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Introduction

Thank you for participating in the Oxford Mathematics Escape Room.
We hope that you enjoyed the evening. This event was made possibly
with funding from the Oxford University Public Engagement with
Research Seed Fund.

In this booklet, you will find the puzzles, together with solutions and
brief notes describing the links to Oxford Mathematics research.

If you enjoyed this, you may wish to attend our Public Lectures. You
can sign up by emailing external-relations@maths.ox.ac.uk.

You can also follow us on Facebook (@0xfordMathematics), Twitter
(@0xUniMaths) and Instagram (@oxford.mathematics).
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THE POLICE BRIEFING

Sometime between 2pm and 3pm, the priceless 400-year-old portrait of Henry
Savile was stolen from the office of the Savilian Professor of Geometry. The
painting was in the office at 1400, when the Professor left to go to a Research
Committee meeting. They left their office door unlocked. At precisely 1405, the
Professor’s PA heard someone enter the office. The PA heard the person leave
again at about 1410.The Professor got back to their office at 1500, and found
the painting was missing. The theft was immediately reported to the police. The
working theory is that the thief entered the office at 1405.

Nobody has seen the portrait leaving the building, so it is presumably stashed in
the building to be retrieved by the thief/thieves overnight.

Forensics found an unexplained partial footprint in the Savilian Professor’s office.
The working theory is that this belongs to the thief, who discovered their muddy
footprints and cleaned their feet at this point. Other muddy footprints have been
found in eight other locations in the Andrew Wiles Building. Forensics have
discovered that there are 9 different types of muddy footprint.

There is CCTV on the entrance to the building, but the hard drive has
malfunctioned and the images have been corrupted. This means that it is not
possible to trawl through all the CCTV data.s

By identifying the thief’s footprints, it should be possible to work out which
places they visited in the Andrew Wiles Building. By finding the shortest path
between these places (which the thief presumably took), it will be possible to
work out when the thief entered the building, and so to look at just the relevant
CCTV images.

There were some mysterious T-shapes found in a corridor by the faculty offices.
The police believe that two people were involved in the theft of this portrait.

Your task is to help the police with their investigation, by uncovering the identity
of the two thieves and finding the portrait before it is smuggled out of the
building.
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Fact sheet

The Savilian Professor left their office at 14:00 to go to a mesting.

The Professor's PA heard someone enter the office at exactly 14:05:00, and leave again about
14:10. They presumed that the Professor had forgotten something and had returned

to pick it up.
The theft was reported when the Professor returned at 15:040.

A partially cleaned footprint was discovered in the office. Only two patches of mud remain,
and in these the mud has been smudged =0 the the detail of the print is gone.

A number of other footprints have been discovered at seven places around the building. A
careful analysis reveals there are 9 different types of print.

The working hypothesis i that one of these prints belongs to the thief. They entered the
building, ran a number of errands, and then went to the Savilian Professor's office,
arriving there at 14:05:00. Before leaving the Professor's office the thief realised they
were traipsing mud around, and tried to clean the prints in the office, and their shoes
{perhaps they even removed their shoes).

There is CCTV footage available for the front entrance of the building, but the hard drive
has boen corrupted so that the images are only partial and it takes some time to retrive
an image from the system. There is therefore no way we ean go through all the footage.

If we can work out which places the thief visited between entering the building at @ and

arriving at the Savilian Professor’s offiee €, and we can work out which route they
tock {the working hypothesis is that they would take the most efficient route), then we
can identify what time they entered the building, and therefore which CCTV images
we should focus on.
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THE OPERATIONS ROOM:
The muddy footprints
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The footprint evidence found in the Savilian Professor’s room.
The mud in each square has run, so that all we know is the average
imtensity for those squares in the original print.
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Footprint number 3

Footprint number 2

Footprint number 1
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Footprint number 6

Footprint number 5

Footprint number 4
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Footprint number 9

Footprint number 8

Footprint number 7
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Intensity gauge
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The muddy footprints: Solution

Footprint 8 belongs to the thief.

There were two squares of mud remaining of the footprint found in the Savilian
Professor’s office. Looking at these two regions in the nine footprints found by
Forensics, there are three different possibilities for each square.

R E ﬂ D
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It’s possible to see by eye now that for the suspect’s footprint, we need the
middle of the three boxes on the left, and the first box on the right. These
correspond to footprint 8.

