number of elements of the constructed supermeshes are summarized in Tables 1 and 2. Note
that the number of elements in the supermesh is, in practice, always bounded by a constant
times the number of elements of the finer parent mesh. This constant is dimension dependent
and larger in 3D than in 2D (cf. Table 2).

Table 1
Properties of the 2D mesh hierarchy: mesh level \ell , maximal element size h\ell , number of elements n\ell ,

minimal and maximal element radius ratios RR\mathrm{m}\mathrm{i}\mathrm{n} and RR\mathrm{m}\mathrm{a}\mathrm{x}, and number of elements of the supermesh
constructed using the meshes on levels \ell and \ell  - 1 as parent meshes nS\ell . RR is computed as d \times rein/r

e
circ,

where rein and recirc are the in-radius and the circumradius of element e, respectively. Note that the element size
roughly decreases proportional to 2 - \ell .

\ell (2D) h\ell n\ell (RR\mathrm{m}\mathrm{i}\mathrm{n}, RR\mathrm{m}\mathrm{a}\mathrm{x}) nS\ell /n\ell 

1 0.707 32 (0.83, 0.83) n/a
2 0.416 120 (0.61, 1) 2.03
3 0.194 500 (0.61, 1) 2.32
4 0.098 2106 (0.55, 1) 2.45
5 0.049 8468 (0.45, 1) 2.44
6 0.024 33686 (0.46, 1) 2.46
7 0.012 134170 (0.41, 1) 2.46
8 0.006 535350 (0.42, 1) 2.46
9 0.003 2143162 (0.42, 1) 2.47

Table 2
Properties of the 3D mesh hierarchy: mesh level \ell , maximal element size h\ell , number of elements n\ell ,

minimal and maximal element radius ratios RR\mathrm{m}\mathrm{i}\mathrm{n} and RR\mathrm{m}\mathrm{a}\mathrm{x}, minimal and maximal element dihedral angles
DA\mathrm{m}\mathrm{i}\mathrm{n} and DA\mathrm{m}\mathrm{a}\mathrm{x}, and number of elements of the supermesh constructed using the meshes on levels \ell and
\ell  - 1 as parent meshes. Note that the element size of the last three levels roughly decreases proportional to 2 - \ell .

\ell (3D) h\ell n\ell (RR\mathrm{m}\mathrm{i}\mathrm{n}, RR\mathrm{m}\mathrm{a}\mathrm{x}) (DA\mathrm{m}\mathrm{i}\mathrm{n}, DA\mathrm{m}\mathrm{a}\mathrm{x}) nS\ell /n\ell 

1 0.866 384 (0.72, 0.72) (0.79, 1.57) n/a
2 0.437 7141 (0.22, 1) (0.21, 2.82) 17
3 0.280 22616 (0.18, 1) (0.21, 2.83) 66
4 0.138 190081 (0.13, 1) (0.21, 2.85) 42
5 0.070 1519884 (0.12, 1) (0.21, 2.85) 46

When using p-refinement, we define the MLMC levels by taking the coarsest mesh in the
2D hierarchy and by increasing the polynomial degree of the FEM subspaces linearly so that
p\ell = \ell for \ell = 1, . . . , L, with L = 9. We do not consider p-refinement in the 3D case as it does
not offer any additional complications other than an increased computational cost.

5.1. Mat\'ern field convergence. We first address the convergence of the solution of (3.3)
to the Mat\'ern field of interest. In practice, the exact solution of (3.3) is not known, so we
consider instead the coupled equations (3.7) and (3.8). We monitor the quantities\bigm| \bigm| \bigm| \BbbE \Bigl[ \| u\| 2L2(G)  - \| u\ell  - 1\| 2L2(G)

\Bigr] \bigm| \bigm| \bigm| , \BbbV 
\Bigl[ 
\| u\ell \| 2L2(G)  - \| u\ell  - 1\| 2L2(G)

\Bigr] 
.(5.2)
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Note that the value of \BbbE [\| u\| 2L2(G)] is known up to the error introduced by truncating \BbbR d to
D since we can exchange the order of expectation and integration,

\BbbE 
\Bigl[ 
\| u\| 2L2(G)

\Bigr] 
= \BbbE 

\biggl[ \int 
G
u2 dx

\biggr] 
=

\int 
G
\BbbE [u2] dx \approx \sigma 2| G| ,(5.3)

where we have used the fact that \BbbE [u2] \approx \sigma 2 for all x \in G (the relation only holds approxi-
mately due to domain truncation error).

The following result by Bolin, Kirchner, and Kov\'acs [5] establishes a theoretical estimate
for the expected convergence rates.

