
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2019 Society for Industrial and Applied Mathematics
Vol. 79, No. 3, pp. 876–913

EXTENDED STEFAN PROBLEM FOR SOLIDIFICATION OF
BINARY ALLOYS IN A FINITE PLANAR DOMAIN∗
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Abstract. We consider the extended Stefan problem for the solidification of a binary alloy
in a finite one-dimensional domain accounting for constitutional supercooling. In this problem,
solidification fronts start from each boundary and move inward toward one another. We perform an
asymptotic analysis of the problem in the limit of large Lewis number, which allows us to identify
four important temporal regimes corresponding to distinct behaviors in the solidification process.
We find that, for small time, the two solidification fronts are initially far from one another, and move
in a self-similar manner toward the interior of the domain. However, when the fronts are sufficiently
close, expelled impurities (which diffuse into, and build up within, the liquid phase between the
two fronts) increase in concentration, inducing supercooling and thereby slowing the motion of the
fronts. For large time, the system tends to its minimum temperature (corresponding to the boundary
of the finite domain), with the concentration of impurities following in thermodynamic equilibrium.
Asymptotic solutions in each spatiotemporal region are obtained and then matched to neighboring
temporal regimes and spatial layers, and by matching we obtain global asymptotic solutions to the
extended Stefan problem. We compare our asymptotic solutions to numerical simulations of the full
problem obtained by a finite volume method, and the respective solutions show excellent agreement.
We also compare our asymptotic solutions to real experimental data arising from the casting process
for molten metallurgical grade silicon, with our analysis highlighting the role of supercooling in the
solidification of binary alloys appearing in such applications.

Key words. two-phase Stefan problem, solidification of binary alloys, matched asymptotic
analysis

AMS subject classifications. 80A22, 35R37, 34E10, 80A20
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1. Introduction. The process of solidification arises in a variety of applications,
from freezing water to metallurgy. Many solidification processes are modeled using
Stefan problems. Stefan problems, first posed in [21] and generalized to both solid
and liquid phases in [35], have been extended to many applications [31]. Closed-
form analytical solutions for Stefan problem are obtained only in the simplest cases.
Self-similar solutions can be found for the two-phase Stefan problem in semi-infinite
domains, and in some cases they can be extended to include constitutional supercool-
ing [31]. Although self-similar solutions for the supercooled problem may be unstable
[4], they still provide valuable insight on the dynamics of the system. However, in the
physically interesting cases when the problem domain is finite, self-similar solutions
may no longer exist.
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Much attention has been devoted to finding asymptotic approximations for the
inward solidification of many different geometries where the liquid is initially at the
melting temperature; such problems can at times be formulated as one-phase Stefan
problems. A common asymptotic limit to consider is that where the Stefan num-
ber is large, corresponding to the situation where latent heat dominates, with planar
two-dimensional geometries, such as a half-space [40] or a corner [18], cylindrical
and spherical geometries [30, 33, 36], and arbitrary two-dimensional [25] and three-
dimensional [26] geometries having been considered. Small-time behavior [8, 13, 14]
and end-time behavior (near the end of the solidification process) [25, 26, 30, 33, 36]
have been studied for the one-phase problem. In addition to asymptotic analysis, vari-
ous numerical approaches for solving one-phase Stefan problems have been considered
[1, 6, 7, 22, 24, 32, 37].

Despite their relevance to solidification problems, two-phase Stefan problems in
finite domains have received less attention than their one-phase counterparts. Kucera
and Hill [20] extended their previous small-time analysis to the two-phase problem,
and compared their analytical solution with that found in [17]. They also employed
the enthalpy method [39] to the two-phase problem. The two-phase Stefan problem
in spheres was considered in [27] including a rigorous asymptotic analysis and numer-
ical simulations via the enthalpy method. The more complicated two-phase Stefan
problem, arising in the inward solidification of binary alloys, has received even less
attention. When constitutional supercooling is included in the model, the analysis
becomes more difficult, as now the problem consists of heat and mass transport prob-
lems coupled by constitutional supercooling conditions. Feltham and Garside [10]
studied small time and large Stefan number behavior from the extended two-phase
problem for binary alloys, in the regime where supercooling is small enough to de-
couple the heat and mass problems. This reduces the problem to a classic two-phase
Stefan problem for the temperature (which is solved first) and a diffusion problem
for concentration in a shrinking domain that can be solved once the position of the
interface is known. The analytical results give a reasonable agreement with numerical
simulations of the full problem, except that the analytical solution concentration in
the liquid exhibits a nonphysical discontinuity in the flux at the origin. The inward
solidification of a binary alloy sphere has also been considered in [43], but the authors
considered the particular case where the liquid is a well-mixed liquid and thus the
concentration and temperature profiles are uniform in space. Hence, their model is
equivalent to a one-phase Stefan problem with a supercooling condition that depends
on the position of the interface.

One physical application of the extended two-phase Stefan problem in finite do-
mains is to the solidification of metallurgical grade silicon, which is composed of nearly
99% silicon, while the remaining fraction consists of impurities. The molten silicon
is poured into iron moulds and left to solidify by the heat exchange with the envi-
ronment. As the thickness of the cast is small in comparison with the width, the
solidification mainly involves two fronts, one starting at the bottom and one at the
top of the cast, which move toward one another until they meet at the center of the
cast. During the solidification process, the impurities are mostly rejected from the
solid phase into the liquid, within which they diffuse. The role of the impurities is
crucial, as they cause constitutional supercooling in the liquid and therefore have an
impact on the solidification front. For the silicon casting, a semi-infinite geometry can
be useful to model the early stages of the process when the two solidification fronts
are far from each other. However, such a formulation is no longer valid when the
two fronts approach one another. Previous work showed good agreement between the
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878 BROSA PLANELLA, PLEASE, AND VAN GORDER

Ω̂l

Ω̂s

f̂i = 0

∂Ω̂

Fig. 1. Diagram of a general domain defined as Ω̂ = Ω̂s∪ Ω̂l∪{f̂i = 0}∪∂Ω̂, where Ω̂s denotes

the solid phase and Ω̂l denotes the liquid phase. The boundary between both domains is assumed to
be sharp, and it is given by an implicit relation f̂i = 0. The external boundary is given by ∂Ω̂.

classic two-phase Stefan problem and experimental data [3]. However, the distribution
of impurities was neglected in this model, and therefore the model did not account
for supercooling, which may modify the final-time dynamics when the solidification
fronts approach.

In the present paper, we solve the extended Stefan problem with constitutional
supercooling in a finite planar domain using matched asymptotics, exploiting the fact
that the Lewis number is large. While relatively simple, the one-dimensional planar
geometry is still quite relevant to model a silicon cast. Our results extend the analysis
of the solidification of a slab presented in [10] to include supercooling that couples the
heat and mass problems, and we shall also consider all time scales of the problem. The
outline of the article is the following. In section 2 we present the general model for
the solidification of a binary alloy, and nondimensionalize it. From here we derive the
planar geometry model. In section 3 we perform an asymptotic analysis determining
the leading order approximation to the solutions for the entire problem at various time
scales, and use these to assemble matched asymptotic solutions to the problem. In
section 4, we compare the matched asymptotic solutions to numerical simulations of
the full problem obtained with a finite volume method, and also to real experimental
data obtained from silicon casting experiments. We discuss our results in section 5.

2. General model for the solidification of a binary alloy. Consider a do-
main Ω̂ ∈ Rn which is split into two subdomains: the solid phase Ω̂s (sometimes called
the crystal phase in the literature) and the liquid phase Ω̂l (sometimes called the melt
phase in the literature). These two regions are separated by a sharp interface defined

by the (n − 1)-dimensional surface defined implicitly by f̂i = 0, while they have an

outer boundary ∂Ω̂. Then, Ω̂ = Ω̂s∪ Ω̂l ∪{f̂i = 0}∪∂Ω̂, and the intersection between
any of the subsets is empty for any time t̂ > 0. A diagram of our problem is shown
in Figure 1. Although the two domains Ω̂l and Ω̂s are shown as connected domains,
this is not a requirement. Furthermore, the form of the subdomains Ω̂s and Ω̂l vary
as the liquid solidifies.

We model temperature T̂s or T̂l and concentration of impurities ĉs or ĉl, re-
spectively, in each subdomain, while also keeping track of the time evolution of the
interface f̂i. We assume conservation of mass and energy in each phase and across
the moving interface, and couple the phases under an assumption of constitutional
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supercooling. The effects of constitutional supercooling are reflected in phase dia-
grams which become rather complex when more than two components are considered
[5, 19]. We assume all impurities constitute a single phase, resulting in a binary phase
problem between the pure material and the impurities. We assume that the relation
between the impurity concentration and the temperature on both the liquidus and the
solidus is linear. We take the Boussinesq approximation (see [15, 42]), assuming that
the change in density affects the thermal diffusivity but it does not induce advection
in the liquid. We assume the difference in density between the solid and liquid phases
is small and neglect the flow generated at the interface due to the expansion of the
material. Therefore, we assume that the solid and liquid are stationary so heat and
mass transport are driven only by diffusion.

We impose boundary conditions at the outer boundary ∂Ω̂, which corresponds
to the wall of the mould. In particular, we prescribe a no-flux condition for the con-
centration of impurities (as they cannot flow through the mould), as well as a fixed
uniform temperature. A more realistic approach could be taken by using a heat ex-
change condition (as done in [3, 13]). However, in the limit where the heat exchange
coefficient is large, this condition can be approximated by a Dirichlet boundary con-
dition. We assume that the entire domain is liquid, with homogeneous temperature
and concentration of impurities, at the initial time.

2.1. Dimensional model. With all these assumptions, we can proceed to write
the dimensional model down. For the solid phase, defined as x̂ ∈ Ω̂s, the equations
read

(2.1a)
∂ĉs

∂t̂
= ∇ · (Ds∇ĉs) and ρscps

∂T̂s

∂t̂
= ∇ ·

(
ks∇T̂s

)
,

where ĉs(x̂, t̂) is the concentration of impurities (in mass per unit volume), T̂s(x̂, t̂)
is the temperature, Ds is the diffusivity of impurities, ρs is the density, cps is the
specific heat, and ks is the thermal conductivity; all of these quantities are defined in
the solid phase.

In the liquid phase, defined as x̂ ∈ Ω̂l, the equations are

(2.1b)
∂ĉl

∂t̂
= ∇ · (Dl∇ĉl) and ρlcpl

∂T̂l

∂t̂
= ∇ ·

(
kl∇T̂l

)
,

where ĉl(x̂, t̂), T̂l(x̂, t̂), Dl, ρl, cpl, and kl are as above, only defined in the liquid
phase.

The conditions at the interface f̂i = 0 are

T̂s = T̂l, ĉs = −αs(T̂s − Tm0), ĉl = −αl(T̂l − Tm0),(2.1c)

ρsL
∂f̂i

∂t̂
= −ks∇T̂s · ∇f̂i + kl∇T̂l · ∇f̂i, (ĉl − ĉs)

∂f̂i

∂t̂
= −Ds∇ĉs · ∇f̂i +Dl∇ĉl · ∇f̂i,

(2.1d)

where Tm0 is the melting temperature for the pure material, L is the latent heat
of solidification, and αs and αl are the slopes of the liquidus and solidus curves,
respectively, which as shown in Figure 2 are assumed to be linear.

The boundary conditions are given by

(2.1e)
∂ĉs
∂n̂

= 0 and T̂s = Tc at x̂ ∈ ∂Ω̂,
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880 BROSA PLANELLA, PLEASE, AND VAN GORDER

solidus

ĉ = −αs(T̂ − Tm0)

liquidus

solid

liquid

solid + liquid

ĉ

T̂Tm0

ĉ = −αl(T̂ − Tm0)

Fig. 2. Sketch of the linearized phase diagram that gives the thermodynamic equilibrium con-
ditions that couple temperature and concentration of impurities at the interface.

where Tc is the uniform temperature at the boundary while ∂
∂n̂ is the normal derivative

to the interface. Notice that we only prescribe the boundary conditions for the solid
phase: we assume the boundary temperature is below the initial liquidus temperature
so a layer of solid is formed around the boundary as soon as the process begins.

