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1 Introduction

A network describes
pairwise relationships
between objects, such
as friendship between
individuals.

Many systems in society and the physical world are organised into networks of
interconnected elements, be it social networks such as Facebook, the electric grid, or the
complex circuitary in our brain. In many of these systems, the network is vast,
complicated, and messy. We would like to distill the information contained in a network
into simple descriptors that are interpretable and informative. Topological data analysis
(TDA) is one such means of distillation, describing the ‘shape of data’ using concepts
from algebraic topology.

Our interest is in exploring the passenger social network in the Great Britain database
of Emirates. The passenger social network is constructed using flight booking data. If
passengers book flights together, they know each other. Thus we can draw edges between
passengers on the same booking. This network is dynamical; as time goes by, new edges
are formed between passengers, and a set of passengers may fly with Emirates multiple
times. Hence given two customers a (for Alice) and b (for Bob), we can assign a weight
wab(t) that counts the number of bookings betwen Alice and Bob up to time t.

Our aim is to use TDA to analyse how a collection of passengers form connections with
each other and create clusters. We are interested in clusters of frequent fliers since they
represent brand loyalty on a collective and social level, which is more valuable than brand
loyalty exhibited by isolated frequent fliers. We focus on nine networks in the Emirates
data set, each consisting of about 100 passengers who flew with Emirates between 2012
and 2017 with no prior record with Emirates before 2012. We then use TDA to extract
topological information from the network and use them to compare and contrast the nine
communities of passengers.

Glossary of terms
� Simplex (of passengers): a collection of (n+1) passengers form an n-simplex if each

pair of passengers in this collection have flown together at least n times.

� Simplicial Complex: a collection of simplices. If a simplex σ is in the simplicial
complex, then all sub-collections of passengers in σ are also in the simplicial complex.

� Filtered Simplicial Complex: an evolving simplicial complex. As time evolves,
simplices are added to the simplicial complex. Simplices cannot be removed from a
filtered simplicial complex during its evolution.

� Boundary: The boundary of an n-simplex is the collection of (n − 1)-simplices, or
subsets of n passengers, in the n-simplex. For example, the boundary of a 2-simplex
of three passengers are the three unique pairs of passengers in the 2-simplex.

� Cycle: an n-cycle is a collection of n-simplices that has no ‘end’. For example, the
three unique pairs of passengers that can be made from three passengers form a
graph that starts and ends in the same place; hence the three pairs form a 1-cycle.

� Homology: the kth homology is the set of k-cycles in a simplicial complex, excluding
cycles that are boundaries of some collection of (k + 1)-simplices.

� Persistent Homology:Arecord of the birth anddeath of cycles in a filtered simplicial
complex as time evolves.

2 Topological Data Analysis
Topological data analysis (TDA) is the process of computing persistent homology on a set
of time-dependent combinatorial data, such as a time-evolving network. We summarise
the TDA pipeline in Figure 1.

The Filtered Simplicial Complex

A simplicial complex
encodes relationships
between any number
of individuals,
generalising the
notion of a network.

The first step in TDA is to assemble the data into a filtered simplicial complex. An
abstract simplicial complex, or simplicial complex, is a generalised version of a network.
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Figure 1 – The TDA pipeline. Firstly, we organise the data into a filtered simplicial complex.
We then compute the persistent homology of the filtered simplicial complex and produce a
barcode that we can interpret and analyse.

A network only describes relationships between pairs of nodes, whereas a simplicial
complex is a collection of relationships that can occur between any number of nodes. We
call a relationship a simplex. For example, take three passengers, Alice (a), Bob (b) and
Charlie (c). We can construct different relationships between them:

• A 0-simplex, describing one individual, is a node, e.g. 〈a〉, 〈b〉, 〈c〉;
• A 1-simplex, describing pairwise relationships, is an edge, e.g. 〈ab〉, 〈ac〉, 〈bc〉;
• A 2-simplex describing triadic relationships, e.g. 〈abc〉.