Theorem 5.1 (Theorem 2.10 and Corollary 2.4 in [5]). Let u be the solution of (3.3) (k = 1
case), and let uh be its FEM approximation obtained by using continuous Lagrange elements
over a mesh of maximum element size h. Then there exist constants c1 and c2 such that

\BbbE 
\Bigl[ 
\| u - uh\| 2L2(D)

\Bigr] 1/2
\leq c1h

2 - d/2,(5.4) \bigm| \bigm| \bigm| \BbbE \Bigl[ \| u\| 2L2(D)  - \| uh\| 2L2(D)

\Bigr] \bigm| \bigm| \bigm| \leq c2h
4 - d.(5.5)

Note that the norms appearing in the error estimates of Theorem 5.1 refer to the outer
domain D, while the norms we consider in (5.2) are taken over the inner domain G. As G \subset D,
we expect to observe the same convergence behavior. We are not aware of any error estimates
in the literature for the variance in (5.2), but the convergence order observed in practice is
usually twice that of the expectation (see, for example, [9]), provided that the polynomial
degree of the FEM basis is sufficiently high.

We consider the convergence behavior of the FEM approximation of the solution of (1.3)
in the h-refinement case with the sampling strategy described in section 4. We fix \lambda = 0.2 and
consider Mat\'ern fields of smoothness \nu = 1, \nu = 3 (k = 1 and k = 2, respectively, in 2D) and
\nu = 1/2 (k = 1 in 3D). For the \nu = 1 and \nu = 1/2 cases we use continuous piecewise linear
(P1) elements, while for the \nu = 3 case we use continuous piecewise quadratic (P2) elements.

Since each sample drawn by solving (1.3) is computationally expensive, we are unable to
take large numbers of samples as is generally done for 1D stochastic differential equations [20].
We therefore take N\ell = 5000 Monte Carlo samples on all levels in 2D and N\ell = 1000 samples
in 3D. To verify that these numbers of samples are sufficient for accurate representation, we
compute approximate 99.73\% confidence intervals (CIs) for all the quantities of interest as
3\=\sigma \ell /

\surd 
N\ell , where \=\sigma \ell is the sample standard deviation of the output functional of interest on

level \ell . In all but one of the cases considered here, the FEM error dominates and the CIs
are negligibly small (so small that they would not be visible on the convergence plots). The
relatively small number of samples only becomes a problem in the \nu = 3 case, where the FEM
convergence is much faster and the Monte Carlo error dominates. In this case, we replace
the \| u\| L2(G) term in the expectation in (5.2) with \| u\ell \| L2(G), and we instead monitor the
convergence of the following quantity:\bigm| \bigm| \bigm| \BbbE \Bigl[ \| u\ell \| 2L2(G)  - \| u\ell  - 1\| 2L2(G)

\Bigr] \bigm| \bigm| \bigm| .(5.6)

The advantage of doing this is that the variance of this error measure decreases with the level
(see Figure 2), and 5000 samples are enough to obtain good accuracy.D
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Figure 2. Convergence behavior of the FEM approximation to (1.3) with h-refinement in 2D. Plots show
(the natural logarithm of) the expected value \BbbE (left) and variance \BbbV (right) versus maximal mesh size h\ell . For
each level \ell , the fields u\ell and u\ell  - 1 have been sampled by coupling white noise realizations as described in section
4. As mentioned in the text, to compute the expected value in the \nu = 3 case we have replaced \| u\| L2(G) with
\| u\ell \| L2(G).

Results are shown in Figures 2 (2D) and 3 (3D). For both the 2D and 3D experiments,
we observe the theoretically predicted convergence rates in terms of the mesh size (after a
preasymptotic regime). However, we note how convergence is less regular than expected
(especially in the 3D case) because of the unstructured meshes employed. This behavior does
not appear when uniform meshes are used (not shown). Apart from the \nu = 3 case, the
convergence order of the variance seems to be twice the convergence order of the expectation.
In the \nu = 3 case, we observe order 6 for the variance with P2 elements (Figure 2) and order 8
with P3 elements (not shown). We conjecture that the variance convergence order is bounded
by 2(p+ 1), where p is the polynomial degree of the FEM basis functions.

In Figure 4, we demonstrate how the Mat\'ern covariance and the field coupling are correctly
enforced by our technique. We compare the covariances of the coupled Mat\'ern fields obtained
by solving (3.7) and (3.8) on the finest level of the MLMC hierarchy with the exact Mat\'ern
covariance given by (1.1). The estimated covariances closely match each other and the exact
expression, demonstrating that our coupling technique is accurate also in practice.