The muddy footprints: Explanation and

discussion

We could check that it’s footprint 8 with the help of the intensity gauge. The
grey colour in the suspect’s footprint is halfway between black and white. In the
left box, there are always 10 small white squares, and then six small squares that
are black, grey or white. It's possible to assign numerical values to these to
measure the intensity. For example, if black has intensity 1, grey intensity 0.5
and white O, then averaging over the sixteen squares would give 6/16 = 0.4 on
the left, (6 x 0.5)/16 = 0.2 in the middle, or O on the right. Using the intensity
gauge shows that the suspect’s footprint has intensity 0.2.

We can do something similar for the right box. Here there are 5 white squares, 4
black squares, and 7 that are black, grey or white. These correspond to
intensities 11/16 = 0.7, 7.5/16 = 0.5, and 4/16 = 0.25. Using the intensity
gauge shows that the suspect’s footprint has intensity 0.7.

Oxford .
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To generate the footprints, we created a “base” footprint (shown here on the
left), and two “perturbation footprints” (centre and right). Starting from each
base footprint, we added a white, grey or black version of each of the two
perturbation footprints (adding a white version doesn’t change anything). This
gave the nine footprints.

- r T
|"-._._'_ .
% Lt r -
= | e
i &
I
| 2]
_'|' 1 ll'.
_'._._-' :I

For the suspect’s footprint, we found the intensity of the smudged square (a
number between O and 1), and converted this to greyscale. Because the two
chosen smudged squares overlap with the perturbation footprints, this is enough
information to find whether the white, grey or black version of each perturbation
footprint was added.
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The intensity scale is useful to overcome optical illusions where the shade of a
colour appears different to the human eye depending on the surrounding colours.
It gives a precise way to measure the level of grey.

This problem is related to the mathematical area of compressed sensing. This is
important in a range of practical applications, for example in medical diagnostic
imaging.

One way to store a black-and-white digital photograph is to record the grey
level of each pixel in the image. (This is the RAW data format.) This gives a high-
fidelity image, but it takes a lot of memory to store so much information.

Another way to store the image is to build up an approximation to it as a sum of
multiples of special “basis” images. Often the number of basis images that have
to be added to get a good approximation of the original image is much smaller
than the number of pixels, so this involves storing less information. If this is the
case, the representation of the image is called “sparse”.

For our puzzle, we took a baseline image and added multiples of two basis
images, so that just two numbers were needed to record each image. We
restricted these two numbers each to be O, 0.5 or 1, so that we generated 9
images in total.

In real image compression, the basis images have to work for any possible
starting image you want to compress, so they are much more generic than the
footprints that we chose. It might take 40,000 basis images to reproduce the
image sufficiently accurately.

When you take a digital photo, the camera first records the greyscale for each
pixel. It then compresses the image by calculated the required multiples
(coefficients) of the basis images. These coefficients are then stored on the
memory card — between them they capture all the information needed for a
program (that knows the basis images) to reconstruct the original image.

The idea of compressed sensing is to bypass the first step. Why do all the work
of calculating the greyscale of 4 million pixels, if you are only going to store 40
thousand coefficients? Compressed sensing calculates the coefficients directly.
Because there are far fewer coefficients than there are pixels, this can be
achieved in a fraction of the time. This is important for applications. For
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example, in medical imaging this can reduce the time a patient has to spend in an
MRI scanner, and minimises the blurring of images caused by the patient moving.

In our puzzle, we were able to identify the two coefficients, and therefore the
correct footprint, by “measuring” only the average greyscale over two regions.
This was far less information than knowing the greyscale value of each pixel, and
yet we can “reconstruct” the whole footprint.

Mathematicians continue to research in the area of compressed sensing,
developing new and increasingly powerful techniques that help society in a
variety of ways.
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THE OPERATIONS ROOM
The shortest path
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Which footprints were found in which locations
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The shortest path: Solution

The thief took 430 seconds (that is, 7 minutes and 10 seconds) to move round
the building, so we should look at CCTV for 13:57:50.

From the footprint information, we know that the thief entered the building at
position 1, visited locations 3, 4 and 7, and then went to the Savilian Professor’s
office at 9 to steal the portrait.

The police have collected data on how long it takes to walk between locations.
We have to find the shortest path that starts at 1, visits 3, 4 and 7 in some order,
and finishes at 9. All journey times are given in seconds.

Here is a network representing the places we have to visit, along with the time
taken for each leg in seconds.

There are six possible routes, for the six possible orders of locations 3, 4 and 7.
We can calculate the total time each would take:

Route Time taken in seconds
1-3—-54—->7—->59 440
1-3—>7—54-59 505
1-4—-53—->7—->59 435
1-4—->7—->53->59 460
17535459 470
1-7—-4—-3-59 430

The shortest path is the final one, which takes 430 seconds, that is, 7 minutes
and 10 seconds.
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Since the thief arrived at location 9, the Savilian Professor’s office, at exactly
14:05:00, this means that they entered the building 7 minutes and 10 seconds
earlier, at 13:57:50, and so this tells us which CCTV shots to look at.