The initial conditions of the system are

(2.1f) ĉl = c0, T̂l = T0, Ω̂s = ∅, and {f̂i = 0} = ∂Ω̂ at t̂ = 0,

where T0 and c0 are the initial temperature and concentration (measured as mass of
impurities per unit volume of melt) of the melt, respectively. We assume that the
entire domain is initially liquid, and therefore do not impose initial conditions for the
solid phase.

As an observation, in (2.1d) we have used the definitions of the normal velocity
un and the normal vector n given by

(2.2) un = − 1

‖∇fi‖
∂fi
∂t

and n =
1

‖∇fi‖
∇fi,

which can be found in [28, 34].

2.2. Nondimensional model. We now proceed to nondimensionalize the model

(2.1). We choose the scalings t̂ = R2

κl
t, x̂ = Rx, ĉ = ∆c c, T̂ = ∆T T+Tm0, Ω̂s = RΩs,

Ω̂l = RΩl, f̂i = Rfi, ∂Ω̂ = R∂Ω, where R is the scaling of the spatial coordinates,
∆T the scaling of temperature, Tm0 the melting temperature for pure silicon, and ∆c
the scaling of concentration. We choose ∆T = Tm0 − Tc and ∆c = ρl. We assume
that the material properties are homogeneous in each phase, so they can be pulled
out of the divergences in (2.1).

We define the dimensionless parameters St =
∆Tcpl
L , ρ = ρs

ρl
, k = ks

kl
, cp =

cps
cpl

,

κ = κs
κl

, Le = κl
Dl

, D = Ds
Dl

, α = αs
αl

, ms = αs
∆T
∆c , ml = αl

∆T
∆c , where κj is the thermal
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diffusivity of each phase defined as κj =
kj

ρjcpj
. The dimensional model (2.1) becomes

∂cs
∂t

=
D

Le
∇2cs and

∂Ts
∂t

= κ∇2Ts,(2.3a)

∂cl
∂t

=
1

Le
∇2cl and

∂Tl
∂t

= ∇2Tl,(2.3b)

Ts = Tl, cs = −msTs = αcl, cl = −mlTl,(2.3c)

ρ

St

∂fi
∂t

= −k∇Ts · ∇fi +∇Tl · ∇fi, (1− α)cl
∂fi
∂t

= −D
Le
∇cs · ∇fi +

1

Le
∇cl · ∇fi,

(2.3d)

at the interface (fi = 0),

∂cs
∂n

= 0 and Ts =
Tc − Tm0

∆T
= −1 at x ∈ ∂Ω,(2.3e)

cl =
c0
∆c

, Tl =
T0 − Tm0

∆T
, Ωs = ∅, and fi = ∂Ω at t = 0.(2.3f)

Notice that we have used the definition of cs in (2.3c) to rearrange the left-hand
side of the second equation in (2.3d).

2.3. Asymptotic scalings. We assume a small diffusivity of impurities in the
liquid, even smaller diffusivity in the solid, small initial temperature and concentra-
tion, small constitutional supercooling, and almost complete rejection of impurities
from the solid phase. We define the small parameter ε = 1

Le � 1, and with this we

rescale the model parameters as D = εD̂, ml = m̂l
ε , α = εα̂, c0

∆c = εĉ0, T0−Tm0

∆T = εT̂0,

where D̂, m̂l, α̂, ĉ0, and T̂0 are of order one. These scalings are motivated by the typ-
ical parameter values for the solidification of metallurgical grade silicon. We rewrite
(2.3) in terms of this scaling with ε, obtaining

∂cs
∂t

= ε2D̂∇2cs and
∂Ts
∂t

= κ∇2Ts in x ∈ Ωs,(2.4a)

∂cl
∂t

= ε∇2cl and
∂Tl
∂t

= ∇2Tl in x ∈ Ωl,(2.4b)

Ts = Tl, cs = εα̂cl, εcl = −m̂lTl,(2.4c)

ρ

St

∂fi
∂t

= −k∇Ts · ∇fi +∇Tl · ∇fi, (1− εα̂)cl
∂fi
∂t

= −ε2D̂∇cs · ∇fi + ε∇cl · ∇fi

(2.4d)

at the interface (fi = 0),

∂cs
∂n

= 0 and Ts = −1 at x ∈ ∂Ω,(2.4e)

cl = εĉ0, Tl = εT̂0, Ωs = ∅, and {fi = 0} = ∂Ω at t = 0.(2.4f)

2.4. Nondimensional model for planar geometry. The geometry of the pla-
nar solidification problem consists of a finite slab, initially a liquid with homogeneous
temperature and concentration of impurities, which is cooled from both ends at a
uniform temperature which is constant in time. For simplicity, we assume the prob-
lem to be symmetric, therefore we need only consider half of the domain, provided
we impose symmetry conditions at the origin. A diagram of the planar geometry is
shown in Figure 3.
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zsolidliquid

z = S(t)z = 0 z = 1

cs, Tscl, Tl
∂cl
∂z

=
∂Tl

∂z
= 0

Ts = −1
∂cs
∂z

= 0

Fig. 3. Diagram of the inward solidification problem of a finite slab. We assume that the
problem is symmetric with respect to z = 0, so we consider the problem only in the region 0 ≤ z ≤ 1
and impose symmetry conditions at the origin.

We take z to be the dimensionless spatial coordinate so that the problem is defined
in the domain 0 ≤ z ≤ 1, while the position of the interface is given by fi = z − S(t).
The nondimensional model (2.4) becomes

∂cs
∂t

= ε2D̂
∂2cs
∂z2

,
∂Ts
∂t

= κ
∂2Ts
∂z2

on z > S(t),(2.5a)

∂cl
∂t

= ε
∂2cl
∂z2

,
∂Tl
∂t

=
∂2Tl
∂z2

on z < S(t),(2.5b)

Ts = Tl, cs = εα̂cl, εcl = −m̂lTl,(2.5c)

ρ

St

dS

dt
= k

∂Ts
∂z
− ∂Tl

∂z
, (1− εα̂)cl

dS

dt
= ε2D̂

∂cs
∂z
− ε∂cl

∂z
(2.5d)

at the interface (z = S(t)),

∂cl
∂z

= 0 and
∂Tl
∂z

= 0 at z = 0,(2.5e)

∂cs
∂z

= 0 and Ts = −1 at z = 1,(2.5f)

cl = εĉ0, Tl = εT̂0, and S = 1 at t = 0.(2.5g)

As exact solutions are seemingly not possible, in section 3, we perform an asymp-
totic analysis to find solutions of the system (2.5). These asymptotic solutions are
then compared with numerical simulations and real experimental data in section 4.

3. Asymptotic analysis. The asymptotic analysis of the problem in the limit
ε→ 0 reveals four distinct time regimes in the problem, and each regime is composed
of different space layers. We identify ten layers overall, with a schematic diagram and
list of relevant scalings shown in Figure 4. Notice that we use hats for the position of
the interface and the temperature and concentration fields whenever they are rescaled.

These scalings are primarily picked by the physics. At the beginning of the
process, in what we call regime i, we expect to see diffusion of both heat and impurities,
but, due to the disparity in diffusive length scales, we need to introduce an inner
layer of size O (ε) around the interface (named layer B) to capture the rejection and
transport of impurities, while heat diffusion is observed in the outer layers (A and C).
This regime holds until the interface is within a distance O (ε) from the origin, as now
the outer layer in the liquid vanishes and the inner layer around the interface needs
to account for the symmetry conditions at the origin. This sets the scalings for S and
z, and thus defines the two layers (D and E) in regime ii. The time scale arises from
balancing the Stefan condition that appears in the inner layer E, as we need a time
scale that allows us to observe the motion of the solidification front. We find that
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t = t∗

solid

liquid

A

B

C

D

E

F

G

H

I

J
t

z

z = 1

i ii iii iv

t z S cs cl Ts Tl

Regime i
A t z S εĉs - Ts -

B t S(t) + εZ S εĉs cl εT̂s εT̂l
C t z S - εĉl - εT̂l

Regime ii
D t∗ + ετ z εŜ εĉs - Ts -

E t∗ + ετ εZ εŜ εĉs cl εT̂s εT̂l

Regime iii
F t∗ + ετ∗ + ε

4
3 θ z ε

4
3 Ŝ εĉs - Ts -

G t∗ + ετ∗ + ε
4
3 θ ε

2
3 ξ ε

4
3 Ŝ εĉs - ε

2
3 T̂s -

H t∗ + ετ∗ + ε
4
3 θ ε

4
3Z ε

4
3 Ŝ ε

2
3 ĉs ε−

1
3 ĉl ε

2
3 T̂s ε

2
3 T̂l

Regime iv
I t z ε2Ŝ εĉs - Ts -

J t ε2Z ε2Ŝ cs ε−1ĉl Ts Tl

Fig. 4. Sketch of the regimes and layers of the process. The sketch shows the evolution of the
interface, S(t), in time, so the area above (in white) is the solid phase and the area below (in blue)
is the liquid phase. The four regimes identified with lower case Roman numerals are the behaviors at
different times. In each regime, we consider various layers which are labeled with upper case letters.
The scalings in each layer are shown in the table. The variables τ and θ are the time variables at
different regimes and the variables ξ and Z are the space variables in the intermediate and inner
layers of each regime, respectively. For temperature, concentration, and the position of the interface
we use hats whenever they are rescaled.

regime ii is valid until the inner layer E vanishes because the leading order interface
position becomes zero. Therefore, we need to study a new regime, which we call
regime iii. We expect this regime to be a transition between regimes ii and iv, which
is discussed later. This transition is driven by the thermal problem in the solid, with
the constitutional supercooling effect due to the buildup of impurities in the liquid
phase. To capture this problem, we need to introduce the following layer structure:
an outer layer F in the solid where both temperature and concentration fields remain
constant, an intermediate layer G in the solid where we observe heat diffusion, and
an inner layer H that captures the motion of the interface and thus accounts for the
interface conditions. A balance of the relevant terms gives the scalings reproduced
in Figure 4. Finally, we need to consider a last regime that holds up to t → +∞.
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884 BROSA PLANELLA, PLEASE, AND VAN GORDER

This is regime iv, in which we observe the temperature in the solid to decay down to
the minimum temperature of the system, which corresponds to the temperature at
the boundary z = 1. This behavior is observed in the outer layer I, but we need to
account for the inner layer J to capture the moving boundary and the liquid region.

Notice that, according to the scalings in Figure 4, we have concentrations in
the liquid phase of O(ε−

1
3 ) and O(ε−1) which are not physical. As we discuss later,

regimes iii and iv are not physical because some of the modeling assumptions, such as
the linear phase diagram, no longer hold. This is related to the fact that, according
to the model, the solidification process never finishes and therefore we always end
up with a thin layer of liquid, which obviously does not agree with experimental
observations. However, from the mathematical point of view, regimes iii and iv are
relevant to provide a full picture of (2.5) for t ∈ [0,+∞).

In what follows, we find asymptotic solutions in each region, and then match
them to construct solutions valid over the whole problem domain.

3.1. Asymptotic solutions in regime i. We start by considering the behavior
at the beginning of the solidification process, described by regime i. In this regime, the
interface is far from the origin and we distinguish three space layers. The outer layer
A in the solid, the inner layer B around the solidification front which comprises both
phases, and the outer layer C in the liquid. We start solving the equations for each
layer and then proceed to match the layers between them in order to fully determine
the solutions.

