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Flow of a thin liquid-metal film in a toroidal
magnetic field

D. Lunz1,† and P. D. Howell1
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(Received 14 October 2018; revised 19 February 2019; accepted 23 February 2019)

We investigate the gravity-driven flow of a thin film of liquid metal on a conducting
conical substrate in the presence of a strong toroidal magnetic field (transverse to the
flow and parallel to the substrate). We solve the leading-order governing equations
in a physically relevant asymptotic limit to find the free-surface profile. We find that
the leading-order fluid flow rate is a non-monotonic bounded function of the film
height, and this can lead to singularities in the free-surface profile. We perform a
detailed stability analysis and identify values of the relevant geometric, hydrodynamic
and magnetic parameters such that the flow is stable.
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1. Introduction

The flow of a liquid metal in the presence of a strong applied magnetic field is
described by magnetohydrodynamics (MHD), which couples Maxwell’s equations
of electromagnetism with the Navier–Stokes equations of hydrodynamics. MHD
modelling is ubiquitous in astrophysics for describing a plasma, and has also been
used widely to model liquid metals in areas such as metallurgy (Davidson 1999,
2001), crystal growth processes (Langlois & Lee 1983), pumps and power systems
(Kantrowitz et al. 1962; Weier, Shatrov & Gerbeth 2007), as well as for use within
a tokamak, the vessel used to magnetically confine a plasma (Fiflis et al. 2016). This
latter scenario is the focus of the present study.

Matter produced from fusion reactions within a tokamak, as well as any impurities
that find their way to the plasma, are exhausted from the confined region and
directed towards a component known as the divertor. Due to the extreme heat load
of the impacting plasma, a solid surface can suffer severe surface damage, making
its long-term use infeasible. One promising solution is to maintain a constantly
recycled thin film of liquid metal (typically lithium) to cover and protect the solid
substrate while absorbing discharges from the plasma that can then be extracted and
processed (see Ono et al. 2017, and references within). The anticipated difficulties
in maintaining a specified stable liquid-metal thickness and velocity (Gao, Morley
& Dhir 2002; Morley, Smolentsev & Gao 2002) have led many fusion projects to
pursue a capillary-porous system (Golubchikov et al. 1996; Evtikhin et al. 1997).

† Email address for correspondence: davin.lunz@maths.ox.ac.uk
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However, experimental evidence suggests that MHD flow along a solid substrate is
still a viable candidate (Fiflis et al. 2016).

Early fusion-related research into liquid-metal flows placed great emphasis on
MHD flow through closed pipes and channels, with a uniform externally applied
magnetic field (Müller & Bühler 2001). Michael (1953) first considered the stability
of flow subject to co-planar perturbations of a parallel applied magnetic field. Stuart
(1954) extended the stability analysis to include perturbations to the velocity field
and thus found the critical Reynolds number of the flow for the onset of linear
instability. Drazin (1960) considered the same perturbation equations about different
base velocity profiles corresponding to half-jets and jets. Wooler (1961) extended
the derivation in Stuart (1954) to include a toroidal component of the applied
magnetic field (parallel to the substrate but perpendicular to the flow). Wooler (1961)
and Sozou (1970) found that, in the purely toroidal case, linearised perturbations
are unaffected by the magnetic field, and the critical Reynolds number is thus
the same as for pure hydrodynamic flow. Gotoh (1971) and Vorobev & Zikanov
(2007) performed numerical analyses of Stuart’s eigenvalue problem for both two-
and three-dimensional disturbances. Falsaperla et al. (2017) performed a similar
numerical analysis for a co-planar field with a toroidal component as well as heating
from below, and discussed sufficient conditions for nonlinear stability. Xu & Lan
(2017) also examined the nonlinear stability of a shear flow subject to a co-planar
field with a toroidal component.

