
EPSRC Centre for Doctoral Training in
Industrially Focused Mathematical

Modelling

Uncertainty quantification for deep neural
networks

John Fitzgerald



Contents
1 Introduction 1

Background information . . . . . . . . . . . . . 1

Glossary of terms . . . . . . . . . . . . . . . . . 2

2 Methods 3

Compression . . . . . . . . . . . . . . . . . . . 3

Sampling and Bayesian inference . . . . . . . . 3

Adversarial examples . . . . . . . . . . . . . . 4

3 Results 4

4 Discussion, conclusions & recommendations 5

5 Potential impact 6

References 6



1 Introduction
Uncertainty is fundamental to making informed decisions, especially if we choose to
automate the process. Often, a single point estimate as output may be insufficient, for
example when a doctor makes a recommendation for treating a patient or a computer
makes a recommendation about what to do if an object passes in front of a driverless
vehicle. The doctor should know the uncertainty in the recommendation, for example if
a secondary proposal may have a marginally less optimal outcome but is more likely to
succeed.

Deep learning is a technique for predicting complex relationships without requiring careful
case-specific fine-tuning, for example determining objects that are contained within an
image, or forecasting the future from the present. The National Physical Laboratory (NPL)
is the UK’s national measurement institute and is involved in a large number of projects
where deep learning has a key role to play, including satellite data analysis, X-ray computed
tomography, analysis of mass-spectrometric data sets, medical image fusion. One of the
main features of NPL’s approach to metrology—the science of measurement—is a constant
focus on confidence in decision making and a sound understanding of the statistical
uncertainty associated with the algorithms and the measurement devices.

How can we tell how
uncertain a deep
neural network
prediction is?

Unfortunately, metrology is an area that has not benefitted from deep learning, with most
conventional models only providing a single prediction for a given input. However, deep
learning also faces issues around the existence of adversarial examples, small perturbations
of real data that fool the model into misclassifying the input. Recent research explores how
models may be made more robust to these attacks, as well as how to detect these examples
in the first place.

Our aim is to investigate how a combination of (i) model compression (a reduction in the
number of parameters used) and (ii) sampling network parameters using probabilistic
methods may allow us to tackle both of these issues simultaneously. We apply these
techniques to a simple network designed to classify hand-written digits, and attack each
network to assess both robustness and the possibility of using uncertainty as a method of
detecting adversarial examples.

Background information
The idea of artificial neural networks (ANNs) began in the 1940s when mathematicians
started trying to recreate biological nerve systems [1]. The thought was that, by creating a
collection of units—artificial neurons—which may be connected to each other in such a way
that the processed output of one unit may be passed on to additional units, information
could be processed in a manner akin to the way that synapses in the brain transform
and propogate electrical signals in response to external stimuli. The connections between
artificial neurons have to be trained somehow by exposure to a dataset, much as neural
pathways in our brain are developed by our experiences. The resulting network may then
be used to predict from, or classify, previously unseen data.

Contemporary deep learning is the latest development of this field. It utilises a series of
mathematical operations to extract abstract features from a given piece of data to then
allow classification or forecasting. These operations are typically sequential, with each step
in the sequence being called a layer of the network. Within the field, depth refers to the
use of multiple layers in order to allow greater complexity in the data to be understood
without requiring enormous numbers of neurons. Originally most neural networks were
fully connected, meaning that every neuron in each layer was connected to every neuron of
the preceding layer. This meant that the output of every neuron in the preceding layer
was passed forward for processing by each neuron of the following layer. However, this
resulted in poor performance under shifts in the location (spatial translation) or rotations
of objects within images, and high numbers of parameters being required to perform
relatively simple tasks.