3.1.1. Layer A. The first layer we study in this regime is the outer layer in the
solid phase: layer A. Rescaling the problem with the scalings in Figure 4, we find that
the problem is defined by

∂ĉs
∂t

= ε2D̂
∂2ĉs
∂z2

,
∂Ts
∂t

= κ
∂2Ts
∂z2

on S(t) < z < 1,(3.1a)

∂ĉs
∂z

= 0 and Ts = −1 at z = 1(3.1b)

and, as initially all the silicon is liquid (so S(0) = 1), we have no initial conditions.
The problem is completed with the corresponding matching conditions with layer B,
which are discussed in section 3.1.4. We expand ĉs, Ts, and S as ĉs = ĉs0+εĉs1+O(ε2),
Ts = Ts0 + εTs1 +O(ε2), and S = S0 + εS1 +O(ε2).

At O (1), and using the matching conditions determined in section 3.1.4, the
problem for the concentration field is

∂ĉs0
∂t

= 0,(3.2a)

ĉs0 = α̂ci(t) at z = S0(t),(3.2b)

where ci(t) is the concentration at the interface which is yet to be determined. The
problem for the temperature field is

∂Ts0
∂t

= κ
∂2Ts0
∂z2

,(3.3a)

Ts0 = 0 and
ρ

St
S′0(t) = k

∂Ts0
∂z

at z = S0(t), Ts0 = −1 at z = 1,(3.3b)
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which is a classical one-phase Stefan problem. We find the solutions

ĉs0 = α̂ci
(
S−1

0 (z)
)
, Ts0 = −1 +

erf
(

1−z
2
√
κt

)
erf
(
λ√
κ

) with S0 = 1− 2λ
√
t,(3.4)

where λ is a constant to be determined, as shown in section 3.1.4. Notice that the
expression for ĉs0 implies that the concentration in the solid at each point remains
equal to the value it had at the moment it solidified, which is a fraction α̂ of the
interfacial concentration in the liquid ci.

At O (ε), we consider only the temperature problem as the concentration is not
required for the purpose of our analysis. Using the O (1) solutions, we have the
problem

∂Ts1
∂t

= κ
∂2Ts1
∂z2

in 1− 2λ
√
t < z < 1,(3.5a)

Ts1 = − ci
m̂l

+
λ

k
√
t

ρ

St
S1(t) at z = 1− 2λ

√
t, and Ts1 = 0 at z = 1,(3.5b)

while the initial condition is not defined in this region.

We rescale the problem introducing the variable η = z−S0(t)
1−S0(t) , where S0(t) =

1− 2λ
√
t. This change of variable fixes the domain of the problem to η ∈ [0, 1]. The

transformed problem reads

4λ2t
∂Ts1
∂t

= κ
∂2Ts1
∂η2

− 2λ(1− η)
∂Ts1
∂η

in 0 < η < 1,(3.6a)

Ts1 = − ci
m̂l

+
λ

k
√
t

ρ

St
S1(t) at η = 0, and Ts1 = 0 at η = 1.(3.6b)

This has no simple analytical solution so, in order to solve this problem, we shall
assume λ� 1 and expand the solutions in powers of λ: Ts1 = Ts1,0 +λTs1,1 +O

(
λ2
)
.

As can be found from the transcendental equation (3.33), we have λ ∼
√

St so this
limit of small λ is equivalent to the small Stefan number limit. Hence, with the
expansion for small λ here, we are taking the limit St→ 0 independently of the limit
ε → 0, in which we have expanded our problem initially. The physical meaning of
the limit ε → 0 is that mass diffusion happens at a much slower time scale than
heat diffusion does. The limit St → 0 means that the time scale of the motion of
the interface is much smaller than the thermal diffusive time scale. We expect the
concentration profile to be driven by the motion of the interface, which corresponds
to the limit ε� St� 1, which in terms of time scales means that the solute diffusion
time scale is much smaller than the interface motion time scale, which in turn is much
smaller than the heat diffusion time scale. Mathematically, this condition ensures
that we can first take the small epsilon limit, and second the small Stefan number
limit. In terms of λ, we require ε � λ2 � 1 so we can take the limits ε → 0 and
λ→ 0 independently.

The leading order problem is

∂2Ts1,0
∂η2

= 0 in 0 < η < 1,(3.7a)

Ts1,0 = − ci
m̂l

at η = 0, and Ts1,0 = 0 at η = 1,(3.7b)
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and we find that

(3.8) Ts1,0 = − ci
m̂l

(1− η).

At O (λ), the problem is

κ
∂2Ts1,1
∂η2

= 2(1− η)
∂Ts1,0
∂η

in 0 < η < 1,(3.9a)

Ts1,1 =
1

k
√
t

ρ

St
S1(t) at η = 0 and Ts1,1 = 0 at η = 1,(3.9b)

and we find

(3.10) Ts1,1 = (1− η)

(
− ci
m̂l

(2− η)η

3κ
+

ρ

kSt

S1(t)√
t

)
.

We can proceed similarly to determine higher order solutions.

3.1.2. Layer B. Layer B is the inner layer of size ε around the moving interface.

Therefore we define the inner variable Z = z−S(t)
ε and, using the other scalings defined

in Figure 4, we find that the problem is

ε
∂ ĉs
∂t

= S′(t)
∂ĉs
∂Z

+ εD̂
∂2ĉs
∂Z2

, ε2
∂T̂s
∂t

= εS′(t)
∂T̂s
∂Z

+ κ
∂2T̂s
∂Z2

on Z > 0,(3.11a)

ε
∂cl
∂t

= S′(t)
∂cl
∂Z

+
∂2cl
∂Z2

, ε2
∂T̂l
∂t

= εS′(t)
∂T̂l
∂Z

+
∂2T̂l
∂Z2

on Z < 0,(3.11b)

T̂s = T̂l, ĉs = α̂cl, cl = −m̂lT̂l,(3.11c)

ρ

St

dS

dt
= k

∂T̂s
∂Z
− ∂T̂l
∂Z

, (1− εα̂)cl
dS

dt
= ε2D̂

∂ ĉs
∂Z
− ∂cl
∂Z

at the interface (Z = 0). The remaining conditions are given by the matching with
the solutions in layers A and C. At O (1), (3.11) gives

S′0(t)
∂ĉs0
∂Z

= 0,
∂2T̂s0
∂Z2

= 0, S′0(t)
∂cl0
∂Z

+
∂2cl0
∂Z2

= 0,
∂2T̂l0
∂Z2

= 0,(3.12a)

T̂s0 = T̂l0, ĉs0 = α̂cl0, cl0 = −m̂lT̂l0,
ρ

St

dS0

dt
= k

∂T̂s0
∂Z

− ∂T̂l0
∂Z

, cl0
dS0

dt
+
∂cl0
∂Z

= 0

(3.12b)

at the interface (Z = 0). Solving the system (3.12) with the matching conditions
derived in section 3.1.4 we find

ĉs0 = α̂ci(t), T̂s0 = A1(t)Z − ci(t)

m̂l
,(3.13a)

cl0 = ci(t)e
−S′0(t)Z , T̂l0 =

(
kA1(t)− ρ

St
S′0(t)

)
Z − ci(t)

m̂l
,(3.13b)

where ci(t) is the concentration of the interface and A1(t) an integration function,
both to be determined by the matching conditions.
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Meanwhile, at O (ε), (3.11) gives

S′0(t)
∂ĉs1
∂Z

=
∂ĉs0
∂t
− S′1(t)

∂ĉs0
∂Z
− D̂ ∂

2ĉs0
∂Z2

, κ
∂2T̂s1
∂Z2

= −S′0(t)
∂T̂s0
∂Z

,(3.14a)

S′0(t)
∂cl1
∂Z

+
∂2cl1
∂Z2

=
∂cl0
∂t
− S′1(t)

∂cl0
∂Z

,
∂2T̂l1
∂Z2

= −S′0(t)
∂T̂l0
∂Z

,(3.14b)

T̂s1 = T̂l1, ĉs1 = α̂cl1, cl1 = −m̂lT̂l1,
ρ

St

dS1

dt
= k

∂T̂s1
∂Z

− ∂T̂l1
∂Z

,(3.14c)

cl1
dS0

dt
+
∂cl1
∂Z

= cl0

(
α̂

dS0

dt
− dS1

dt

)
at the interface (Z = 0). The solutions to (3.14) are

ĉs1 =
α̂c′i(t)
S′0(t)

Z + α̂A2(t), T̂s1 = −A1(t)S′0(t)

2κ
Z2 +A3(t)Z − A2(t)

m̂l
,(3.15a)

cl1 = A1(t) +A3(t, Z)e−S
′
0(t)Z ,(3.15b)

T̂l1 = −S
′
0(t)

2

(
kA1(t)− ρ

St
S′0(t)

)
Z2 +

(
kA3(t)− ρ

St
S′1(t)

)
Z − A2(t)

m̂l

with

A1(t) =
c′i(t)
S′0(t)2

+ ci(t)

(
α̂− S′′0 (t)

S′0(t)3

)
, A2(t) = A2(t) + ci(t)

(
α̂− S′1(t)

S′0(t)

)
,

(3.16a)

A3(t, Z) = − c′i(t)
S′0(t)2

(1 + S′0(t)Z) +A2(t)

(3.16b)

− ci(t)
[
S′1(t)

S′0(t)
(1 + S′0(t)Z) +

S′′0 (t)

S′0(t)3

(
1 + S′0(t)Z +

1

2
S′0(t)2Z2

)]
,

where A2(t), and A3(t) are determined from asymptotic matching with other regions.

3.1.3. Layer C. The last layer in regime i is layer C, the outer layer in the liquid
(0 < z < S(t)). Rescaling the problem according to Figure 4, we find that

∂ĉl
∂t

= ε
∂2ĉl
∂z2

,
∂ T̂l
∂t

=
∂2T̂l
∂z2

,(3.17a)

∂ĉl
∂z

= 0 and
∂T̂l
∂z

= 0 at z = 0, and ĉl = ĉ0 and T̂l = T̂0 at t = 0,

(3.17b)

and we can complete the problem with the matching conditions with layer B, which
are discussed in section 3.1.4. At O (1), the problem is

∂ĉl0
∂t

= 0,
∂ T̂l0
∂t

=
∂2T̂l0
∂z2

,(3.18a)

∂T̂l0
∂z

= 0 at z = 0, T̂l0 = − ci
m̂l

at z = S0(t), ĉl0 = ĉ0, and T̂l0 = T̂0 at t = 0.

(3.18b)D
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We find ĉl0 = ĉ0. In order to determine T̂l0 we introduce the variable ξ = z
S0(t) , to fix

the domain of the equation to ξ ∈ [0, 1], and the rescaling for the temperature from
T̂l0 to u where

(3.19) T̂l0 =

(
T̂0 +

ci
m̂l

)
u− ci

m̂l
,

to homogenize the boundary conditions. Then, the problem can be rewritten as

∂u

∂t
=

1

(1− 2λ
√
t)2

∂2u

∂ξ2
− ξ λ√

t(1− 2λ
√
t)

∂u

∂ξ
in 0 < ξ < 1,(3.20a)

∂u

∂ξ
= 0 at ξ = 0, u = 0 at ξ = 1, u = 1 when t = 0.(3.20b)

Again no simple analytical solution is possible so, in order to solve the problem,
we assume that λ� 1 and we expand u in powers of λ. The problem at O (1) is given
by

∂u0

∂t
=
∂2u0

∂ξ2
in 0 < ξ < 1,(3.21a)

∂u0

∂ξ
= 0 at ξ = 0, u0 = 0 at ξ = 1, u0 = 1 when t = 0.(3.21b)

We use separation of variables to solve (3.21), obtaining

(3.22) u0 =
4

π

∞∑
n=0

(−1)n

2n+ 1
e−( 2n+1

2 π)
2
t cos

(
2n+ 1

2
πξ

)
.