All of the above work has considered a parabolic flow profile with no free surface
in the presence of a constant applied field, but plasma-facing components must have
exposed free surfaces. Thin-film free-surface hydrodynamics and stability has a rich
and developed literature (Oron, Davis & Bankoff 1997; Myers 1998; Craster & Matar
2009). Free-surface MHD experiments with liquid metal have been performed since
the beginnings of MHD research (Alpher et al. 1960; Nornberg et al. 2008; Platacis
et al. 2014) but precise measurements are difficult to obtain. Free-surface MHD
flows have also been modelled (see Morley & Abdou 1995; Morley & Roberts 1996;
Morley & Abdou 1997; Gao & Morley 2002; Giannakis, Rosner & Fischer 2009b,
and references within) and simulated numerically (Gao et al. 2002; Gao, Morley &
Dhir 2003; Morley et al. 2004; Giannakis, Fischer & Rosner 2009a; Miloshevsky &
Hassanein 2010); however, there is more ground to cover.

The impact of the surrounding plasma flow on the liquid-metal film has been
modelled by Lunz & Howell (2018). In the present paper, we neglect such interaction
and focus on the dynamics and stability of a thin film of liquid metal flowing down
a conical substrate in the presence of a strong magnetic field that is transverse to the
flow and parallel to the substrate (see figure 1). Gao & Morley (2002) have studied
a somewhat similar problem, namely the linear stability of a steady free-surface flow
in the presence of a linearly varying applied magnetic field. We now briefly outline
the approach and results in Gao & Morley (2002), before explaining how the present
study aims to extend and improve on them, and on the previous literature.

The model in Gao & Morley (2002) is based on a planar geometry, and a transverse
magnetic field is imposed that varies linearly with position. The intention is to
approximate the true inverse radial variation of magnetic field in an axisymmetric
geometry, but the authors acknowledge that their linearly varying field is not curl
free and thus introduces spurious unphysical currents outside the liquid metal. The
idealised two-dimensional geometry permits the existence of a fully developed
unidirectional flow, with the liquid velocity and the induced magnetic field both
uniform in the direction of motion. At small values of the Hartmann number

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f O

xf
or

d,
 o

n 
28

 M
ar

 2
01

9 
at

 1
2:

45
:4

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.173


Flow of a thin liquid-metal film in a toroidal magnetic field 837

k

ey
eƒ

er

œ
ƒ

j

i

R

B

FIGURE 1. (Colour online) Schematic of the truncated conical divertor and free surface
in the presence of a toroidal applied field B. The Cartesian coordinate basis is (i, j, k),
the cylindrical coordinate basis is (R, eφ, k) and the local divertor coordinate basis is
(er, ey, eφ). The inclination angle of the divertor to the horizontal is θ . Dashed lines lie
in the same horizontal plane.

(i.e. the normalised film thickness), viscous effects dominate, and the fully developed
velocity reduces to a quadratic profile characteristic of purely hydrodynamic flow.
However, as the Hartmann number increases, magnetic effects become increasingly
important, and the velocity profile starts to exhibit oscillations of increasing amplitude.
A linear stability analysis is performed by perturbing the unidirectional base state and
simplifying the resulting linearised problem through various ad hoc approximations.
The solutions thus obtained suggest that, when the Reynolds number is sufficiently
large, the flow exhibits a long-wave instability analogous to the hydrodynamic
instability identified by Yih (1963).

In the present paper, a genuinely axisymmetric geometry is considered, with a
toroidal magnetic field that satisfies Maxwell’s equations both inside and outside the
flowing liquid metal. We allow for a conducting substrate and a non-zero magnetic
susceptibility of the liquid metal: although the susceptibility is very small in practice,
we find that it can give rise to a non-negligible magnetic pressure when the applied
magnetic field is very strong. Furthermore, the inclusion of a small but non-zero
magnetic susceptibility exposes an inconsistency in the boundary conditions when an
artificial external magnetic field is imposed (as in Gao & Morley 2002). Like Gao &
Morley (2002), we find that the velocity profile becomes increasingly exotic as the
film thickness increases, but we show that such behaviour corresponds to unphysical
solution branches that we suggest could never be observed in practice.