The shortest path: Explanation & discussion

This puzzle is an example of the travelling salesperson problem. In this problem,
traditionally we have a list of cities, and we know the distances between all pairs
of cities, and we have to find the shortest possible route that visits all the cities.
This problem has numerous applications that do not involve physical distance, but
instead involve perhaps time or cost, or other notions of "closeness”, and there
are many variations of the problem.

In our version of the puzzle, there were six possible routes, and it was practical
to work out the time for each and so to find the quickest. As the number of
calling points increases, the number of possible routes increases extremely fast,
and it rapidly becomes impractical to find the lengths of all possible routes.
Instead, mathematicians have developed a variety of techniques (algorithms).
Some give the best possible solution but work effectively only for small versions
of the problem, or versions with special features that make them easier to solve.
Others give a route that is guaranteed to be reasonably close to the best, but
might not be precisely the best.

An algorithm is an unambiguous sequence of instructions that will solve a
problem. (Knitting patterns are algorithms!) Mathematicians develop algorithms
for a wide variety of problems, from blue-sky questions in pure mathematics to
real-world applications with everyday practical relevance. Some problems can be
solved quickly with efficient algorithms. Others seem intrisically more difficult:
either there is no known algorithm that is guaranteed to solve the problem
quickly, or in fact it can be proved that no such algorithm exists. The "P versus
NP" problem is in the area of computational complexity. In 2000, the Clay
Mathematics Institute, whose offices are now here in the Andrew Wiles Building,
offered a prize of one million US dollars for the solution of each of seven Clay
Millennium Problems, chosen for their mathematical significance. One of these
problems is P versus NP, which, like five of the other Clay Millennium Problems,
remains unsolved for now. The Poincaré Conjecture is the only one of the
problems to have been solved so far.
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CCTV: Solution

The CCTV shows the suspect holding their data science homework, with their
name Martin Field on it.

The close-ups of the homework show this more clearly.
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CCTV: Explanation and discussion

This puzzle relates to the areas of image reconstruction and image alignment. In
each image a different part of the paper is shown. By piecing together the
information from different images, we can reconstruct the whole text. The
human eye is remarkably good at this. We can make sense of the images, even
though half of each image has been removed and turned black. Finding ways to
get computers to do this automatically is an ongoing subject of research.

Mathematicians have developed algorithms to try to automatically “in-paint”
missing areas of photographs. Many of these approaches try to mirror the way
the human brain seems to solve the problem. In our puzzle, the eye naturally joins
up the broken edges of the piece of paper, imagining one continuous sheet
obscured by the black lines. The algorithms similarly look for ways to join up the
lines in different parts of the image in the most natural way possible. These
algorithms are remarkably successful, and are even being used to help art
conservators to restore old masterpieces.

This puzzle involved not just in-painting one image, but also combining the
information from different images. To do this, we had to “align” the images, so
that the location of a point in the first image can be matched with the
corresponding point in the second image. Since the suspect has moved between
frames, the images do not align exactly, but the wording on the paper makes it
possible for the human brain to identify which parts of one image correspond to
which parts of the next.

One application in which such alignment problems arise is medical imaging. For
example, tissue samples are often analysed by taking very thin slices, and then
staining the slices with chemical markers that identify different components (cell
types, for example). The slices can then be stacked together to generate a three-
dimensional image. To do this, each sliced needs to be aligned with the slides
before and after it in the stack. Mathematicians have developed techniques to
automate this alignment process. Usually these algorithms attempt to place each
image in such a way as to minimise the different between it and its neighbours in
the stack
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Note

At this point teams split into two routes. Some went to interview the Savilian
Professor and then the Academic Admin Assistant. The rest saw the Academic
Admin Assistant and then the Savilian Professor. The puzzles worked the same in
either order.
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ACADEMIC ADMIN ASSISTANT
LECTURE TIMETABLING
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There are 9 lectures to schedule, with three rooms awvailable (L1, L2 and L3) at times
Bam-10am, 10am-11am, and 2pm-3pm. There are three lecturers:

S1-Analytic Topology

S2-Infinite Groups are lectured by Professor Anand
S3-Algebraic Geometry

S4-Complex Analysis
55-Solid Mechanics are lectured by  Professor Brown
S6-Numerical Linear Algebra

S7-General Helativity
S8 Combinatorics are loctured by Professor Chang
S0-Elliptic Curves

L1 has capacity 360, L2 capacity 210, and L3 capacity 110.
The timetable has to satisfy the following constraints:

1. There are 250 students taking S1-Analytic Topology.
2. Prof Chang refuses to lecture in L1.

3. Some students take both S2-Infinite Groups and 57-General Relativity, so these must
be scheduled at different times.

4. Prof Brown prefers to lecture S6-Numerieal Linear Algebra before 55-Solid Mechanies.
5. There are 150 students taking S9-Elliptic Curves.

fi. Some students take both S1-Analvtie Topology and S8-Combinatories, so these must
be scheduled at different times.