If an n-simplex between n + 1 individuals exists in the simplicial complex, then all
combinations of relationships between the n + 1 people in the simplex must also exist in
the simplicial complex. For example, if there is a relationship between Alice, Bob and
Charlie 〈abc〉, then Alice and Bob 〈ab〉, Alice and Charlie 〈ac〉 and Bob and Charlie 〈bc〉
must also have a relationship with one another respectively and thus exist in the
simplicial complex. The people involved in the relationship 〈a〉, 〈b〉 and 〈c〉 must also
exist. In this case, the simplicial complex is

{〈abc〉 , 〈ab〉 , 〈ac〉 , 〈bc〉 , 〈a〉 , 〈b〉 , 〈c〉}.

If Bob does not have a relationship with Charlie, then we take the relationship 〈bc〉 out of
the complex. Since Alice, Bob and Charlie cannot have a collective triadic relationship if
Bob and Charlie does not have a relationship with each other, we also need to remove the
〈abc〉 from the complex. Thus the simplicial complex in this case is simply

{〈ab〉 , 〈ac〉 , 〈a〉 , 〈b〉 , 〈c〉}.

which reduces to a network with only pairwise relationships.

We are free to define what we mean by a relationship in the context of the data. In our
application, we define an n-simplex to be a collection of n + 1 passengers, where each
pair of passengers in the simplex have shared at least n bookings between them. In other
words, the edge weight between the individuals of the network is at least n. For example,
Alice, Bob and Charlie is a 2-simplex if wab ≥ 2, wac ≥ 2 and wbc ≥ 2. An n-simplex is
thus a cluster of n + 1 individuals who have demonstrated a collective loyalty to Emirates.

As bookings accumulate over time, the simplicial complex evolves. Initially, we assume
that all passengers are disconnected. Edges are then formed between passengers, and
as the same set of passengers fly repeatedly with Emirates, they emerge as clusters. The
series of simplicial complexes evolving over time is called a Filtered Simplicial Complex,
or simply a filtration. In our data, time is a natural parameter over which we evolve
the filtration. We show an example in Figure 2. At t � 2, a booking between the three
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passengers highlighted in red increments the weights of the edges between them by one
and adds an extra edge to the simplicial complex comparedwith t � 1. At t � 3, a booking
between the two passengers highlighted in red increments the edge between them by 1.
As a result, this introduces a 2-simplex as we have three passengers who have travelled
with each other at least twice as pairs.
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Figure 2 – Top: a filtered simplicial complex of passengers. The weight associated to the
edge between a pair of passengers is the number of times the pair have booked together.
Edge weights do not decrease with time. A two-simplex between three collectively loyal
customers, such as the orange triangle in the diagram, closes a hole, or 1-cycle, in the
simplicial complex. Below: we can parametrise the birth and death of such holes with a
barcode. Each bar represents an independent 1-cycle. The edge added at t � 2 splits an
existing cycle into two, creating an extra bar in the barcode. The death of a cycle at t � 3
terminates one of the bars. The remaining persistent cycle is represented by a bar with an
arrow tip.

Persistent Homology
In simple terms, the homology groups of a simplicial complex represent the collection
of connected components, loops, cavities or higher dimensional ‘holes’ in a simplicial
complex. Consider the simplicial complex shown in Figure 3. The simplicial complex
has two components that are not connected with each other, a one dimensional hole
enclosed by 1-simplices, and a two dimensional cavity enclosed by 2-simplices in the
hollow tetrahedron on the left hand side. In the language of homology, we say the 0th
homology group H0 (describing the connected components) has two elements, the 1st
homology group H1 (describing the one-dimensional loops) has one element, and the 2nd
homology group H2 (describing the two dimensiona cavities) also has one element.

Each connected component
is an element in H0

The 2-dimensional cavity
in the hollow tetrahedron
is an element of H2

a simplicial complex
The one dimensional
hole formed by edges is
an element of H1

Figure 3 – A simplicial complex with two H0 elements, one H1 element and one H2 element.
The shaded orange triangles represent 2-simplices between three passengers.

Persistent homology
summarises changes
in the ‘shape’ of data
as time evolves.