Our paper thus aims to put the results of Gao & Morley (2002) on a firmer
theoretical footing, while elucidating when they may lack validity or self-consistency.
However, for non-zero Reynolds number, there is no fully developed unidirectional
flow in an axisymmetric geometry, and on the face of it a linear stability analysis
analogous to that in Gao & Morley (2002) is not possible. Instead, we perform a
multiple-scale stability analysis of high-frequency disturbances in which inertial effects
may be significant despite the assumed smallness of the reduced Reynolds number.
This approach results in an Orr–Summerfeld-type problem analogous to that obtained
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in Gao & Morley (2002), which we solve both asymptotically and numerically
without introducing any artificial approximations. We find that the coupling between
the magnetic induction and the flow may have a profound effect on the stability; in
particular, there are regions of parameter space where the long-wave hydrodynamic
instability identified by Yih (1963) is suppressed, resulting in a dramatic increase in
the critical Reynolds number beyond which the base flow is unstable.

The paper is organised as follows. In § 2 we present the equations and boundary
conditions governing the flow of the liquid metal down a conical divertor in the
presence of a strong magnetic field. We then consider the leading-order system in
the physically relevant limit in which the liquid film is thin compared to the length
of the divertor substrate, and the induced field is much smaller than the applied
field. Provided the reduced Reynolds number is small enough for inertia effects to
be negligible, these assumptions allow us to obtain closed-form solutions for the
velocity components and the induced field. Steady and unsteady solutions of the
resulting thin-film equation for the film thickness are presented in § 3. In § 4 we
analyse the stability of the free-surface flow in the presence of high-frequency inertial
perturbations. We conclude § 4 with a detailed description of the important physical
implications of the stability analysis. Finally, in § 5 we summarise and discuss our
findings.

2. Model derivation
2.1. Governing equations and boundary conditions

2.1.1. Coordinate system
We consider the axisymmetric geometry sketched in figure 1. The liquid metal flows

on a conical substrate inclined at an angle θ to the horizontal, and is subject to a
magnetic field B which acts purely in the azimuthal direction. We define coordinates
(r, y, φ) that lie parallel and normal to the substrate as follows:

r(r, y, φ)= (r cos θ + y sin θ)(i cos φ + j sin φ)+ (y cos θ − r sin θ)k, (2.1)

where (i, j, k) is the usual Cartesian coordinate basis. The coordinates (r, y, φ) are
orthogonal, with scale factors given by∣∣∣∣∂r

∂r

∣∣∣∣= 1,
∣∣∣∣ ∂r
∂y

∣∣∣∣= 1,
∣∣∣∣ ∂r
∂φ

∣∣∣∣= R, (2.2a−c)

where the distance from the central axis is denoted by

R= r cos θ + y sin θ > 0. (2.3)

It is therefore straightforward to express the governing equations using the standard
formulae for orthogonal curvilinear coordinates (see, for example, Weber & Arfken
2004, chap. 2).

2.1.2. Electromagnetic problem
The magnetic flux density B, electric field E and current J in a liquid metal flowing

with velocity u satisfy the pre-Maxwell equations, with negligible displacement
current, and Ohm’s law, namely

∇ ·B= 0, ∇×B=µJ=µσ(E+ u×B),
∂B
∂t
=−∇×E, (2.4a−c)
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Flow of a thin liquid-metal film in a toroidal magnetic field 839

where σ and µ denote conductivity and magnetic permeability, respectively. Elimination
of E from (2.4) reveals that B satisfies the induction equation

∂B
∂t
− η∇2B=∇× (u×B), (2.5)

where η= 1/(µσ) is the magnetic diffusivity.
The formulation (2.5) removes the need to solve for the electric field or the current

in the bulk, but we retain E and J for the moment while writing down the relevant
boundary conditions. In our problem there are three interfaces: between the substrate
and the space below, between the substrate and the liquid metal and between the
liquid and the space above. At each such interface, we must impose continuity of the
normal components of the magnetic flux density and the current, and the tangential
components of the magnetic and electric fields, i.e.

[n ·B]+
−
= 0, [n · J]+

−
= 0,

[
1
µ

n×B
]+
−

= 0, [n×E]+
−
= 0, (2.6a−d)

where n is the unit normal to the interface. There is some redundancy in (2.6) when
self-consistent forms are used for B, J and E. However, we retain all four boundary
conditions for the moment to expose the inconsistency that occurs if one artificially
imposes an external magnetic field that does not satisfy Maxwell’s equations.

2.1.3. Fluid dynamics
The velocity u(r, t) and the pressure p(r, t) in the liquid satisfy the incompressible

Navier–Stokes equations with body force terms due to the gravitational acceleration
−gk and the Lorenz force, i.e.