7. Prof Anand prefers to lecture S3-Algebraic Geometry in the afterncon.

& Prof Brown does not like to lecture in L1 first thing in the morning.

9. 52-Infinite Groups must be in a smaller room than 53-Algebraie Geometry.
10. 55-Solid Mechanics must take place in the morning.

11. Some students take both 53-Algebraic Geometry and S9-Elliptic Curves, so these must
be scheduled at different times.

12. 53-Algebraic Geometry must be in a larger room than 54-Complex A nalysis.
13. Prof Chang does not like to lecture in L3 in the afternoon.
14. 57-General Relativity mmst be in a smaller room than S6-Numerical Linear Algebra.
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The following grid may be wseful. Each row, eolumn and 3x3 box should contain exactly
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Academic Admin Assistant lecture
timetabling: Solution

9am-10am 10am-11am 2pm-3pm
subject room subject room subject room
Prof S1 L1 S2 L3 S3 L1
Anand
Prof S6 L2 S5 L1 S4 L3
Brown
Prof S7 L3 S9 L2 S8 L2
Chang

Lecture Timetabling: Explanation and
discussion

This is a classic type of logic puzzle. As Sherlock Holmes says, the key is to
eliminate the impossible. This is made easier by having an effective way to keep
track of the information you have and what you have deduced from it. The grid
we gave you was one convenient way to do this.

The information given can be used to eliminate boxes. For example, point 1 says
that there are 250 students taking S1, so it must be held in L1. The updated grids
after points 1 and 2 have been taken into account are shown here, followed by
the completed grid.

9—10 10-11 2-3
L1 L L3 LI L2 L3 L1 L2 L3
51
Anand 52
53
54
Brown 53
56
57
Chang S8
59
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O-10 10-11 2-3
Ll L2 L3] LI L2 L3 L1 L2 L3
51
Anand 52
53
54
Brown 55
56
57
Chang S8
59

51

Anand 52

5 PO XXX
XPSRIRIXIXPIX
XXX

XXX XXX

Brown 55

56

57 XXX
a3 DX XXX O

59

DD IXXIXIX

We provided more clues than were strictly necessary. Removing clues 1, 3, 6 and
12 would still only leave one solution to the puzzle.

The foundation of all mathematics is the logical deduction of consequences from
assumptions.

This particular problem is also related to Operations Research (also called
Operational Research), and in particular to scheduling problems and optimisation.
In this field it is typical to have some constraints, and an “objective function”
(such as cost, or time). The goal is to devise a schedule that satisfies all the
constraints, and that minimises the objective function. In this case, we designed
the puzzle so that there is only one solution that satisfies all of the constraints.
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SAVILIAN PROFESSOR OF
GEOMETRY — MARBLE RUN
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Reconstruet the run so that it satisfies the following eriteria:

entry above base coloured | exit at base coloured
red orange
orange purple
vellow orange
green orange
blue yellow
purple yellow

The run is three levels high above every base. The base pieces are in a circle in the order
red, orange, yellow, green, blue, purple:
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Short chutes couple nearest neighbours:

R

Long chutes go across the middle and couple opposites:
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Savilian Professor marble run: Solution

To make it easier to see, here is the solution stretched into a line rather than a
circle.

Marble Run: Explanation and discussion

To create this puzzle, we looked at all possible marble runs that can be
constructed using these pieces. For practical reasons, we restricted ourselves to
runs that don’t have a chute between the red base and the purple base. These
runs can be “opened out” and displayed as a line rather than a circle (as in the
solution above). This also removes the overcounting where each run effectively
occurs 6 times, corresponding to rotating the circle of bases.

We looked at the input/output pairs for each run. We restricted ourselves to
marble runs with a unique solution.

We narrowed the list further by removing marble runs where a marble goes into
one colour and comes out of the same colour (red to red, for example).

This left ten possible marble runs, illustrated below.

This is an example of an “inverse problem”. Given a set of inputs and the
corresponding outputs, and an understanding of the “rules”, we have to
reconstruct the internal system. This is very similar to problems in medical

Oxford 7 N’ .
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imaging and seismology. A known input wave is applied, and the resulting
reflected/transmitted wave is measured. We have to infer the structure of the
unknown material.