Higher order problems have the structure

∂uj
∂t
− ∂2uj

∂ξ2
= fj(t, ξ) in 0 < ξ < 1,(3.23a)

∂uj
∂ξ

= 0 at ξ = 0, uj = 0 at ξ = 1, uj = 0 when t = 0(3.23b)

for j > 1. In all the cases, the function fj(t, ξ) is a known function that depends on
the lower order solutions. We can find the solution to each problem using the Green’s
function G(ξ, ξ̂, t− τ) which gives

(3.24) uj(t, ξ) =

∫ t

0

∫ 1

0

fj(τ, ξ̂)G(ξ, ξ̂, t− τ)dξ̂dτ,

and from [29] we know that the Green’s function for the problem can be represented
in the two forms

(3.25)

G(ξ, ξ̂, t) = 2

∞∑
n=0

cos

(
2n+ 1

2
πξ

)
cos

(
2n+ 1

2
πξ̂

)
e−( 2n+1

2 π)
2
t

=
1

2
√
πt

n=+∞∑
n=−∞

(−1)n
(
e−

(ξ−ξ̂+2n)2

4t + e−
(ξ+ξ̂+2n)2

4t

)
,

where the first form converges rapidly at large t while the second form converges
rapidly at small t.
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3.1.4. Matching of the solutions. In this section we use Van Dyke’s rule
[38] to derive the matching conditions we have used to complete the problems in the
previous sections. The notation to denote the asymptotic expansions is the following.
By (mti)(nto) we mean taking n terms in the outer solution written in terms of
the inner variable and expanded to mth order in the inner variable. Similarly, by
(nto)(mti) we mean taking m terms in the inner solution written in terms of the
outer variable and expanded to nth order in the outer variable. Van Dyke’s rule
states that these two expansions have to be equal for any n and m.

We start matching cl between the outer layer C and the inner layer B. We take
two terms in the inner solution and two terms in the outer solution and write them
both in terms of the inner variable so (2ti)(2to) = εĉ0, (2to)(2ti) = εA1(t), therefore
we have

(3.26)
c′i(t)
S′0(t)2

+ ci(t)

(
α̂− S′′0 (t)

S′0(t)3

)
= ĉ0,

and solving this ODE for ci(t) using as initial condition that ci(t) must remain

bounded we determine that ci is constant and equal to ci = 2λ2ĉ0
2λ2α̂+1 .

We then match cs between the outer layer A and the inner layer B. We take two
terms in the inner solution and two terms in the outer solution and write them both
in terms of the inner variable so (2ti)(2to) = εcs0(S0(t)), (2to)(2ti) = εα̂ci(t), and
equating both expressions, we find cs0(z) = α̂ci.

We repeat the procedure for Ts and Tl. For the simplicity of the calculations, we
start expanding one term of the inner solution and one term of the outer in Ts to
determine S0. Then, we find

(3.27) (1ti)(1to) = −1 + C1erf

(
1− S0(t)

2
√
κt

)
= 0 = (1to)(1ti),

where C1 is a constant yet to be determined, so we require the interface position to
be of the form S0(t) = 1 − 2λ

√
t, determining thus the result in (3.4). We can use

this expression to simplify the following expansions. We now take three terms in the
outer solution (the term at O(ε2) is left as Ts2(t, z) for simplicity) and three terms in
the inner solution which give

(3ti)(3to) =

(
−1 + C1erf

(
λ√
κ

))
+ ε

(
Ts1|z=S0(t) − C1e

−λ2κ Z + S1(t)√
πκt

)
+ ε2

(
− e−

λ2

κ

2
√
πtκ

3
2

(
C1λ (Z + S1(t))

2
+ 2C1κ

√
tS2(t)

)
(3.28a)

+ (Z + S1(t))
∂Ts1
∂z

∣∣∣∣
z=S0(t)

+ Ts2|z=S0(t)

)
,

(3to)(3ti) = ε

(
A1(t)Z − ci

m̂l

)
+ ε2

(
−A1(t)S′0(t)

2κ
Z2 +A3(t)Z − A2(t)

m̂l

)
,(3.28b)

and we determine that

C1 =
1

erf
(
λ√
κ

) ,(3.29a)

Ts1|z=S0(t) =
λ

κ
√
t

S1(t)

G
(
λ√
κ

) − ci
m̂l

,(3.29b)
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A1(t) = − λ

κ
√
t

1

G
(
λ√
κ

) ,(3.29c)

A3(t) =
∂Ts1
∂z

∣∣∣∣
z=S0(t)

− λ2

κ2t

S1(t)

G
(
λ√
κ

) ,(3.29d)

where G(x) =
√
πxex

2

erf(x).
We proceed similarly for Tl. Taking three term inner and outer expansions, we

find

(3ti)(3to) = εT̂l0(t, S0(t)) + ε2

(Z + S1(t))
∂T̂l0
∂z

∣∣∣∣∣
z=S0(t)

+ T̂l1(t, S0(t))

 ,

(3.30a)

(3to)(3ti) = ε

[(
kA1(t)− ρ

St
S′0(t)

)
Z − ci

m̂l

]
+ ε2

[
−S
′
0(t)

2

(
kA1(t)− ρ

St
S′0(t)

)
Z2 +

(
kA3(t)− ρ

St
S′1(t)

)
Z − A3(t)

m̂l

]
,(3.30b)

and we determine that

T̂l0(t, S0(t)) = − ci
m̂l

,(3.31a)

kA1(t)− ρ

St
S′0(t) = 0,(3.31b)

∂T̂l0
∂z

∣∣∣∣∣
z=S0(t)

= kA3(t)− ρ

St
S′1(t).(3.31c)

We can use (3.31) to determine λ, S1, and the boundary conditions required to com-
plete the T̂l0 problem (3.20). We start by finding λ. We know that

(3.32)
ρ

St
S′0(t) = kA1(t),

and given that both S0(t) and A1(t) are known from (3.4) and (3.29c), we have

(3.33)
√
π
λ√
κ
e
λ2

κ erf

(
λ√
κ

)
= cpSt,

and solving this transcendental equation we find λ. The condition (3.31a) determines
the remaining boundary condition needed for the problem for T̂l0 (3.20).

From condition (3.31c) and using (3.29d) we find

(3.34)
ρ

St

(
S′1(t) +

λ2

κt
S1(t)

)
= k

∂T̂s1
∂z

∣∣∣∣∣
z=S0(t)

− ∂T̂l0
∂z

∣∣∣∣∣
z=S0(t)

,

and integrating this equation we can determine S1(t). However, as we have the
temperature gradients in terms of series in λ in (3.8) and (3.22), we can write
(3.35)

ρ

St

(
S′1(t) +

λ2

κt
S1(t)

)
=

k

2λ
√
t

(
ci
m̂l

+O (λ)

)
+

2

1− 2λ
√
t

(
T̂0 +

ci
m̂l

)( ∞∑
n=0

e−( 2n+1
2 π)

2
t +O (λ)

)
,
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therefore we see that the temperature gradient in the solid is ofO(λ−1) and hence S1(t)
will also be this order. Expanding S1(t) in powers of λ, S1 = λ−1S1,−1 +S1,0 +O(λ),
we have that, at O(λ−1), (3.35) is

(3.36)
ρ

St
S′1,−1(t) =

k

2
√
t

ci
m̂l

,

therefore,

(3.37) S1(t) =
kSt

ρ

1

2λ

ci
m̂l

√
t+O (1) .

With this leading order approximation for S1(t) in powers of λ we conclude the
analysis for regime i. This regime ranges for t ∈ [0, t∗] where t∗ = 1

4λ2 is the time
when the leading order solution for the position of the interface becomes zero. In this
regime, we have determined the solutions at leading order for all the variables and,
for some of them, such as Ts, Tl, and S, we have determined the next term in the
asymptotic expansion in powers of ε. The motivation to calculate these corrections
was to determine the position of the interface up to O (ε) as it is needed for the
matching with the solution in regime ii. In the next section we focus our attention on
regime ii, which arises because the interface is so close to the origin that the outer layer
in the liquid disappears and, therefore, the inner layer needs to capture the symmetry
conditions at the origin. Physically, this new regime captures the interaction between
the two approaching solidification fronts caused by the diffusion of impurities in the
liquid.

3.2. Asymptotic solutions in regime ii. We now study regime ii, where the
interface is within a distance O (ε) from the origin and therefore the mass diffusion
boundary layer reaches the symmetry line. In this case we distinguish two layers: the
outer layer D and the inner layer E.

3.2.1. Layer D. We consider first the outer layer D, using the rescalings defined
in Figure 4. Then, the problem is defined on 0 < z < 1 by

∂ĉs
∂τ

= ε3D̂
∂2ĉs
∂z2

,
∂Ts
∂τ

= εκ
∂2Ts
∂z2

,(3.38a)

∂ĉs
∂z

= 0 and Ts = −1 at z = 1,(3.38b)

and the appropriate matching conditions with layers A and E.
At O (1) the problem is

∂ĉs0
∂τ

= 0,
∂Ts0
∂τ

= 0,(3.39a)

therefore, the leading order solutions do not depend on time, so we have to determine
their values from matching with (3.4). We find

ĉs0 =
2λ2α̂

2λ2α̂+ 1
ĉ0, Ts0 = −1 +

erf
(
λ√
κ

(1− z)
)

erf
(
λ√
κ

) .(3.40)
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3.2.2. Layer E. We determine the governing equations in the inner layer E using
the scalings in Figure 4. The problem becomes

∂ĉs
∂τ

= εD̂
∂2ĉs
∂Z2

, ε
∂T̂s
∂τ

= κ
∂2T̂s
∂Z2

,
∂cl
∂τ

=
∂2cl
∂Z2

, ε
∂T̂l
∂τ

=
∂2T̂l
∂Z2

,(3.41a)

T̂s = T̂l, ĉs = α̂cl, cl = −m̂lT̂l,
ρ

St

dŜ

dτ
= k

∂T̂s
∂Z
− ∂T̂l
∂Z

,(3.41b)

(1− εα̂)cl
dŜ

dτ
= ε2D̂

∂ ĉs
∂Z
− ∂cl
∂Z

at the interface (Z = Ŝ(τ)),

(3.41c)
∂cl
∂Z

= 0 and
∂T̂l
∂Z

= 0 at Z = 0.

We need to impose matching conditions in space with layer D and in time with layer
B.

At O (1), we have

∂ĉs0
∂τ

= 0,
∂2T̂s0
∂Z2

= 0,
∂cl0
∂τ

=
∂2cl0
∂Z2

,
∂2T̂l0
∂Z2

= 0,(3.42a)

T̂s0 = T̂l0, ĉs0 = α̂cl0, cl0 = −m̂lT̂l0,(3.42b)

ρ

St

dŜ0

dτ
= k

∂T̂s0
∂Z

− ∂T̂l0
∂Z

, cl0
dŜ0

dτ
+
∂cl0
∂Z

= 0

at the interface (Z = Ŝ0(τ)),

(3.42c)
∂cl0
∂Z

= 0 and
∂T̂l0
∂Z

= 0 at Z = 0.

We obtain the leading order solutions

ĉs0 = α̂cl0

(
Ŝ−1

0 (Z), Z
)
, cl0 = cl0(τ, Z),(3.43a)

T̂s0 =
ρ

kSt

dŜ0

dτ
Z −

(
ρ

kSt

dŜ0

dτ
Ŝ0(τ) +

cl0(τ, Ŝ0(τ))

m̂l

)
, T̂l0 = −cl0(τ, Ŝ0(τ))

m̂l
,

(3.43b)

where the function cl0 is yet to be determined. The problem for cl0 is given by

∂cl0
∂τ

=
∂2cl0
∂Z2

,(3.44a)

∂cl0
∂Z

= 0 at Z = 0, cl0
∂Ŝ0

∂τ
+
∂cl0
∂Z

= 0 at Z = Ŝ0(τ),(3.44b)

cl0 ∼ cie2λ2(Z+2λ2(τ−τ∗)) as τ → −∞,

where

Ŝ0(τ) = −2λ2 (τ − τ∗) , τ∗ =
kSt

ρ

1

8λ4

ci
m̂l

.(3.45)
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∂w

∂τ̂
=
∂2w

∂Ẑ2

Ẑ = −τ̂

w − ∂w

∂Ẑ
= 0

τ̂

Ẑ

∂w

∂Ẑ
= 0

Fig. 5. Sketch of the problem (3.46). The highlighted area is the domain in which we want
to solve the problem (which extends to τ̂ → −∞). Then, we need to prescribe the initial condition

when τ̂ → −∞, which is w ∼ eẐ+τ̂ .