As a final verification step, we check that the coupled fields are consistent with the tele-
scoping sum in (2.2) and (2.3); i.e., if we let a, b, c be the Monte Carlo approximations of
\BbbE [\| u\ell \| 2L2(G)  - \| u\ell  - 1\| 2L2(G)], \BbbE [\| u\ell \| 

2
L2(G)], and \BbbE [\| u\ell  - 1\| 2L2(G)], respectively, we aim to verify

that

a - b+ c \approx 0,(5.7)

at least to within the Monte Carlo accuracy. In Figure 5, we plot the quantity

T (a, b, c) \equiv | a - b+ c| 
3(
\surd 
\BbbV a +

\surd 
\BbbV b +

\surd 
\BbbV c)

(5.8)
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Figure 3. Convergence behavior of the FEM approximation to (1.3) with h-refinement in 3D. Plots show
(the natural logarithm of) the expected value \BbbE (left) and variance \BbbV (right) versus maximal mesh size h\ell . The
fields u\ell and u\ell  - 1 have been sampled by coupling white noise realizations as described in section 4.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4. Plot of exact covariances and sample covariances versus distance r of the FEM solutions of (3.7)
and (3.8) for three different values of \nu in the h-refinement case. The exact covariance C(r) is given by (1.1).
For the \nu = 3 case, an extra elliptic PDE solve is needed; see (3.2).

for different levels and Mat\'ern smoothness parameters \nu , where \BbbV a, \BbbV b, and \BbbV c are the Monte
Carlo approximations of the variances of a, b, and c. The probability of this ratio T being
greater than 1 is less than 0.3\% (for further details, see [20]). We observe that T ranges betweenD
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Figure 5. Telescoping sum consistency check. Plot of T (a, b, c) as defined by (5.8) versus level \ell for
a = \BbbE [\| u\ell \| 2L2(G)  - \| u\ell  - 1\| 2L2(G)], b = \BbbE [\| u\ell \| 2L2(G)], and c = \BbbE [\| u\ell  - 1\| 2L2(G)] for different smoothness parameters
\nu .

0 and 0.4 for the levels and smoothness parameters tested (Figure 5) and in particular is well
below 1. This indicates that our implementation of the MLMC algorithm correctly satisfies
the telescoping summation formulation.

5.2. MLMC convergence. We now consider the convergence of the MLMC method ap-
plied to (5.1). In the case where u is sampled exactly, the assumptions of the MLMC conver-
gence theorem (Theorem 2.2) hold for the h-refinement case with constants \alpha = 2 and \beta = 4
[8]. Furthermore, since we use multigrid to solve (5.1) and (3.3), we have \gamma = d. In the case
where \nu > 1, the Mat\'ern field smoothness increases [1], and we expect higher convergence
rates for the solution of (5.1). For integer \nu and exact sampling of u, if the domain G is of
class C\nu +1, then the MLMC parameter values are given by \alpha = min(\nu +1, p+1) and \beta = 2\alpha ,
where p is the polynomial degree of the Lagrange elements used [26].

In our case, u is approximated with the FEM, and this could affect convergence. To
verify that this is not what happens in practice, we first solve (1.3) with FEM for the same
parameter values as those in subsection 5.1, namely \lambda = 0.2, \nu = 1, and \nu = 3 (k = 1 and
k = 2, respectively, in 2D) and \nu = 1/2 (k = 1 in 3D) using P1 elements for \nu = 1/2 and
\nu = 1 and P2 elements for \nu = 3. We then use the approximated Mat\'ern fields computed this
way as coefficients in (5.1), which we solve again using the same choice of finite elements.

Results are shown in Figures 6 and 7. We observe that the convergence is unaffected by the
approximation of the Mat\'ern fields and that the estimated convergence orders agree with the
theory [8]---apart from some discrepancies in the 3D case. This irregular behavior is probably
due to the nonuniformity of the hierarchy (as we see from Table 2, the quality of the 3D
meshes decreases with the level). This issue does not arise if the same numerical experiment
is performed using a uniform hierarchy (hierarchy mesh sizes are given by h\ell = 1.732 \times 2 - \ell ;
see Figure 8).D
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Figure 6. Convergence behavior of the FEM approximation to the solution of (5.1) with h-refinement in
2D. The estimated convergence orders agree with the theory [8, 26].
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Figure 7. Convergence behavior of the FEM approximation to the solution of (5.1) with h-refinement in 3D.

We now investigate how MLMC performs in practice. We use standard Monte Carlo
and MLMC to estimate \BbbE [\| q\| L2(G)] to the same accuracy for \nu = 1 (2D), P1 elements, and
different error tolerances \varepsilon (cf. (2.4)). Again, the coefficient u of (5.1) is also approximated
with the FEM. We keep track of the total computational cost C\mathrm{t}\mathrm{o}\mathrm{t} and, in the MLMC case,
of the number of samples N\ell taken on each level.