A considerable boost in the performance of these networks was achieved using convolutional
layers. These layers have vastly fewer parameters than their fully connected counterparts,
and work by applying the same basic transformation to different patches of a piece of
data. This means that issues related to spatial shifts were largely overcome, and suddenly
the computational expense of training a network was reduced sufficiently to allow rapid

1



prototyping of different network setups (architectures) by a wider variety of actors. Each
convolutional layer passes a variety of these small transformations, each of which is known
as a filter, over their input. As an input progresses through the network, it is transformed
into increasingly abstract elements. In the case of image classification, early filters may
learn to perform edge detection, while later filters take the transformed input and learn to
recognise the structure typical of eyes.

The network ‘learns’ by trying to minimise a function of its prediction for a given input and
the correct output over a labelled dataset. This function, summed over the given dataset,
is often referred to as the loss. A typical graph of this loss as the network is trained is
displayed in Figure 1: shown in blue is the loss over the training dataset (for which the
network parameters change to try and reduce the loss), while in orange is the loss over a
validation dataset. The latter is a separate dataset which is not used to train the network,
but which is sampled occasionally during training to ensure that the model does not overfit
the data.

Figure 1 – Typical plot of the value of the loss function over training iterations, having
discarded a small initial period

Glossary of terms
� Architecture: A specific setup of the neural network

� Filter: A single transformation to be passed over small areas of the input

� Layer: A set of transformations processing an input

� Depth: The number of layers in a neural network

� Compression: A method to reduce the storage size of a network

� Pruning: The step of removing parameters from a network judged to be unnecessary
by whatever compression technique is being used

� Bayesian inference: The use of Bayes’ theorem to update the probability of a
hypothesis as more information becomes available

� Adversarial example:An altered version of a piece of data designed to fool a network

� Black box case: A situation in which an attacker solely has access to the output of a
network, rather than details about the network itself

2



2 Methods
Compression

We focus on the
pruning stage of
compression, reducing
the number of
parameters

Modern compression techniques are typically made up of three stages: pruning,
quantization, and Huffman encoding, as displayed in Figure 2. The latter two stages may
be applied to any network, and as such it is typically only the pruning stage which
differentiates between methods. This pruning step involves removing some of the

Figure 2 – Deep compression pipeline, figure taken from [2]

parameters of the network that are deemed surplus to requirements. We investigate four
different pruning techniques:

� Magnitude-based weight pruning:This is the simplest of the fourmethods, inwhich
the parameters in the network are sorted by magnitude, and a proportion of the
smallest then removed. This has often been demonstrated to be the most effective
way of compressing the network [3].

� Activation-based filter pruning: This method involves sorting the transformations
(filters) learnt within convolutional layers by the mean magnitude of their output
after processing (their activations) and removing a certain proportion of those with
the smallest value.

� Sensitivity driven regularisation: This method involves pruning those weights with
the smallest impact on the output of the network.

� Sparse variational dropout: This is the most complex method. It involves using a
probabilistic version of the network during training, then pruning weights which are
found to carry minimal importance.

Sampling and Bayesian inference
Underlying our approach to uncertainty quantification is Bayes theorem, which states that
the posterior probability of a hypothesis after some new evidence appears is proportional to
the likelihood of the evidence being observed under that hypothesis, multiplied by the
prior estimation of the probability of that hypothesis.

We use sampling
techniques to
generate a group of
possible models

Bayes’ theorem allows us to perform Bayesian inference, that is, to update our model as
new data becomes available. Since the output is considered in terms of probabilities,
we can consider measures of the uncertainty of our model. Due to the complexity
of neural networks, and the typically poor understanding of exactly how they work,
performing inference exactly is normally infeasible. Instead, we deploy approximate
inference techniques. These typically rely on sampling from the posterior probability in
some manner, to generate an ensemble (a group) of possible models.

We apply two different sampling techniques, called preconditioned stochastic gradient
Langevin dynamics (pSGLD) and BAOAB. Both are based on an idea from physics known
as Langevin dynamics, which in our situation amounts to adding some random noise to the
process of training the network. In doing so, we are able to generate an ensemble of models
with which we may perform approximate Bayesian inference. To quantify uncertainty,
we use this ensemble to calculate the mutual information of a piece of data, which may be

3



thought of as a measure of how much information the different samples we have generated
share—if there is a large difference between the predictions generated from the different
samples, it suggests that the output of the baseline model has high uncertainty.