We can eliminate all the parameters in the problem by rescaling the variables of

the problem as τ = τ̂
(2λ2)2 + τ∗, Z = Ẑ

2λ2 , cl0 = ciw, and the problem reduces (as

shown in Figure 5) to

∂w

∂τ̂
=
∂2w

∂Ẑ2
,(3.46a)

∂w

∂Ẑ
= 0 at Ẑ = 0, w − ∂w

∂Ẑ
= 0 at Ẑ = −τ̂ , w ∼ eẐ+τ̂ as τ̂ → −∞.

(3.46b)

We use the method of images to solve (3.46), finding

(3.47) w(τ̂ , Ẑ) =

∞∑
n=1

n
(
en(Ẑ+nτ̂) + en(−Ẑ+nτ̂)

)
.

It is immediate to check that (3.47) solves (3.46a) and the first condition in (3.46b) as
each of the terms of the sum satisfies the equations. Truncating (3.47) at N terms, the
error at the second condition in (3.46b) is N(N + 1)eN(N+1)τ̂ and given that τ̂ < 0, it
tends to zero as N → +∞. The exception is in the limit τ̂ → 0−, however, this latter
limit is considered separately in regime iii, which takes over before the singularity is
reached, hence the solution (3.47) is valid for our purposes. Finally, it can be checked
that (3.47) satisfies the initial condition in (3.46b).

3.2.3. Matching of the solutions. We start matching cs between the outer
layer in time B and the inner layer in time B. Taking two terms both in the inner
and outer solution we find that the solution is constant so cs = εα̂ci. In order to
determine the initial conditions for cl we need to match it with layer E. Taking one
term in each solution we find
(3.48)

(1to)(1ti) = lim
τ→−∞

cl0(τ, Z) = ci exp

[
2λ2

(
Z + 2λ2

(
τ − kSt

ρ

1

8λ4

ci
m̂l

))]
= (1ti)(1to).
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Finally, we need to match Ts with layer D in order to determine the interface
position Ŝ0(τ). Taking one term of the outer solution and two terms in the inner
solution we find

(2ti)(1to) = −ε ρ

kSt
2λ2Z, (1to)(2ti) = ε

ρ

kSt

dŜ0

dτ
Z;(3.49)

therefore, we find Ŝ0(τ) = −2λ2τ + C3, and we need to determine C3 from matching
with regime i. Taking two terms in both the inner and outer solutions we find

(2ti)(2to) = ε

(
−2λ2τ − kSt

ρ

1

4λ2

(
1− ci

m̂l

))
, (2to)(2ti) = ε

(
−2λ2τ + C3

)
,

(3.50)

hence

(3.51) C3 = −kSt

ρ

1

4λ2

(
1− ci

m̂l

)
.

Thus, we have that the interface is linear and can reduce the problem for cl0 into
(3.46).

We have now fully determined the leading order solutions in regime ii, which
are mainly driven by the buildup of impurities in the liquid phase due to the fact
that the two solidification fronts are very close to each other and therefore impurities
cannot diffuse away. Because the concentration of impurities is small, compared to the
amount required to cause significant supercooling, the limiting behavior when τ → τ∗

results in an infinite amount of impurity concentration in an infinitely small region
of liquid. This motivates the study of regime iii, in which we expect the buildup of
impurities to continue, but now with an impact over the thermal problem, that in
turn slows down the interface.

3.3. Asymptotic solutions in regime iii. We now focus on regime iii, which
has three layers: the outer layer F, the intermediate layer G, and the inner layer H.
In this regime, the buildup of impurities is so high that it causes enough supercooling
to slow down the interface at lowest order.

3.3.1. Layer F. We consider first the outer layer F, with the rescalings shown
in Figure 4. The problem on 0 < z < 1 is given by

∂ĉs
∂θ

= ε
10
3 D̂

∂2ĉs
∂z2

,
∂Ts
∂θ

= ε
4
3κ
∂2Ts
∂z2

,(3.52a)

∂ĉs
∂z

= 0 and Ts = −1 at z = 1,(3.52b)

and the appropriate matching conditions with layers D and G. At leading order we
find

ĉs0 = ε
2λ2α̂

2λ2α̂+ 1
ĉ0, Ts0 = −1 +

erf
(
λ√
κ

(1− z)
)

erf
(
λ√
κ

) ,(3.53)

which are the same solutions as (3.40) in layer D.
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3.3.2. Layer G. The next layer to study is the intermediate layer G, which is
the layer where significant heat diffusion takes place. In this layer, defined by ξ > 0,
we have

∂ĉs
∂θ

= ε2D̂
∂2ĉs
∂ξ2

,
∂ T̂s
∂θ

= κ
∂2T̂s
∂ξ2

,(3.54)

with matching conditions with layers D, F, and H. At O (1) the problem is

∂ĉs0
∂θ

= 0,
∂ T̂s0
∂θ

= κ
∂2T̂s0
∂ξ2

,(3.55)

from where we immediately determine that cs = εα̂ci, where ci = 2λ2ĉ0
2λ2α̂+1 . In order to

determine T̂s0 we need to find the boundary conditions of the problem from matching.
Using the conditions derived in section 3.3.4 we can write the problem for T̂s0 and Ŝ0

as

∂T̂s0
∂θ

= κ
∂2T̂s0
∂ξ2

in ξ > 0,(3.56a)

T̂s0 = −ctot
m̂l

1

Ŝ0(θ)
at ξ = 0,

∂ T̂s0
∂ξ

=
ρ

kSt
Ŝ′0(θ) at ξ = 0,(3.56b)

T̂s0 ∼ −2λ2 ρ

kSt
ξ as ξ → +∞, θ → −∞, Ŝ′0(θ)→ −2λ2 as θ → −∞.(3.56c)

By introducing the scaled variables

T̂s0 =

(
2
κλ2ρ2ctot

k2m̂lSt2

) 1
3

(u− x) , Ŝ0 =

(
k2St2c2tot
2κλ2m̂2

l ρ
2

) 1
3

S,

θ =

(
k2St2c2tot

16κλ8m̂2
l ρ

2

) 1
3

t, ξ =

(
κkStctot
4λ4m̂lρ

) 1
3

x,

we reduce the problem (3.56) to

∂u

∂t
=
∂2u

∂x2
in x > 0,(3.57a)

u = − 1

S(t)
at x = 0,(3.57b)

∂u

∂x
=

dS

dt
+ 1 at x = 0,(3.57c)

∂u

∂x
→ 0 at x→ +∞,(3.57d)

u→ 0 when t→ −∞,(3.57e)

dS

dt
→ −1 when t→ −∞.(3.57f)

We can use (3.57a), (3.57b), (3.57d), and (3.57e) to determine the solution u(t, x)
using Laplace transforms. Notice that our problem starts at t→ −∞, therefore, when
taking the transform, we need to start at t = −t0 and then take t0 → ∞. We find
that the Laplace transform of u(t, x), defined as u(p, x) = L{u}(p), where p is the
frequency variable, is

(3.58) u(p, x) = pL
{
− 1

S(t)

}
(p)

e−x
√
p

p
.
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We can now take the inverse Laplace transform to obtain u(t, x), which is given by

(3.59) u(t, x) =

(
d

dt

(
− 1

S(t)

))
∗ erfc

(
x

2
√
t

)
,

where ∗ denotes the convolution defined as

(3.60) F (t) ∗G(t) =

∫ t

−∞
F (τ)G(t− τ)dτ.

Therefore, u(t, x) is given by

(3.61) u(t, x) =

∫ t

−∞

d

dt

(
− 1

S(τ)

)
erfc

(
x

2
√
t− τ

)
dτ.

From here, we shall obtain the equation governing S(t). We start by taking the
derivative of (3.58) with respect to x, to find

(3.62)
∂u

∂x
= −pL

{
− 1

S(t)

}
(p)

e−x
√
p

√
p
,

so taking the inverse Laplace transform we obtain

(3.63)
∂u

∂x
= −

(
d

dt

(
− 1

S(t)

))
∗
(
e−

x2

4t√
πt

)
.

Evaluating (3.63) at x = 0, we have

(3.64)
∂u

∂x

∣∣∣∣
x=0

= − 1√
π

∫ t

−∞

S′(τ)

S(τ)2

dτ√
t− τ ,

and using the boundary condition (3.57c) we obtain the nonlinear integro-differential
equation

(3.65)
dS

dt
+ 1 = − 1√

π

∫ t

−∞

S′(τ)

S(τ)2

dτ√
t− τ ,

which determines S(t).
We cannot find an exact solution for S(t), but, given that the problem (3.57)

has no parameters, we can solve it numerically and then rescale the results for our
original problem (3.56). In order to solve (3.57) we use a finite volume scheme. We
start the simulation at t = −100 with S = 100 and u = 0, so they are consistent
with the initial conditions. The simulation domain is taken to be x ∈ [0, 1000] which
simulations show to be large enough so the boundary at x = 1000 does not interfere
significantly with the diffusion process. Figure 6 shows the numerical solution.

Even though we cannot find exact solutions to (3.65), we can determine the large
time behavior of the solution. Notice that, in the limit t→ −∞, the behavior is given
by the initial condition dS

dt → −1, hence, we have that S ∼ −(t−C4), where C4 is an
integration constant. Because the problem (3.57) is invariant under time shifts, C4

remains undetermined unless further matching conditions are derived.
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Fig. 6. Numerical solutions for S(t) using (3.57) for (a) the range t ∈ [−100, 100] and (b) the
range t ∈ [−10, 10].

The behavior in the limit t→ +∞ can be found from (3.65), using the assumption
that dS

dt → 0 when t→ +∞, which we have from the numerical solution. Then, (3.65)
gives

(3.66) 1 = − 1√
π

∫ t

−∞

S′(τ)

S(τ)2

dτ√
t− τ = − 1√

π

(
S′(t)
S(t)2

)
∗
(

1√
t

)
.

Taking the Laplace transform, we find

(3.67)
1

p
= −L

{
S′(t)
S(t)2

}
(p)

1√
p
,

therefore,

(3.68)
1√
p

= −L
{
S′(t)
S(t)2

}
(p),

and taking the inverse Laplace transform we have

(3.69) − S′(t)
S(t)2

=
1√
πt
.

Integrating, we conclude that

(3.70) S(t) =

√
π

2
√
t+ C5

,

where C5 is an integration constant. However, notice that when t → +∞, S ∼
√
π

2
√
t
,

therefore the value of this constant does not affect the asymptotic behavior of S(t).
Notice that this result satisfies the assumption dS

dt → 0 when t→ +∞ that we took at
the beginning of the analysis. In Figure 7 we compare the behavior of the numerical
simulations in both limits t → ±∞ against the predictions on a loglog plot, finding
that the numerical solutions agree with the expected asymptotic behavior.

3.3.3. Layer H. Finally, we study the inner layer H introducing the scalings
described in Figure 4, where the interface conditions hold. The problem is

∂ĉs
∂θ

= ε
2
3 D̂

∂2ĉs
∂Z2

, ε
4
3
∂T̂s
∂θ

= κ
∂2T̂s
∂Z2

, ε
1
3
∂ĉl
∂θ

=
∂2ĉl
∂Z2

, ε
4
3
∂T̂l
∂θ

=
∂2T̂l
∂Z2

,(3.71a)
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asymptotic behaviour numerics

Fig. 7. Comparison of the numerical solutions and the asymptotic behavior of the solution to
(3.65) in the limits (a) t → −∞ where the expected behavior is S ∼ −t given that for the initial
conditions used in the simulations we have C4 = 0 (notice that S is plotted against −t), and (b)

t→ +∞ where the expected behavior is S ∼
√
π

2
√
t
.