Results are shown in Figure 9. We observe that the number of levels used increases as the
tolerance \varepsilon decreases (Figure 9 (left)). This behavior reflects the targeted weak error accuracy
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Figure 8. Convergence behavior of the FEM approximation to the solution of (5.1) with h-refinement in
3D using a hierarchy of uniform meshes. The estimated convergence orders agree with the theory [8]. The mesh
sizes are given by h\ell = 1.732\times 2 - \ell .

[20]: the number of samples is chosen by the MLMC algorithm so as to optimize the total
computational effort [19], and it decreases with the level, with many samples on the coarse
levels and only a few on the fine levels. As \beta > \gamma (cf. Theorem 2.2), we expect the total cost
of the MLMC algorithm C\mathrm{t}\mathrm{o}\mathrm{t} to be proportional to \varepsilon  - 2. Figure 9 (right) shows \varepsilon 2C\mathrm{t}\mathrm{o}\mathrm{t} versus
\varepsilon , and indeed, we observe a near constant \varepsilon 2C\mathrm{t}\mathrm{o}\mathrm{t} for the MLMC algorithm across multiple
choices of \varepsilon . Figure 9 also compares the MLMC cost with the cost of obtaining an estimate of
the same accuracy with standard Monte Carlo. We observe that the MLMC algorithm offers
significant computational savings compared to standard Monte Carlo, with an improvement
in the total cost C\mathrm{t}\mathrm{o}\mathrm{t} of up to three orders of magnitude (Figure 9, right).

Finally, we consider the convergence of MLMC with p-refinement. We follow the same
procedure as that in the h-refinement case and solve (5.1) after approximating the coefficient
u by solving (1.3) with FEM. This time, however, we fix the mesh to be the coarsest mesh in
the 2D hierarchy (cf. Table 1), and we consider a hierarchy of continuous piecewise polyno-
mial elements of increasing polynomial degree p = 1, . . . , 8. We investigate the convergence
behavior for different values of \nu , namely \nu \in \{ 1, 7, 31\} (corresponding to k \in \{ 1, 3, 15\} ).

We observe in Figure 10 that convergence is geometric (the error decreases exponentially
as the polynomial degree p grows). The solution of (5.1) is actually almost surely not analytic,
and we would therefore expect algebraic convergence (i.e., the error decreases polynomially as p
grows) [2]. We hypothesize that this better-than-expected convergence is in fact preasymptotic
behavior and that the geometric convergence will eventually plateau and switch to a slower
algebraic rate that depends on the smoothness of u (the larger \nu , the faster the convergence)
[21, 35]. However, apart from the \nu = 1 case for which the convergence plot begins to tail
off, this is not observed for the polynomial degrees considered. We note that the larger the
smoothness parameter \nu , the faster the convergence of the expected value. The variance
convergence order, on the other hand, seems to be unaffected by the value of \nu .
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Figure 9. MLMC convergence for the solution of (5.1). In the plot on the left we show how the MLMC
algorithm automatically selects the optimal number of samples N\~\ell on each level to achieve a given tolerance
\varepsilon . Note that the MLMC routine uses the second mesh in the hierarchy described in Table 1 to define the first
level \~\ell . The first mesh in Table 1 is dropped since it is too coarse, and it would not bring any significant
advantage to the performance of MLMC [20]. In the plot on the right we compare the efficiency of MLMC with
standard Monte Carlo for different tolerances. The savings of MLMC with respect to standard Monte Carlo are
considerable.
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Figure 10. Convergence behavior of the FEM approximation to the solution of (5.1) with p-refinement in
2D. The approximate FEM solution q\ell on level \ell is obtained by using Lagrange elements of degree p = \ell . For the
polynomial degrees considered we are only able to observe a preasymptotic behavior, in which the convergence is
geometric. The dashed and solid lines in the left plot indicate the estimated convergence order of the expected
value (for \nu = 1 and \nu = 31, respectively). The solid line in the right plot indicates the estimated convergence
order of the variance for all the values of \nu considered.
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6. Conclusions. In this work, we have presented a new sampling technique for efficient
computation of the action of white noise realizations---even when coupled samples are required
within an MLMC framework. This technique applies for general L2-conforming finite element
spaces, and it allows the coupling of samples between nonnested meshes without resorting to
a computationally costly interpolation or projection step. The numerical results show that
our technique works well in practice: the convergence orders observed agree with existing
theory, the number of supermesh elements grows linearly with the finer parent mesh size,
the covariance structure of the sampled fields converges to the exact Mat\'ern covariance, and
the consistency of the telescoping sum is respected. As a concluding remark, we note that
our sampling technique is not limited to Mat\'ern field sampling but extends naturally to
any application in which spatial white noise realizations are needed within a finite element
framework.
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