Inverse problems are notoriously difficult. Given a marble run, it is easy to
discover which inputs lead to which outputs (the “forward” problem): simply put
a marble into each input and see what happens. But for the inverse problem you
have to keep trying possible structures until you get to the right one.
Mathematical techniques for inverse problems usually hinge on a sensible way to
update a wrong guess. In this case we might move chutes that carry marbles that
end up in the wrong place, but leave those that carry marbles that end up in the
right place.
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The Cxford Mathematics Newsletter « Spring 2019

Spotlight on Sir
Henry Savile

Art exhibition
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Oxford math'emqticai alphabet
Research hig
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In This Issue... New starters

Mew starters A big welcome to our new graduate students.
Besearch highlights
Public lectures

Art exhibition

Oxford mathematical al-
phabet

Outreach

» Sir Henry Savile

Some 2018 highlighrs
and 2019 resolutions
from Institute members

My mathematical highlight
of 2018 was. .

Getting my first paper pub-
lished

Learning about D-modules
and the Bernstein-Sato theo-
rem

Advancing the state of the art
in cryptography

Research highlights

From L-funcdons to
tracking disease via data

My mathematical resolution
for 2019 is to ...

Solve the dynamics of strari-

fied flows at large scales using
statistical mechanical methods

Solve the Riemann hypothesis

security and why vour
cup of coffee sloshes, our

researchers condnue to
expand the boundaries

of mathematics. In a
funding ENVironment
where impact is ever
more important, spread-
ing the word about our
important  and  intel-

Earmn myself a million dollars
in the process

Solve the turbulence problem

work is crucial. A full
range of our case stud-
ies can be found in the Research secdon of our website at:
hetp:// maths.ox.ac.uk/research/case-studies )
e
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Public Lectures Art exhibition
The audiences for our Oxford
Mathematics Public Lectures From 1st May o 9th May the instituie will be hosting an exhibition
are full of aspiring mathemati- of work by the Dutch artdse Pier Mondrian, including Composition in
cians still in their teens, and red, blue and green, shown below.

a healthy cohort from the “1
was useless at maths at school”
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Mathematics is an entry to

learning about science and |=
=
|

B

technology today, and our lec- 2 -t j—
tures cover as much maths and 1

life as possible—from tackling imm I
influenza via the mathematics I I II I I
of architecture to the enduring

miystery of prime numbers. .

Oxford Mathematical Alphabet

The Oxford Mathematics Alphabet posters are a way of promoting our
research and introducing potental students to our work. They can all
be viewed on, or downloaded from, the Marhematical Inseitute website.

All of our lectures are broad-
cast live and you can watch
them any time on our Oxford = :
Mathematics YouTube Chan- 5 L 5
nel.
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Outreach

Our Mathematical Institute
Outreach team visits and hosts
schools from across the coun-
try, especially those from
under- represented groups
and areas.

In 2016/17 we spent more
than 500 hours on outreach ac-
tivities, interacting with over
15,000 students. Over 300
of these individual students
would be the first in their fam-
ily to go to higher education,
over 600 came from neigh-
bourhoods where the fewest
number of people have histori-
cally entered higher education,
and over 700 came from high
deprivation neighbourhoods.
Over 1500 different schools
attended our events, or were
visited across the UK, and we
interacted with students from
nearly every local authority.

The 2017 UNIQ, PROMYS Eu-
rope and Sutton Trust summer
schools were all very success-
ful, with 64 students applying
and 20 students being made
admissions offers.

Mathematics

Sir Henry Savile

Sir Henry Savile (1549-1622) was a well-known En-
glish scholar and mathematician. He served as the War-
den of MerTon College, Oxford, and the Provost of Eton.

He endowEd the Savilian chairs
of Astronomy and of Geometry at
Oxford University in 1619. With a
bit of detective work, Savile was
one of the scholaRs who trans-
lated the New Testament from
Greek into English. Savile was
keen to impart his uNderstanding
of mathematics to his students
at Oxford, and in founding the
Geometry chair he gave thirteen
prepAratory lectures on the orig-
inal books of Euclid’s Elements in
1620.

There have been 20 Savilian Pro-
fessors of Geometry, including
John Wallis, who introduced the
use of oo for infinity, and Ed-
mond Halley, who successfully
pRedicted the return of the comet
named in his honour. The painting of Savile shown here still hangs in
the office of the current Savilian Professor of GeometrY, Dame Frances
Kirwan.