T̂s = T̂l, ĉs = α̂ĉl, ĉl = −m̂lT̂l,(3.71b)

ε
2
3
ρ

St

dŜ

dθ
= k

∂T̂s
∂Z
− ∂T̂l
∂Z

, ε
1
3 (1− εα̂)ĉl

dŜ

dθ
= ε2D̂

∂ ĉs
∂Z
− ∂ĉl
∂Z

at the interface (Z = Ŝ(θ)), and

(3.71c)
∂ĉl
∂Z

= 0 and
∂T̂l
∂Z

= 0 at Z = 0.

We need to impose appropriate matching conditions in space with layer G and in time
with layer E.

The problem at O(1) is

∂ĉs0
∂θ

= 0,
∂2T̂s0
∂Z2

= 0,
∂2ĉl0
∂Z2

= 0,
∂2T̂l0
∂Z2

= 0,(3.72a)

T̂s0 = T̂l0, ĉs0 = α̂ĉl0, ĉl0 = −m̂lT̂l0, k
∂T̂s0
∂Z

=
∂T̂l0
∂Z

,
∂ ĉl0
∂Z

= 0(3.72b)

at the interface, and

(3.72c)
∂ĉl0
∂Z

= 0 and
∂T̂l0
∂Z

= 0 at Z = 0.

We find the solutions

ĉs0 = α̂ci0(Ŝ−1
0 (Z)), ĉl0 = ci0(θ), T̂s0 = −ci0(θ)

m̂l
, T̂s0 = −ci0(θ)

m̂l
,(3.73)

where ci0(θ) is the concentration at the interface, yet to be determined.

At O(ε
1
3 ), the problem is

∂ĉs 1
3

∂θ
= 0,

∂2T̂s 1
3

∂Z2
= 0,

∂2ĉl 13
∂Z2

= c′i0(θ),
∂2T̂l 13
∂Z2

= 0,(3.74a)
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T̂s 1
3

= T̂l 13 , ĉs 1
3

= α̂

(
ĉl 13 −

Ŝ 1
3
(θ)

Ŝ′0(θ)
c′i0(θ)

)
, ĉl 13 = −m̂lT̂l 13 ,(3.74b)

k
∂T̂s 1

3

∂Z
=
∂T̂l 13
∂Z

,
∂ ĉl 13
∂Z

+ ci0(θ)
dŜ0

dθ
= 0

at the interface, and

(3.74c)
∂ĉl 13
∂Z

= 0 and
∂T̂l 13
∂Z

= 0 at Z = 0.

We obtain the solutions

ĉl 13 =
1

2
c′i0(θ)Z2 + ci 13 (θ)− 1

2
c′i0(θ)Ŝ0(θ)2, T̂s 1

3
= −

ci 13 (θ)

m̂l
, T̂l 13 = −

ci 13 (θ)

m̂l
,

(3.75)

and we do not calculate cs 1
3
, since it is not useful to our analysis. We also find

(3.76)
∂ci0
∂θ

Ŝ0 + ci0
∂Ŝ0

∂θ
= 0,

therefore, we conclude that ci0Ŝ0 = ctot is constant. Note that this condition is equiv-
alent to conservation of mass in the liquid at leading order, therefore, the constant ctot
is the total concentration of the problem in this regime. Furthermore, we can show
that in regime ii the amount of impurities in the liquid at leading order is conserved,
even though it is not constant. Therefore, the value of ctot is constant throughout
regimes ii and iii, so we can calculate it at the final state of regime i for convenience,
that is using solution (3.13b). We find

(3.77) ctot =

∫ 0

−∞
cie

2λ2ZdZ =
ĉ0

2λ2α̂+ 1
.

Finally, we study the problem at O(ε
2
3 ), however, we consider only the tempera-

ture profiles as they are the ones we need for the matching. We have

∂2T̂s 2
3

∂Z2
= 0 in Z > Ŝ0(θ),

∂2T̂l 23
∂Z2

= 0 in 0 < Z < Ŝ0(θ),(3.78a)

ρ

St

dŜ0

dθ
= k

∂T̂s 2
3

∂Z
−
∂T̂l 23
∂Z

at Z = Ŝ0(θ),
∂ T̂l 23
∂Z

= 0 at Z = 0,(3.78b)

and we find the solutions

T̂s 2
3

=
ρ

kSt

dŜ0

dθ
Z +A4(θ), T̂l 23 = A4(θ),(3.79)

where A4(θ) is related to the value of cl 23 , which we have not calculated.

3.3.4. Matching of the solutions. We now match the solutions of the different
layers to determine the boundary conditions for the temperature problem in layer G.
We start by matching layers F and G; therefore, now G acts as the inner layer because
F is the outer layer. Because in this regime we have the expansions of the solutions
in powers of ε

1
3 , when we say we take two terms it means up to O(ε

1
3 ), three terms
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means up to O(ε
2
3 ), and so on. Taking three terms in the inner solution and one term

in the outer solution, we find

(3ti)(1to) = ε
2
3

(
−2λ2 ρ

kSt
ξ
)
, (1to)(3ti) = lim

ξ→+∞
ε

2
3 T̂s0(θ, ξ),(3.80)

therefore, we find the condition

(3.81) lim
ξ→+∞

T̂s0(θ, ξ) = −2λ2 ρ

kSt
ξ.

Similarly, we determine the initial condition by matching the solution in layer G
with the one in layer D. As the solution in layer D does not depend on time, we end
up having the same linearization as in (3.81), therefore, we find

(3.82) lim
θ→−∞

T̂s0(θ, ξ) = −2λ2 ρ

kSt
ξ.

To complete the problem we need to calculate the matching between layer G and
layer H, where now layer G acts as the outer layer. We take five terms in both layers
finding

(5ti)(5to) = ε
2
3 T̂s0(θ, 0) + εT̂s 1

3
(θ, 0) + ε

4
3

 ∂T̂s0
∂Z

∣∣∣∣∣
ξ=0

Z + T̂s 2
3
(θ, 0)

 ,(3.83a)

(5to)(5ti) = −ε 2
3
ci0(θ)

m̂l
− εci1(θ)

m̂l
+ ε

4
3

( ρ

kSt
Ŝ′0(θ)Z +A4(θ)

)
.(3.83b)

As we are only interested in determining T̂s0 we take only the conditions

T̂s0(θ, 0) = −ci0(θ)

m̂l
= −ctot

m̂l

1

Ŝ0(θ)
,

∂ T̂s0
∂Z

∣∣∣∣∣
ξ=0

=
ρ

kSt
Ŝ′0(θ).(3.84)

This finishes the analysis of regime iii, in which we observed that the buildup of
impurities in the liquid phase causes enough supercooling to slow the interface down.
At the final stages of this regime, that is, when θ → +∞, we observe that at leading
order the position of the interface tends to zero, and thus the interfacial concentration
and temperature blow up. Therefore, we need to introduce regime iv to capture the
behavior in that limit.

3.4. Asymptotic solutions in regime iv. Finally, we focus our attention on
the late time part of the problem: regime iv. Again, we distinguish two layers:
the outer layer I and the inner layer J. In the previous layers, we took D to be of
order ε as this assumption was sufficient to decouple the diffusion of impurities in
the solid from the remainder of the analysis. With this scaling, in regime iv we
would need to consider an extra layer in the solid phase (between layers I and J)
where we observe diffusion of impurities. For simplicity, and because this layer would
only provide new information for cs at the very end of the process, which is of small
relevance to our analysis as discussed later, we take D = O (εp) for some p > 3, which
prevents diffusion of impurities from occurring in layer J. This assumption keeps the
concentration profile stationary in both layers I and J and, despite the rescaling, does
not affect the matching with previous layers.
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3.4.1. Layer I. We consider first the outer layer I, using the rescalings shown
in Figure 4. The problem is defined in 0 < z < 1 by

∂ĉs
∂t

= εp+1D̂
∂2ĉs
∂z2

,
∂Ts
∂t

= κ
∂2Ts
∂z2

,(3.85a)

∂ĉs
∂z

= 0 and Ts = −1 at z = 1,(3.85b)

and appropriate matching conditions with layers J and F. At O (1), the problem is

∂ĉs0
∂t

= 0,
∂Ts0
∂t

= κ
∂2Ts0
∂z2

,(3.86a)

∂ĉs0
∂z

= 0 and Ts0 = −1 at z = 1.(3.86b)

In a similar way as we did before, we find that cs = εα̂ci. In section 3.4.3 we
derive the matching conditions that complete the problem for Ts0, so we have

∂Ts0
∂t

= κ
∂2Ts0
∂z2

in 0 < z < 1,(3.87a)

∂Ts0
∂z

= 0 at z = 0,(3.87b)

Ts0 = −1 at z = 1,(3.87c)

Ts0 = −1 +
erf
(
λ√
κ

(1− z)
)

erf
(
λ√
κ

) at t = t∗ + ετ∗.(3.87d)

Using separation of variables (as the problem is defined in the fixed domain 0 < z < 1),
we find

(3.88) Ts0 = −1 +

∞∑
n=0

ane
−( 2n+1

2 π)
2
κ(t−t∗−ετ∗) cos

(
2n+ 1

2
πz

)
,

where the coefficients an are defined by

(3.89) an = 2

∫ 1

0

erf
(
λ√
κ

(1− z)
)

erf
(
λ√
κ

) cos

(
2n+ 1

2
πz

)
dz.

3.4.2. Layer J. For the inner layer, J, we take the relevant scalings shown in
Figure 4, and then rewrite the problem as

∂cs
∂t

= εp−3D̂
∂2cs
∂Z2

, ε4
∂Ts
∂t

= κ
∂2Ts
∂Z2

, ε3
∂ĉl
∂t

=
∂2ĉl
∂Z2

, ε4
∂Tl
∂t

=
∂2Tl
∂Z2

,(3.90a)

Ts = Tl, cs = α̂ĉl, ĉl = −m̂lTl,(3.90b)

ε4
ρ

St

dŜ

dt
= k

∂Ts
∂Z
− ∂Tl
∂Z

, ε3(1− εα̂)ĉl
dŜ

dτ
= εp+1D̂

∂cs
∂Z
− ∂ĉl
∂Z

at the interface (Z = Ŝ(t)), and

(3.90c)
∂ĉl
∂Z

= 0 and
∂Tl
∂Z

= 0 at Z = 0.
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At O(1), the problem reads

∂cs0
∂t

= 0,
∂2Ts0
∂Z2

= 0,
∂2ĉl0
∂Z2

= 0,
∂2Tl0
∂Z2

= 0,(3.91a)

Ts0 = Tl0, cs0 = α̂ĉl0, ĉl0 = −m̂lTl0,
∂Ts0
∂Z

=
∂Tl0
∂Z

,
∂ ĉl0
∂Z

= 0(3.91b)

at the interface, and

(3.91c)
∂ĉl0
∂Z

= 0 and
∂Tl0
∂Z

= 0 at Z = 0.

The solution is then

cs0 = α̂ci0(Ŝ−1
0 (Z)), ĉl0 = ci0(t), Ts0 = −ci0(t)

m̂l
, Tl0 = −ci0(t)

m̂l
,(3.92)

so we will need to determine both ci0(t) and Ŝ0(t). The first can be determined from
the matching with (3.88), but we need to determine Ts up to O(ε2) first. The resulting
problems are the same as for O(1), therefore, we find

(3.93) Ts = −ci0(t)

m̂l
− εci1(t)

m̂l
− ε2 ci2(t)

m̂l
.

In order to determine the position of the interface we need to determine cl3(t, Z)
which gives cl3 = 1

2c
′
i0(t)Z2 +A5(t), where A5(t) is a function of time that we do not

need to determine for the purpose of our analysis. Then, the interface condition at
O(ε3) gives, as in regime iii, that ci0(t)Ŝ0(t) = ctot, where the total concentration ctot
is the same as in regime iii.