∇ · u= 0, (2.7a)

ρ

(
∂u
∂t
+ (u · ∇)u

)
=−∇p+ ρν∇2u− ρgk+ J×B, (2.7b)

where ρ and ν denote the density and kinematic viscosity of the liquid.
At the fluid–substrate boundary y = 0, we impose the no-slip boundary condition

u = 0. At the free surface y = h(r, φ, t) of the fluid, we have the usual kinematic
and dynamic boundary conditions, but with an additional surface traction due to the
Maxwell stress, i.e.

∂h
∂t
+ u · ∇(h− y)= 0,

[
τ · n+

(B · n)B
µ

−
|B|2n
2µ

]+
−

= γ ~n, (2.8a,b)

where γ is the surface tension, ~ =∇ · n is the curvature of the surface and

τ =−pI+ ρν(∇u+∇uT) (2.9)

is the viscous stress tensor.
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No slip
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FIGURE 2. Schematic of the effectively two-dimensional flow configuration.

2.1.4. Axisymmetric solution structure
We consider axisymmetric flow, with the velocity and pressure given by

u= u(r, y, t)er + v(r, y, t)ey, p= p(r, y, t). (2.10a,b)

We similarly assume that the free surface of the liquid is axisymmetric. The thickness
of the liquid-metal film and of the underlying substrate are denoted by h(r, t) and hs,
respectively; thus the upper surface of the liquid and the lower surface of the substrate
are given by y= h(r, t) and y=−hs, respectively.

We note that, given the assumed symmetry of the geometry, both the induction
equation (2.5) and the magnetic boundary conditions (2.6a,c) are homogeneous in the
er- and ey-directions. It follows that a purely toroidal applied field (parallel to eφ)
induces a purely toroidal field, and we therefore restrict our attention henceforth to
magnetic fields of the form

B= B(r, y, t)eφ. (2.11)

The corresponding two-dimensional configuration is sketched in figure 2.
Next we will spell out in detail how the governing equations and boundary

conditions (2.5)–(2.8) simplify in each region and on each interface in the problem.

2.1.5. Vacuum
In y < −hs and y > h(r, t), we assume there is effectively free space, in which

Maxwell’s equations (2.4) reduce to ∇ · B = 0 and ∇ × B = 0, which can only be
satisfied by a magnetic flux density proportional to 1/R, where R is defined by (2.3).
We therefore set the external field to be

B= Ba(r, y)=
B0L
R
=

B0L
r cos θ + y sin θ

, (2.12)

where L is a length scale and B0 is a parameter measuring the field strength;
in principle B0 could be a function of time, but we will take it to be constant.
The ‘applied field’ Ba is assumed to be given and, in practice, is generated by
electromagnets some distance from the divertor.
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Flow of a thin liquid-metal film in a toroidal magnetic field 841

2.1.6. Liquid
In 0< y< h(r, t), we seek solutions with axisymmetric velocity and magnetic flux

density given by (2.10) and (2.11). It is also helpful to decompose the magnetic flux
density according to

B= (1+ χ)Ba
+ Bi, (2.13)

where Ba is again the known applied field, given by (2.12), and χ is the magnetic
susceptibility of the liquid. By substitution into (2.5), we find that the ‘induced field’
Bi in the liquid satisfies the equation

∂Bi

∂t
− η

[
∂

∂r

(
1
R
∂

∂r
(RBi)

)
+
∂

∂y

(
1
R
∂

∂y
(RBi)

)]
=−Ru

∂

∂r

[
(1+ χ)Ba

+ Bi

R

]
− Rv

∂

∂y

[
(1+ χ)Ba

+ Bi

R

]
, (2.14)

where η is the magnetic diffusivity of the liquid metal.
Next we write out the Navier–Stokes equations (2.7) with respect to our orthogonal

coordinate system, namely

∂

∂r
(Ru)+

∂

∂y
(Rv) = 0, (2.15a)

ρ

(
∂u
∂t
+ u

∂u
∂r
+ v

∂u
∂y

)
= −

∂p
∂r
+
ρν

R

[
∂2

∂r2
(Ru)+

∂

∂y

(
R
∂u
∂y
+ v

∂R
∂r

)]
+ ρg sin θ −

(1+ χ)Ba
+ Bi

(1+ χ)µ0R
∂

∂r
(RBi), (2.15b)