Adversarial examples
As noted in the introduction, adversarial examples are simply small perturbations of real
data that fool the model into misclassifying the input. A typical example is displayed
in Figure 3, where to a human the difference is imperceptible but the network becomes
completely mistaken with high score.

“panda”
57.7% confidence

“nematode”
8.2% confidence

“gibbon”
99.3% confidence

Figure 3 – An example of an adversarial perturbation, figure taken from [4]

Adversarial examples may be generated in a variety of different ways, typically depending
on what kind of access to, and knowledge of, the network the attacker possesses. We
consider the most generic situation, in which the only information the attacker has is what
the output is for a given input: this is known as the black-box case. We apply a type of
algorithm, called a genetic algorithm, to generate adversarial examples in a manner akin to
natural selection [5]. We determine the success rates of the attack for networks constructed
via compression by limiting the number of times we allow the attack to query the value of
the output for its input. We then measure the uncertainty of our model ensembles for this
data to see if this provides a method to detect adversarial examples.

3 Results

Compression methods
seem to provide some
additional robustness
to attack

We implement the four different compression techniques mentioned in Section 2 along
with two different sampling methods. Thus, including the original baseline network,
we have five networks each with two different ensembles from which to calculate the
uncertainties. We choose to develop a network to classify handwritten numerical digits
0-9, using the canonical MNIST dataset [6]. Our architecture is displayed in Figure 4—for
sparse variational dropout the convolutional and fully connected layers are replaced with
probabilistic counterparts. An input to the network is processed from the left (where it is
simply a black and white image) to the right (where it corresponds to a score for each of
the ten digits).

Figure 4 –MNIST neural network architecture. Convolutional layers shown red, ReLU layers
in orange, max-pooling in blue, and fully connected layers in purple. Numbers correspond
to number of filters for convolutional layers, or neurons (i.e. rows of the matrix) for fully
connected layers.

4



We find that two of the compression methods—activation-based filter pruning and sparse
variational dropout—seem to result in improved robustness, reducing the proportion of
successful attacks by over 10%. However, we find that over half of all attacks succeed: we
hypothesise that this may be improved by increasing the compression rates. We also find
that sparse variational dropout resulted in the greatest reduction in network size, but still
only to 53% of the original (i.e. around 2× compression).

Of the two sampling methods used, we find that BAOAB performs best when used to
calculate the uncertainty of the network. Not only do misclassified examples typically
have higher uncertainty than those correctly classified, but the difference between the
uncertainty in adversarial examples and that for real data is considerably more dramatic.

Mean uncertainty for
adversarial examples
has been found to be
up to 154000× larger
than for normal data

For each of the five networks, we generate 1000 adversarial examples (see Figure 5 for some
representative cases) using a genetic algorithm. These are then fed into ensembles of the
model generated by each sampling technique. Two interesting results present themselves:
firstly, the ensemble prediction (the most common prediction of the group of models)
is actually often correct, showing the attack fails for most samples. Secondly, the mean
uncertainty of the adversarial data for a specific combination of compression and sampling
techniques (sensitivity based regularisation and BAOAB) is over 154000 times larger than
that for unaltered test data.

Figure 5 – Some adversarial examples

4 Discussion, conclusions & recommendations
Deep learning is increasingly being applied within industry to a wide range of problems,
yet the issues of quantifying the uncertainty present in the output and susceptibility
to adversarial attack remain. We have examined the potential for a combination of
compression and sampling to overcome these issues.

Compression and
inference together
may improve network
resilience

Our preliminary results suggest that this combination holds great promise, as with a
negligible (or beneficial) effect on accuracy, the network appears to become more robust to
attack, andwemay havemeans to detect successful attacks. The improvement in robustness
from compression was significant but not drastic—further work should test the relation
between compression rate and robustness under attack. Nonetheless, our experiments
have revealed multiple avenues for further study.