3.4.3. Matching of the solutions. In this regime we only need to match Ts
in layer I both with layers J and F to determine the boundary and initial conditions,
respectively. We start matching the inner layer J with the outer layer I. Taking one
term in the outer solution and three terms in the inner solution we find

(3ti)(1to) = Ts0(t, 0) + ε2Z
∂Ts0
∂z

∣∣∣∣
z=0

, (1to)(3ti) = −ci0(t)

m̂l
,(3.94)

and thus we conclude

∂Ts0
∂z

∣∣∣∣
z=0

= 0, ci0(t) = −m̂lTs0(t, 0),(3.95)

where the first condition is the boundary condition at z = 0 that we need to solve the
problem in layer I while the second determines ci0(t).

Finally, we match the outer layer in time I with the inner layer F. As the inner
solution does not depend on time, the matching is trivial and we find

(3.96) Ts0(t∗ + ετ∗, z) = −1 +
erf
(
λ√
κ

(1− z)
)

erf
(
λ√
κ

) ,

which is the initial condition for the problem in layer I. Therefore, we have completed
the problem for Ts0 in layer I.

This concludes the analysis of the last regime of the problem, as the solutions
found here hold up to the limit t → +∞. Therefore, bringing together the solutions
found in each of the four time regimes, we can describe, at leading order, the behavior
of the system (2.5) for t ∈ [0,+∞).
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3.5. Summary of asymptotic solutions. To summarize, our analysis has re-
vealed four different time regimes within which we distinguish significantly different
behaviors of the solutions. In all four regimes, we found that the impurities in the
solid diffuse so slowly that the diffusion process in the solid can be neglected. In this
section we provide the leading order solutions in each layer, rewritten in terms of the
original dimensionless parameters (i.e., before rescaling). Remember that we defined
the small parameter ε = Le−1. We do not provide a composite asymptotic solution
given that it would require us to solve each layer up to O(ε2).

In regime i, which is at the beginning of the process, the time scale is O(1). This
regime has two outer layers, one in the liquid and one in the solid, and a transition
layer around the solidification front. In the outer layer in the solid (z > S(t), layer
A), we have

(3.97a) cs ≈ αci and Ts ≈ −1 +
erf
(

1−z
2
√
κt

)
erf
(
λ√
κ

) ;

in the transition layer (z = S(t), layer B), we have

(3.97b)

cs ≈ αci, Ts ≈ −
ρ

kSt

λ√
t
(z − S(t))− ci

ml
,

cl ≈ ci exp

(
λ√
t
Le (z − S(t))

)
, Tl ≈ −

ci
ml

;

and in the outer layer in the liquid (z < S(t), layer C), we have
(3.97c)

cl ≈ c0, Tl ≈
(
T0 +

ci
ml

)
4

π

∞∑
n=0

(−1)n

2n+ 1
e−( 2n+1

2 π)
2
t cos

(
2n+ 1

2
π

z

S(t)

)
− ci
ml

,

where

(3.97d) S(t) ≈ 1− 2λ
√
t and ci ≈

2λ2c0

2λ2α+ Le−1 ,

and the constant λ is found from (3.33). Remember that for Tl in layer C, apart
from the asymptotic expansion in the limit of large Lewis number, we have used an
asymptotic expansion in the limit of small λ (which is equivalent to small Stefan
number), so the solution provided is the leading order term in λ. In this regime,
the system is driven by the thermal problem which has the self-similar behavior of
a one-phase Stefan problem, with the classic

√
t motion of the interface [4]. This is

because, at early times, due to the small supercooling the two solidification fronts do
not interact significantly. For the impurity transport, there is a “snow plough” effect
due to the rejection of impurities from the solid into the liquid, resulting in a buildup
of impurities in a thin layer of size O(ε) in the liquid phase adjacent to the interface.

Once the two fronts are within a distance O(ε) from one another, they begin to
notice the other, since the impurities can no longer diffuse away. This corresponds to
regime ii, where the time scale is O(ε) around the critical time t = t∗. We distinguish
two layers: the outer layer D and the inner layer E. In the outer layer D in the solid
(z > 0), the solutions are

(3.98a) cs ≈ αci and Ts ≈ −1 +
erf
(
λ√
κ

(1− z)
)

erf
(
λ√
κ

) ,
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while in the inner layer E around the origin, with the solid phase in z > S(t) and the
liquid in z < S(t), we have
(3.98b)

cs ≈ αci
∞∑
n=1

n
[
exp

(
−2λ2Le n(n− 1)z

)
+ exp

(
−2λ2Le n(n+ 1)z

)]
,

Ts ≈ −2λ2 ρ

kSt
(z − S(t))

− ci
ml

∞∑
n=1

n
[
exp

(
−2λ2Le n(n− 1)S(t)

)
+ exp

(
−2λ2Le n(n+ 1)S(t)

)]
,

cl ≈ ci
∞∑
n=1

n
[
exp

(
2λ2Le n (z − nS(t))

)
+ exp

(
2λ2Le n (−z − nS(t))

)]
,

Tl ≈ −
ci
ml

∞∑
n=1

n
[
exp

(
−2λ2Le n(n− 1)S(t)

)
+ exp

(
−2λ2Le n(n+ 1)S(t)

)]
,

where

(3.98c) S(t) ≈ −2λ2 (t− t∗ − τ∗) , t∗ =
1

4λ2
, and τ∗ =

kSt

ρ

1

8λ4

ci
ml

,

and remember that the given value for τ∗ is the leading order term in the small λ
expansion. The solutions show a buildup of concentration of impurities in the liquid,
due to the interaction between the fronts. At this small time scale, the temperature
in the solid remains constant (at leading order), and we find that the motion of the
interface is linear. The temperature in the liquid is homogeneous and equal to the
supercooling temperature at the interface. This behavior is explained by the fact that
the buildup of impurities is not large enough to cause significant supercooling and,
therefore, does not affect the temperature in the solid nor the motion of the interface.

In regime iii, the two fronts are within a distance O(ε
4
3 ) from one another. The

time scale is of O(ε
4
3 ) around the critical time t = t∗+τ∗. We distinguish three layers:

an outer layer F in the solid, an inner layer G of size O(ε
2
3 ), and an inner layer H of

size O(ε
4
3 ), both around the origin. In the outer layer F (z > 0), we have

(3.99a) cs ≈ αci and Ts ≈ −1 +
erf
(
λ√
κ

(1− z)
)

erf
(
λ√
κ

) ;

in the inner layer G, we have

(3.99b)

cs ≈ αci,

Ts ≈ −2λ2 ρ

kSt
z +

ctot
ml

∫ t−t∗−τ∗

−∞

S′(s)
S(s)2

erfc

(
z

2
√
κ
√
t− t∗ − τ∗ − s

)
ds;

and in the inner layer H (z > S(t) for the solid and z < S(t) for the liquid), we have

(3.99c) cs ≈
αctot
z

, Ts ≈ −
1

ml

ctot
S(t)

, cl ≈
ctot
S(t)

, Tl ≈ −
1

ml

ctot
S(t)

,

where

(3.99d) ctot =
c0

2λ2αLe + 1
,
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and S(t) is the solution to the integro-differential equation (3.65). Given that we can
eliminate all the parameters from the problem, we can use the numerical solution of
the parameter-free problem (3.57) shown in Figure 6 and then rescale it to obtain
the solution to the problem (3.56). Both temperature and concentration fields in
the liquid are homogeneous at leading order, since the length scale is much smaller
than the diffusive length scale. The concentration evolves so that mass is conserved
in the shrinking liquid domain, and temperature evolves to preserve thermodynamic
equilibrium. The concentration of impurities in the liquid is now large enough to cause
significant supercooling, and the temperature gradient in the solid near the interface
decreases as a result, causing the inward motion of the solidification fronts to slow
down.

In regime iv, the final temporal regime, the time scale is O(1) and the fronts are
within a distance of O(ε2). We distinguish an outer layer I and an inner layer J of
O(ε2). In the outer layer, we have

(3.100a) cs ≈ αci, Ts ≈ −1 +
∞∑
n=0

ane
−( 2n+1

2 π)
2
κ(t−t∗−τ∗),

while in the inner layer (z > S(t) for the solid and z < S(t) for the liquid), we have

(3.100b) cs ≈
αctot
z

, Ts ≈ −1 +

∞∑
n=0

ane
−( 2n+1

2 π)
2
κ(t−t∗−τ∗),

(3.100c)

cl ≈ ml

(
1−

∞∑
n=0

ane
−( 2n+1

2 π)
2
κ(t−t∗−τ∗)

)
, Tl ≈ −1 +

∞∑
n=0

ane
−( 2n+1

2 π)
2
κ(t−t∗−τ∗),

where

(3.100d) S(t) ≈ ctot
ml

(
1−

∞∑
n=0

ane
−( 2n+1

2 π)
2
κ(t−t∗−τ∗)

)−1

,

and the coefficients an are as given in (3.89). As in regime iii, we observe that the
temperature and concentration profiles in the liquid are homogeneous and evolve
in thermodynamic equilibrium jointly with the temperature in the solid which now
decays to the temperature at the boundary. The interface position evolves so that the
total concentration of impurities in the liquid is conserved.

4. Comparison with numerical simulations and experimental data. In
order to validate the asymptotic solutions, we compare them to numerical simulations
of the full problem (2.3) obtained via a finite volume scheme [23]. We also compare
our solutions to experimental data.

4.1. Numerical scheme. In order to solve the problem (2.3) numerically we
choose a fixed boundary scheme, similar to those described in [10, 41]. We rescale the
solid and liquid domains so they have fixed boundaries. Because the Péclet number of
the impurity equations ranges from large in the beginning to small at the end, extra
care must be taken in order to avoid numerical instabilities. Therefore, we use a finite
volume scheme with a TVD discretization for the advection term. We implement the
scheme in MATLAB using the finite volume toolbox FVToolbox [9].
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We introduce the variables x = z−S(t)
1−S(t) for the solid phase and y = z

S(t) for the

liquid phase, both of which range from 0 to 1. We define the following quantities

(4.1)

φ1(t, x) = [1− S(t)]cs(t, x),

φ2(t, x) = [1− S(t)]Ts(t, x),

φ3(t, y) = S(t)cl(t, y),

φ4(t, y) = S(t)Tl(t, y),

so we can rewrite the system (2.3) in conservation form. In the solid phase x ∈ (0, 1),
we have

∂φ1

∂t
+

∂

∂x

(
− S′(t)

1− S(t)
(1− x)φ1 −

D

Le(1− S(t))2

∂φ1

∂x

)
= 0,(4.2a)

∂φ2

∂t
+

∂

∂x

(
− S′(t)

1− S(t)
(1− x)φ2 −

κ

1− S(t)2

∂φ2

∂x

)
= 0;(4.2b)

in the liquid phase y ∈ (0, 1), we have

∂φ3

∂t
+

∂

∂y

(
−S
′(t)
S(t)

yφ3 −
1

LeS(t)2

∂φ3

∂y

)
= 0,(4.2c)

∂φ4

∂t
+

∂

∂y

(
−S
′(t)
S(t)

yφ4 −
1

S(t)2

∂φ4

∂y

)
= 0;(4.2d)

at the interface (given by x = 0 and y = 1), we have

S(t)φ2 = (1− S(t))φ4,(4.2e)

S(t)φ1 = α(1− S(t))φ3,(4.2f)

φ3 = −mlφ4,(4.2g)

ρ

St

dS

dt
=

k

(1− S(t))2

∂φ2

∂x
− 1

S(t)2

∂φ4

∂y
,(4.2h)

− S′(t)
1− S(t)

φ1 −
D

Le(1− S(t))2

∂φ1

∂x
= −S

′(t)
S(t)

φ3 −
1

LeS(t)2

∂φ3

∂y
;(4.2i)

the boundary conditions are

∂φ1

∂x
= 0 and φ2 = −(1− S(t)) at x = 1,

∂φ3

∂y
= 0 and

∂φ4

∂y
= 0 at y = 0,

(4.2j)

and we prescribe appropriate initial conditions for φ1, φ2, φ3, φ4, and S.
Since α is very small, we take α = 0 and therefore we neglect the impurities in the

solid, considering only impurities in the liquid when performing our simulations. This
reduces the condition (4.2i) to a no-flux condition and removes (4.2a) and (4.2f) from
the system. At each time step, we iterate using a relaxation scheme until convergence.
At the (k+ 1)th iteration, knowing the values of the kth iteration φk2 , φk3 , φk4 , Sk, and
V k, and the values at the previous time step φ∗2, φ∗3, φ∗4, and S∗, we proceed in the
following order:

1. Calculate φk+1
2 , φk+1

3 , and φk+1
4 from (4.2b)–(4.2d) and the boundary condi-

tions (4.2e), (4.2g), and (4.2i). We use the values of φk3 , Sk, and V k at the
previous iteration for the calculations.
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2. Use (4.2h) to calculate the variation in velocity between iterations k and k+1,
using the new values of φk+1

2 and φk+1
4 and the old value of Sk:

∆V k+1 =
St

ρ

(
k

(1− Sk)2

∂φk+1
2

∂x
− 1

(Sk)2

∂φk+1
4

∂y

)
− V k.