Persistent homology describes how these homologies appear and disappear over time as
the simplicial complex evolves in the filtration. We can represent the persistent homology
of a filtered simplicial complex as a barcode. We show the H1 barcode of a filtered
simplicial complex at the bottom of Figure 2. At t � 2, the additional edge splits an
existing 1-cycle into two, creating two independent 1-cycles. At t � 3, the additional two-
simplex, represented by the orange triangle in the figure, kills one of the 1-cycles in the
simplicial complex. This series of events is recorded in the H1 barcode below the filtered
simplicial complex. Each bar in the H1 barcode represents an independent 1-cycle. A new
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bar emerges at t � 2 when a new 1-cycle is created and a bar is terminated at t � 3 when
a 1-cycle dies. The surviving 1-cycle, denoted by a bar with an arrow tip, is said to persist.Persistence diagrams

provide a succinct
summary of the
changes in the
topology of the
simplicial complex in
the filtration.

Using persistent homology, we parametrise the evolution of combinatorial data, the
simplicial complex, as a collection of points (b, d) representing the birth and death of bars
in the barcode; therein lies the real power of persistent homology. Bars that persist are
assigned a death time d � ∞. In figures 4a and 4b, we plot the birth and death of cycles
in networks 3 and 4 respectively. These plots are called persistence diagrams.
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Figure 4 – H1 persistence diagrams for networks 3 and 4 respectively. Points lying on the top
red line at ‘infinity’ represent cycles that do not close. Points close to the diagonal have a
short lifetime. Each site on the diagrammay be occupied bymultiple points, themultiplicity
being indicated by the colour of the point.

Statistics on Persistance Diagrams
Given thepersistencediagramsof a network,wepropose twomeasures that extract specific
information about the evolution of the network’s structure and passenger relationships.
We note that adding an edge either joins two disjoint connected components, or connects
nodes within the same component. The first measure tracks the tendency of a network
to form cycles or grow tree-like branches as time goes by. We would like to compare
these two mechanisms. If the first mechanism dominates, then the main component of
the simplicial complex is tree-like, reaching out to connect more vertices as time goes by.
However, if the second mechanism dominates, the complex folds on itself and reduces
the distance between connected passengers. In the first case, the complex becomes more
extensive; in the second case, it becomesmore compact. We can use data from the barcodes
to help us quantify these competing behaviours. Edges added between disjoint connected
components cause H0 bars to terminate and those added between passengers in the same
component case create H1 cycles. We can measure, at each time step t,

η(t) � (# H1 births before t − # H0 deaths before t) per node.

Networks with lower η values are considered to be more tree like than those with higher
values.

Another measure we can extract from the persistence diagrams is the number of
2-simplices created at each time step. We recall that a 2-simplex is a collection of three
people with a high collective loyalty to Emirates. 2-simplices that are created early in the
filtration are the trios of passengers who book more frequently with each other and thus
accumulate weights quicker to reach the threshold of two bookings between each pair
than trios corresponding to 2-simplices that are created later in the filtration.

Networks with more 2-simplices show a greater collective loyalty. We can assign to each
network a score for collective loyalty which we call z, which is the number of 2-simplices,
weighted such that the 2-simplices formed later in the filtration contributes a smaller value
to the score. Since each 2-simplex birth must lead to a cycle death or a void birth, we can
simply perform a weighted count of the number H1 deaths and H2 births.
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3 Results on Emirates data
We compute η(t) and z for each of the networks in the Emirates data set. In Figure 5, we
plot η(t) for the nine networks in our dataset. While all networks show positive η values at
the last time step, networks 1, 3, 4, 5 and 8 clearly have a larger value of η; moreover, they
show a positive rate of increase in η, sustained over approximately 800 days, whereas the
other networks show little sign of increase. We conclude that η is useful in distinguishing
between the dynamics of different networks.

In Figure 6, we plot a box and whiskers diagram of the distribution of 2-simplex birth
times for different networks and their z scores. We see that network 4 and 3 have the
highest z scores since they have the most 2-simplices. In particular, the distribution of
2-simplex birth times of network 4 is biased towards earlier times, which indicates that
bookings between passengers in a 2-simplex tend to accumulate at a faster rate compared
to those in network 3.