8 26 7 1 71 4 7 67 26 68

et L T
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Omn the represontation of numbers in different bases

8.J. Chapman
TOCTAM, Mathematical Instiuie, Andrew Wiles’ Building,
Raddliffe Infirmary Quarter, Wookstock Road, Ozford OX2 661G (LK)
(Dated: March 13, 2019)
Numbers are usually written in decimal format, otherwise known as base 10, However, it is
possible to use other boases. Here it is shown how to translate s number from one base into another.

I. INTRODUCTION

In place-value notation the position of a mumeral
within & mumber indicates its value. For example, in
the mumber 11 the first digit “1™ represents the num-
ber 10, since it lies in the second | “tens™) column, while
the second digit “1™ represents just 1, since it lies in the
frst (“units™) column. Not all number systems follow
this rule: in Roman mumerals, for example, 1, 10, 100
and 1000 are each given separate, distinet symbaols (1, X,
C and M, respectively [1]). However, caleulations with
numbers are much essier using positional notation, and
the system has now been universally adopted.

Omn the other hand, the convention that the second
column represents fene, and the third Aundreds, etc. =
somewhat arbitrary (and in fact probably arose because
we have ten fingers and thumbs). It is quite possible
to use a number other than ten as the base of the sys-
tem. Here we investigate the representation of numbers
in some other bases.

II. BINAKY NOTATION

Perhaps the simplest base to use is the number two.
Base two is also known as hinary notation (in the same
way that bese 100 is known as decimal notation) [2]. In
this case the second column represents the “twos™, the
third column the “fours” (4 = 2 x 2 = 92), the fourth
column the “eights" (B = 2% 2 x 2 = 2%, etc. Now
each column can contain only the digits 0 or 1, sines the
number 2 is represented by & “17 in the twos column. The
binary representation of the first 19 numbers is shown in
Tabla L.

‘We sep from this table, that the decimal number 13 for
example (which represents 1 = 10+ 3 x 1) is represented
in binary by the number 1101 (which represents 1 = & 4
1xd4+1=1)

III. TERNARY NOTATION

The next simplest base to uwse B the number three
Base three iz also known as ternary notation. In this
case the second column represents the “threes" | the third
column the “nines” (8 = 3% x 3 = 32), the fourth column
the “twenty-sevens” (27 = 3x 3 x 3 = 3%), atc. Now each
colummn can contain only the digits O, 1, or 2, since the

Mathematics L]

hinary decimal
representation  |represeotaticn
rrFErr 1w 1w’
188 4 21 o 1
1 1

10 2

11 3

100 4

1 01 3
110 L]
111 T
1000 -

1 001 9
1010 1 0

1 011 1 1
1100 1 2
1101 1 3
1110 1 4
1111 1 5
12000 1 &
1 0001 1 T
10010 1 8
102011 1 3

TABLE [: Binary representation of the first 19 numbers.

number 3 s represented by a “17 in the threes cohimn.
The ternary representation of selected numbsers is shown
in Table IT [3].

‘We ses from this table, that the decimal number 14 for
example (which represents 1 = 10+ 4 = 1) is represented
in ternary by the number 112 (which represents 1 = 9 4
1x34+2x1).

IV. HEXADECIMAL MOTATION

It is also possible to use bases which are greater than
ten. One base which is in common use in computing is
base 16, which is also known as hexadecimal notation [4).

When we use a base preater than 10 we need some
more symbols, since the numbers 10 to 15 must now be
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ternary decimal
repr ion | represeotation
3% 37 3* g7 w' 10"
IT9 31 0 1
1 1

2 2

10 3
11 4
12 5
20 8
z 1 7
2 8
100 9
1 01 1 0
10 2 1 1
110 1z
11 1 1 3
11 2 1 4
1 Z20 1 5
121 1 8
1 2 2 1 7
200 1 B
201 1 @
20 % z 0
210 1
211 2 2
21 % z 3
220 T4
221 2 5
22z z 8
2111 8 T
211 % 4 B
2120 4 9
2121 T 0
21 %2 % T 1

TABLE II: Ternary representation of the s=lected numbers

represented by a single digit in the “unit=" column. It =
commaon to sdopt the symbols A to F for these numbsers.

In bese 16 the second column represents the “six-
teens” | the third column the “two-lindred-and-ffty-
miwes” (256 = 16 x 16 = 167), ete. The hexadecimal
representation of the Arst 19 numbers is shown in Table

TII.

‘We see from this table, that the decimal number 18 for
example (which represents 1 » 10+ 8 x 1) i5 represented
in hexadecimal by the number 12 (which represents 1 =
16 +2 = 1).

hexadecimal decimal
epr ion Epr iom
18° 18" 18° ' 10”
258 16 1 w 1
1 1
z z
3 3
4 4
5 5
[ ]
T 7
3 B
g ]
A 1 0
B 1 1
C 1z
i 1 3
E 1 4
F 1 5
1 0 1 &
1 1 1 7
1 2 1 B
1 3 1 9

TABELE III: Hexadecimal representation of the first 19 nam-
bers.