We observe that different compression techniques brought differents benefits. In particular,
the improvement in robustness from activation-based filter pruning (despite only slightly
compressing the network) and sparse variational dropout (the compression technique
supplying the greatest reduction in number of parameters) support the hypothesis that

5



adversarial examples target areas of input space away from the true data manifold, meaning
that pruning unnecessary parameters reduces the size of space that may be exploited to
fool the network. The considerably higher uncertainty of adversarial examples for the
network trained using sensitivity driven regularisation further supports this idea, as it
promotes the removal of parameters that don’t significantly affect the output of the network,
thus improving the networks conception of the true data manifold and so increasing the
specificity required of the attack.

We recommend that futurework includes an investigation into how compression techniques
may be combined to provide all of the respective benefits of the individual methods. This
may result in high-accuracy, increased robustness, networks of comparably small size,
which would further allow for greater ease of application of Bayesian inference techniques.
As there are an increasing number of such inference techniques available, a thorough
investigation of how they differ, and a theoretical understanding of which may be best
for uncertainty quantification is certainly required. Furthermore, since only a single
adversarial attack method has been considered, discovering how other methods perform
against compressed networks, and how effective uncertainty may be for detecting these
attacks, may also lead to a greater understanding of why these weaknesses exist in the first
place.

5 Potential impact
Our investigation will assist NPL in implementing deep learning across a broad array
of fields where uncertainty and security are crucial. We have found that compression
techniques carry additional benefits beyond a reduction in computer memory requirements
and computational expense, with potential improvements in accuracy and robustness to
attack. Additionally we have demonstrated that contemporary sampling methods provide
the means to gauge measures of uncertainty that are useful both for model confidence as
well as the detection of adversarial examples.

Stephane Chretien, Senior Research Scientist at NPL said: “The contributions by John
Fitzgerald to the reliable implementation of state of the art algorithms for Deep Neural Network
compression and Bayesian analysis form a key step in the development of future capabilities in the area
of Uncertainty Quantification for Machine Learning at the National Physical Laboratory. The report
and the codes provided during this InfoMM placement demonstrate that a sound understanding of
the mathematical underpinnings of Deep Learning is the only solution to solving difficult industrial
challenges in Deep Learning.

His work provides a clear account of the various attempts at compressing the information captured
by deep networks proposed in the literature. It also addresses how compression can be a tool of
choice for robustness to adversarial attacks, which is so important for Industry 4.0 and Advanced
Manufacturing. The stream of research from which John’s work draws is still undergoing strong
changes at a fast pace, due to new theoretical insights from leading experts worldwide. Assessing
the various ideas proposed in these recent papers, as remarkably performed by John, gives a better
understanding of which of these approaches might have the greatest impact in the industrial context.
The work completed by John will definitely become one of the main building blocks in our future
reflections on this fast evolving topic and will help NPL make better choices concerning which
architectures and algorithms need to be implemented in practice.”

References
[1] Warren S McCulloch andWalter Pitts. A logical calculus of the ideas immanent in nervous activity.

The bulletin of mathematical biophysics, 5(4):115–133, 1943.
[2] SongHan, Huizi Mao, andWilliam J Dally. Deep compression: Compressing deep neural networks

with pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149, 2015.
[3] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv

preprint arXiv:1902.09574, 2019.
[4] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial

examples. arXiv preprint arXiv:1412.6572, 2014.
[5] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, and Mani Srivastava. Genattack: Practical

black-box attacks with gradient-free optimization. arXiv preprint arXiv:1805.11090, 2018.
[6] Li Deng. The mnist database of handwritten digit images for machine learning research [best of

the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

6


	Introduction
	Background information
	Glossary of terms

	Methods 
	Compression
	Sampling and Bayesian inference
	Adversarial examples

	Results
	Discussion, conclusions & recommendations
	Potential impact
	References