3. Calculate the new velocity using a relaxation coefficient ω as V k+1 = V k +
ω∆V k+1.

4. Update the position of the interface with the new velocity and the position
of the interface at the previous time step. That is, Sk+1 = S∗ + ∆tV k+1.

We keep iterating until |∆V k+1

V k+1 | < δ, where δ is a prescribed tolerance. Then we can
move to the next time step and start iterating again.

4.2. Comparison of asymptotic and numerical results. When performing
our simulations, we set St = 0.77, Le = 100, ρ = 1, cp = 1, k = 0.36, ml = 100,
c0 = 0.01, T0 = 0, which are representative of metallurgical grade silicon. We take
Ns = 5·103 grid points in the solid phase, Nl = 104 grid points in the liquid phase, and
an initial time step of ∆t = 10−4. For the relaxation iterations, we take a relaxation
parameter ω = 0.1 and a tolerance of δ = 0.01. To help convergence, if one time step
takes more than 100 iterations before converging and the time step is larger than 10−5

we halve the time step. This algorithm is capable of solving the full problem with a
total mass variation smaller than 0.01%.

The comparison between our asymptotic solutions and numerical simulations is
shown in Figure 8. Based on the good agreement with the asymptotic solutions, we
believe that the asymptotics accurately describe the true dynamics of the system, even
as the fronts approach closely. In Figure 8(a) we plot the position of the interface,
observing self-similar-like behavior for t < t∗ = 2.2294, while for t > t∗ we observe
exponential decay toward the final position of the interface, determined by ctotm

−1
l =

9.57 ·10−5. In Figure 8(b) we plot the concentration in the liquid side of the interface.
In regime i the concentration is constant until near t∗ (regime ii), when the buildup of
impurities becomes noticeable. For t > t∗, the buildup of impurities continues, with
the concentration tending exponentially to a concentration ml = 100. In Figures 8(c)
and 8(d) we show the same comparison for the solution in regime iii (solid blue line)
and the solutions in regimes ii and iv (dashed black lines) to show as well the matching
between these three layers. As discussed earlier, we do not provide composite solutions
as it would require us to calculate solutions up to O(ε2) in each layer, so the plotting
domain for each regime in the plot is merely for illustrative purposes. Figures 8(e)
and 8(f) show the comparison between asymptotic and numerical solutions for the
temperature profiles in the solid phase and concentration profiles in the liquid phase
(as time evolves, curves go from right to left). We observe good agreement as well
between the asymptotic approximations and numerical simulations.

Finally, in Figure 9 we show the concentration of impurities on the liquid side
of the interface as a function of time for different values of the Stefan and Lewis
numbers, and we observe that the qualitative behavior is the same for both parameter
sweeps. In particular, we notice that a decrease of St causes the system to cool at a
slower rate and hence the solidification process happens more slowly. On the other
hand, an increase of Le (which corresponds to a decrease of ε), results in a larger final
concentration ml, as from our asymptotic scalings we set ml to scale with Le. We find
also, even though it cannot be appreciated in the plot, that an increase of Le results
in a quicker transition as regimes ii and iii are of size O(ε) and O(ε

4
3 ), respectively.
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Fig. 8. Comparison of the analytical and numerical solution of (a) the interface position and
(b) the concentration of impurities on the liquid side of the interface against time. Figures (c) and
(d) show the zoom in regime iii (solid blue line) and how it matches with the solutions in regimes ii
and iv (dashed black line). Finally, in (e) we show the temperature profiles in the solid and in (f)
the concentration profiles in the liquid for different times. As time goes by, the curves go right to
left.

4.3. Comparison with experimental results. As mentioned in section 1, an
application which motivates this work is the casting of metallurgical grade silicon, and
we now compare our results with experimental data of the casting of 99% pure silicon
over a water cooled copper plate. These experimental data were provided by Elkem.
In order to obtain the data, after the cast has cooled down, it is sliced into parts and
treated in order to take the measurements on the internal faces of the slice. Grain
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Fig. 9. Asymptotic solutions of the concentration of impurities on the liquid side of the interface
against time for different values of (a) Stefan number St (where St = 0.2 is the rightmost curve and
St = 0.7 the leftmost curve) and (b) Lewis number Le (where Le = 50 is the bottom curve and
Le = 500 the top curve).
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asymptotics experiments

Fig. 10. (a) Picture of the sample used for the experimental data (imaged provided by Elkem).
The experiment corresponds to a 14 mm silicon cast over a water cooled copper plate. The data are
taken at a given central section of the cast which has been polished and chemically treated in order
to take the measurements. (b) Comparison of the asymptotic solution and experimental data for
the concentration in the solid phase. The experimental data have been provided by Elkem. For the
asymptotic solution we used parameter values c0 = 0.01, µr = 17, µl = 10, α = 0.03, and z0 = 0.43.

size, pore size, and impurity concentration are then recorded. These magnitudes are
averaged over a certain width at every cross section, so the output data are recorded
against the thickness direction variable. An image of the measured sample is shown
in Figure 10(a). We are interested in measurements of the (cross-section averaged)
concentration of impurities in the solid against the thickness of the cast. These data
can be immediately compared to cs, which we have found will not depend on time (to
leading order). As the cast thickness is much smaller than its width, and the impurity
concentration is averaged over a few centimetres of cross section, our planar model is
a reasonable match to the experimental configuration.
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In Figure 10(b), we plot the asymptotic solution and the experimental data. Due
to scale, in the experimental data we only resolve regimes i and ii. The corresponding
composite asymptotic solution for both regimes (at leading order) is

(4.3) cs(z) ≈
αµ

αµ+ 1
c0

∞∑
n=1

n
(
e−µ(n+1)nz + e−µn(n−1)z

)
,

where µ = 2λ2Le. Thus, the concentration profile depends only on three dimensionless
parameters, µ, α, and c0.

From the experimental data, we observe the concentration profiles produced by
two solidification fronts which are not symmetric, and eventually meet at a point z0

of the cast. To match this with asymptotic solutions, we assume each side of the plot
can be modeled by (4.3) combining cs(z − z0) and cs(z0 − z), both with the same
parameters α and c0 (as these are given by the material properties). On the other
hand, the parameter µ depends on the cooling rate which has different values at the
top and at the bottom of the cast due to the different heat transfer mechanisms.
However, we know that both fronts meet at the same time, and at z = z0, therefore,
we have the relation

(4.4) µl =

(
z0

1− z0

)2

µr,

where subscripts r and l denote the right and left side of the central cross section z =
z0. We use reasonable parameter values for our problem to compare the asymptotic
solution (4.3) with the experimental data. Using the parameter values c0 = 0.01,
µr = 17, µl = 10, α = 0.03 and z0 = 0.43, we obtain the asymptotic solution shown in
Figure 10(b). Notice that these values of µl, µr, and α are significantly different than
the ones used in the numerical simulations. Given the simplicity of our model, we
treat these parameters as effective coefficients that can be determined experimentally
for a given physical setup. The asymptotic solution captures the rapid growth of the
concentration near the region where the solidification fronts meet, and the constant
concentration outside of this region. The noise in the data is caused by the bubbles
and pores of the cast, as impurities tend to aggregate around them. In spite of these
complications, the asymptotic solutions show good qualitative agreement with the
experimental data.

5. Discussion. We have considered an asymptotic analysis for the extended
Stefan problem modeling the solidification of a binary alloy in a finite slab. We
distinguished four different time regimes, each featuring multiple spatial layers. The
dynamics at the beginning of the process are akin to those of the classical one-phase
classical Stefan problem (for which there exist self-similar solutions). The impurities
are rejected from the solid into the liquid and then diffuse away within a thin layer
near the solidification front. The value of the concentration at the interface remains
constant. When the two fronts move close to each other, the interaction between the
fronts causes the concentration in the liquid to increase, since the rejected impurities
can no longer diffuse away. As time increases, the concentration of impurities in the
liquid phase becomes large enough to influence the temperature field, resulting in a
slowing of the solidification front motion (so that the fronts do not collide). In the
late stages of the process, the system is driven by cooling of the solid towards the
uniform state given by the thermal boundary value. These asymptotic solutions are
shown to agree with numerical simulations and experimental data.
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We conclude that supercooling plays a crucial role in the time evolution of the
system as the fronts approach one another and the impurities build up. It is also
noteworthy that the transition between the two main regimes occurs in two stages.
In the first stage, there is a quick buildup of impurities in the liquid, yet the interface
continues to move as for earlier time. In the second stage, a significant change in
the solidification front occurs as it slows down as the impurity buildup has modified
the thermal properties of the system. We also find that the cooling rate λ has a
large impact for the late-time dynamics, particularly in the concentration fields, as it
determines the value of ctot.

One potential industrial application of our analysis would be an improved under-
standing of the casting process for materials such as silicon. We have shown that the
distribution of impurities in the final solidified slab is determined by the cooling rate,
λ, the initial impurity concentration, c0, the segregation coefficient, α, and the Lewis
number, Le. The latter two are physical parameters which depend on the material
and the impurities and, hence, cannot be controlled. The parameter c0 is also nor-
mally restricted by the specific application, so the only control parameter is λ. The
parameter µ = 2λ2Le defines the thickness of the impurity buildup layer, therefore λ
influences both the concentration far from the central layer and the thickness of the
layer of impurities. As λ depends on the heat exchange of each boundary, the cooling
conditions applied to the cast could, in principle, be used to control the profile of the
concentration of impurities in the solid slab. Moreover, the experimental data sug-
gest that the thickness of this layer correlates with the thickness of the equiaxed grain
layer, therefore the results presented here could be used to obtain a semiempirical
estimation of the thickness of the equiaxed layer. These could be an alternative to
the several analyses of the columnar to equiaxed transition existing in the literature
(see [11, 12, 16] for a few examples). For more information on the topic, we refer the
reader to the book [8].

Possible extensions of this work would be to consider two-dimensional radially
symmetric (cylindrical) and three-dimensional (spherical) geometries, thereby extend-
ing the work presented in [10, 27, 33] to an extended Stefan problem for binary alloys
in these geometries. Another extension would be to consider arbitrary two- and three-
dimensional geometries to generalize the results presented in [25, 26]. One might also
consider the role of nonuniform boundaries, such as configurations where the molten
material is placed on a bed of fines, resulting in initially uneven penetration of the
solidification front at small times as discussed in [2]. In these configurations one
could study as well the differences in the heat exchange mechanisms when introduc-
ing a layer of fines. Finally, the stability of the solutions for each regime could be
studied, which may potentially lead to a better understanding of the columnar to
equiaxed transition. Identifying particular instabilities possible on each time scale
might provide a better understanding of the grain formation process.
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