V. CONCLUSION

Positional notation in which the wvalue of a digit de-
pends on its position within & number i an incredibly
useful concept. However, the use of ten as the base of
such & numbering system, though common, is somewhat
arbitrary. We have demonstrated in this paper how to
translate between numbers written in different bases,
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HANDBOOK OF
SIGNALLING SYSTEMS

BECKERLEG
ROBERTS
AND
YING

This version was created on February 26, 2019,
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Nautical signal code flags
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Newsletter — Sir Henry Savile coded
message: Solution

The message read “money in box”.

In the article about Sir Henry Savile, there were several mistakenly capitalised
letters. Taken in order, these spell the word TERNARY.

This indicates that the numbers under the article must be translated into ternary.
The “research paper” On the representation of numbers in different bases helps
with this. The result is

22 222 21 1 2122 11 21 2111 222 2112

Also, there are three words in the article that appear in a different font (san
serif). Taken in order, these read well-known Oxford detective. This was a clue
to Morse.

The numbers written in ternary represent letters written in Morse code. Here a 2
represents a dash — and 1 represents a dot - so the message becomes

The booklet of signalling systems helps to decode the letters, which translate as

M ONEYINBOX

Newsletter Coded Message:
Explanation and discussion

Mathematicians have contributed to the study of cryptography for a very long
time, both by designing tools that can be used to encrypt messages and by
developing techniques for decrypting messages. Famously mathematicians such
as Alan Turing and Bill Tutte, amongst many others, contributed to the work at
Bletchley Park, breaking the Nazis’ Enigma and Lorenz ciphers. Encryption is now
fundamental to everyday life: not only do governments and large companies
need secure communication methods, but also we rely on encryption for safe
online banking and shopping, for example.

Oxford
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Modern “public key, private key” cryptography draws on a variety of
mathematical ideas. Some relate to prime numbers, especially the idea that it is
(with the help of a computer) relatively quick to multiply two very large prime
numbers, but (even with the help of a computer) it is very time-consuming to
break up such a product into the original prime numbers. For example, it is quick
to multiply 29 and 37 to get the answer 1073, but given the answer 1073 it
takes much longer to factorise to find the primes 29 and 37 — and this effect
increases when the primes have many digits. Another approach to modern
cryptography uses elliptic curves, also famous for being one of the objects of
study in Andrew Wiles’s proof of Fermat’s Last Theorem.

When sufficiently powerful quantum computers become a practical reality, these
cryptosystems are not going to be strong enough. While a normal computer
takes a long time to factorise a number, there is an algorithm that will allow a
quantum computer to do it sufficiently quickly to threaten the integrity of the
code. For this reason, and because cryptography is so important to us all,
researchers in the Oxford Mathematical Institute are actively working on “post-
quantum cryptography”.

Newsletter faces board: Solution

The faces board reveals the name SMITH, which belongs on the ID card found by
the Academic Admin Assistant.

Newsletter faces board:
Explanation and discussion

The “Mondrian painting” was a clue to understanding the faces board. Viewed
from a shallow angle, it shows the words

WHICH NEW STUDENTS SHARE TRAITS WITH THE PHOTO ID

There were five clues, one for each blank letter space on the ID card, hidden in
different places in the Newsletter. Each clue is to a trait, and each trait gives a
letter. The five traits are glasses, eye colour, tie, clothes colour, and hair colour.
We need to identify which of the new students share each trait with the photo ID
(that is, no glasses, brown eyes, wearing a tie, blue clothes, dark brown hair). For
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each trait, the position of the students in the grid spells out a letter. The letters
are S, M, |, T, H, giving the name Smith.

The articles that give clues to the five traits are the articles mentioned on the
front cover of the Newsletter.

In the box “In This Issue...”, the first (coloured) letters of the 2018 highlights and
2019 resolutions of Mathematical Institute members spell out GLASSES.

In the box “Oxford Mathematical Alphabet”, there are three posters. Each one is
an | (eye), but they are in different colours. This is a clue for EYE COLOUR.

In the box “Art exhibition”, the Mondrian painting is called Composition in red,
blue and green. Looking at the colour squares in the painting, the red squares
form the letter T, the blue squares form the letter |, and the green squares form
the letter E. Taken in order, these spell TIE.

On the back page, the geometric shapes at the top and bottom of the page
correspond to two words that have been sliced in half (and turned upside down).
The words can be identified by folding the newsletter to match the edges. This
gives CLOTHES COLOUR.