We also observe that η and z contain different information about the dynamics of the
network. While networks 1, 5 and 8 score highly in η (see Figure 5) after 2000 days, they
are ranked some of the lowest in z, having no 2-simplices, suggesting while passengers in
these networks are separated by small distances on the social network, none of them fly
frequently together as a collective. On the other hand, networks 3 and 4 are ranked high in
the z score and have a high η value and rate of increase. This suggests that there are some
collectives of individuals in networks 3 and 4 with a special affinity for Emirates, with
plenty of mutual acquantainces who have also flown with Emirates, albeit less frequently.
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Figure 5 – η vs time of the filtration, which compares the number of edges responsible for
linking previously disjoint connected components and the edges that connect passengers
who are already connected in the same component. The coloured lines represent each
network.

4 Discussion, conclusions, & recommendations
We have applied TDA to analyse nine passenger social networks in the Great Britain
database of Emirates. Firstly, we reorganised the social networks into simplicial
complexes, encoding cliques of passengers that show collective loyalty to Emirates as a
simplex. We then computed the persistent homology of the evolving simplicial
complexes, summarising the birth and death of cycles in the simplicial complexes as
persistence diagrams. Analysing the persistence diagrams, we observe that networks 3
and 4 in the data merit special interest. In networks 3 and 4, new bookings tend to take
place between passengers with mutual acquantainces and numerous passengers in those
networks show collective loyalty to Emirates.

Insights from TDA point to a set of actions that could improve a customer’s loyalty.
Passengers adjacent to the collectives of loyal passengers in networks 3 and 4may respond
well to marketing strategies as they may be influenced by acquantainces who are deeply

5



4 3 2 7 9 5 8 6 1
Network

0

500

1000

1500

2000

B
ir

th
ti

m
e

(a) Each point marks the birth time of a 2-
simplex in the given network. The box and
whiskers plot for each network shows the
median, quartiles, range and outliers of the
distribution.
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is a measure of a component’s collective
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Figure 6 – Graphs showing the number of 2-simplices in a network and the time taken for
2-simplices to be created to generate a score z for the collective loyalty of passengers in a
network. Networks 1, 6 and 8 have no 2-simplices and have score z � 0.

loyal to Emirates. Relationships with individuals who show collective loyalty should be
cultivated. Given their high z values, networks 3 and 4 might represent organisations
which have special incentives to fly with Emirates, and further data might be gathered to
learn more about them as an organisation of people.

There is scope to extend our current body of work. We can transform persistence
diagrams into ‘vector representations’ such as persistence landscapes and persistence
images. These vector representations are amenable to analysis using traditional data
analytics and machine learning algorithms. For example, if we are given a large
collection of social networks, we can cluster them into different classes using vector
representations of their persistence diagrams as inputs in clustering algorithms. This
may drive investigations into developing different sales strategies for passengers in
different classes of social networks. We can also compute the persistent local homology
of a passenger, a variant of persistent homology which characterises the evolution of a
passenger’s connections with its neighbours in the social network. This would allow us
to classify passengers based on the shape of their local neighbourhood, and target
individuals who are influencers in their social network.

5 Potential impact
The field of topological data analysis is barely a decade old, and applications of TDA to
network data is an even more recent development that has only started in earnest in the
past few years. As a proof of concept, we have demonstrated that TDA has important
contributions to furthering our understanding of time evolving network, due to its ability
to summarise abstract network features as numbers that are interpretable and amenable
to further analysis. Moreover, we have shown that TDA outputs can be translated into
actionable business insights. This lends confidence to further research into applying TDA
to network data in other aspects of business.

Dr Andrew Mellor, Oxford-Emirates Data Science Lab, said: “Ambrose has done a deep-dive
into topological data analysis, covering far more than just the traditional techniques. This has been
extremely informative for the Lab as we have seen both where TDA gives interesting insight, and
where it fails. Overall the project has gone very well, and we have learned new things about the
social customer which can potentially be operationalised. ”
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