Oxford .
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CLOTHES

LT

In the box “Research highlights”, the labelled points on the figure spell out HAIR
(red points taken clockwise) COLOUR (black points taken from left to right).

This puzzle is inspired by ideas of data visualisation. Each image has a lot of
associated data: position in the grid, glasses, eye colour, hair colour, hair style,
etc. We could represent each image by a point in a high-dimensional space, based
on its attributes. Each of the letters corresponds to picking out just one of the
variables, ignoring the others. This is a form of data visualisation. Repeatedly
doing this, for different variables, helps us to understand what the data looks like
in the high-dimensional space. However, clusterings that form when we consider
just one or two variables can be misleading: images may seem close together
based on one or two attributes, but are in fact far apart in the high-dimensional
space where we consider all the attributes. Such data clustering is an active area
of research, particularly in the field of bioinformatics, where the “images” may be
cells and the attributes may be active genes, for example.
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The locked padlock: Solution

To unlock the padlock we need the three-digit code 206.

The locked padlock:
Explanation and discussion

This is an example of a cellular automaton. Each row represents a state of the
system. To move from one row to the next, we must follow rules given by the T-
shapes. The colour of each box at the next step depends on its colour and also
the colours of its two neighbours either side. Only the highlighted squares have
to be filled in, because the boxes at the edge of the grid are known to be white.

Here is the full grid, with some of the T-shapes highlighted.

256128 64 32 16 8 4 2 1

16
56

100
222

144
248
136

206

To find the numbers in the column on the right, we think of each row as giving
the binary representation of a number. Here black represents 1 and white
represents O. There was a clue in the numbering of the T-shapes, because each is
labelled with the number corresponding to the top row of the T with the same
binary representation.

As well as being a mathematical curiosity, other types of cellular automata are
used to model a wide variety of systems in biology and physics. For example,
they can describe the propagation of disease or of rumours, the evolution of a
population of organisms, and the flow of granular materials. The states of a box
might be “healthy”, “diseased” or “recovered”, for example, with the rules from
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one row to the next (corresponding to a period of time) being chosen based on
the transmission characteristics of the disease.

The rules for the cellular automaton we used in our puzzle are specified by the T-
shapes. There are eight possibilities for the colours in the top row of the T-
shapes. To define a simple black-white nearest-neighbour cellular automaton, we
need to say what the new colour of the centre box will be for each of these
possible combinations (that is, which colour goes in the square at the base of the
T). So each such cellular automaton corresponds to a sequence of 8 coloured
boxes, each black or white. There are 28 = 256 such sequences, and so 256 such
cellular automata.

It turns out that many of these give regular patterns, but a few look more
random. The rule we used in our puzzle is known to be chaotic — the pattern it
gives never repeats.
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The jigsaw: Solution

The jigsaw pieces must be assembled to create the image on the previous page.
We then place the conical mirror (that we were given earlier) onto the grey
circle. The reflected image fills in the centre:

This shows that the portrait has been hidden in the “Plant Room”, which is
labelled on the map with the same warning triangle.
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The jigsaw: Explanation and discussion

This image is an example of anamorphosis. The image has been distorted, so that
it can only be viewed from a certain angle and in this case also with the help of a
specially shaped mirror. The “Mondrian painting” in the Newsletter was also an
example of anamorphosis. By viewing it from particular angles, the elongated
text became visible.

Artists have used anamorphosis in various ways for centuries. Advertising on
sports pitches is sometimes created using anamorphosis, so that from the angle
of the television camera the text will appear clearly.

Mathematicians have contributed to the study of anamorphosis, and more
broadly matters of perspective. In fact there is a branch of mathematics called
“projective geometry”, which explores this. There are different perspectives (pun
intended) on geometry. Sometimes, what matters is the precise distance
between two points, or how curved a particular shape is (as in differential
geometry). On other occasions, what matters is whether the objects have
“holes”: the old joke is that for a topologist a coffee mug is the same as a
doughnut, because both have one hole, and if the mug was made of a sufficiently
stretchy material then it could be reformed into a doughnut. Sometimes, what
matters is not the lengths of lines or the angles between them, but just whether
they are lines and whether they meet, and this is what projective geometry
studies.

There is a theorem from projective geometry, often called Pascal’s Mystic
Hexagon, built into the Andrew Wiles Building. The north crystal is a glass area
over the seating in the north wing of the Mezzanine (outside the lecture theatre
that acted as the Savilian Professor’s office for the Escape Room). The design of
the glass and frame includes a diagram representing Pascal’s Mystic Hexagon, as
well as a theorem from graph theory.
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