ρ

(
∂v

∂t
+ u

∂v

∂r
+ v

∂v

∂y

)
= −

∂p
∂y
+
ρν

R

[
∂2

∂y2
(Rv)+

∂

∂r

(
R
∂v

∂r
+ u

∂R
∂y

)]
− ρg cos θ −

(1+ χ)Ba
+ Bi

(1+ χ)µ0R
∂

∂y
(RBi). (2.15c)

Here the liquid permeability has been written as µ = µ0(1 + χ), where µ0 is the
permeability of free space.

2.1.7. Substrate
In −hs < y < 0, the magnetic flux density satisfies the induction equation (2.5)

with u= 0 and η= ηs, the magnetic diffusivity of the substrate. We substitute for B
from (2.11) and again decompose the toroidal magnetic flux component as follows:

B= (1+ χ s)Ba
+ Bis, (2.16)

where χ s is the magnetic susceptibility of the substrate. It then follows from (2.5) that
the induced field Bis in the substrate satisfies the equation

∂Bis

∂t
= ηs

[
∂

∂r

(
1
R
∂

∂r
(RBis)

)
+
∂

∂y

(
1
R
∂

∂y
(RBis)

)]
. (2.17)
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842 D. Lunz and P. D. Howell

2.1.8. Fluid–vacuum
Next we apply the boundary conditions (2.6) and (2.8) at the free surface y= h(r, t)

of the fluid. Given the axisymmetric geometry and purely toroidal magnetic field,
the first magnetic boundary condition (2.6a) is satisfied identically, and the next two
conditions (2.6b,c) are both equivalent to[

B
µ

]+
−

= 0. (2.18)

Upon decomposing the magnetic flux density according to (2.13), we find that (2.18)
reduces to the condition

Bi
= 0 at y= h(r, t) (2.19)

on the induced field at the free surface. The final electromagnetic jump condition
(2.6d) provides an effective boundary condition for the electric field E in the vacuum
above the liquid, should one wish to calculate it.

We note here in passing that the ad hoc approach adopted by Gao & Morley
(2002) introduces spurious currents in the vacuum region y> h(r, t) and gives rise to
an irreconcilable inconsistency between the four electromagnetic boundary conditions
(2.6), except in the special case where the magnetic susceptibility χ of the fluid
is zero.

In component form, the fluid dynamic boundary conditions (2.8) at the free surface
y= h(r, t) read

v =
∂h
∂t
+ u

∂h
∂r
. (2.20a)[

1−
(
∂h
∂r

)2
] [

∂u
∂y
+
∂v

∂r

]
+ 2

∂h
∂r

[
∂v

∂y
−
∂u
∂r

]
= 0, (2.20b)

−p+ 2ρν

[
1+

(
∂h
∂r

)2
]−1 [

∂v

∂y
− 2

∂h
∂r

(
∂u
∂y
+
∂v

∂r

)
+

(
∂h
∂r

)2
∂u
∂r

]
= γ ~ +

χBa2

2µ0
,

(2.20c)

where the free-surface curvature is given by

~ =

[
1+

(
∂h
∂r

)2
]−3/2

∂2h
∂r2
+

1
R

[
1+

(
∂h
∂r

)2
]−1/2 (

cos θ
∂h
∂r
− sin θ

)
. (2.21)

2.1.9. Substrate–fluid
At y= 0, the current continuity condition in (2.6) is again satisfied identically, and

the remaining independent conditions for the magnetic flux density are

Bis

1+ χ s
=

Bi

1+ χ
, ηs ∂

∂y
(RBis)= η

∂

∂y
(RBi), (2.22a,b)

while the velocity satisfies the no-slip condition

u= v = 0. (2.23)
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Flow of a thin liquid-metal film in a toroidal magnetic field 843

2.1.10. Substrate–vacuum
Finally, at the boundary y=−hs between the substrate and the vacuum below, the

boundary conditions (2.6a–c) all collapse to

Bis
= 0. (2.24)

As in § 2.1.8, the final condition (2.6d) just provides a boundary condition for the
electric field in the space below the substrate, should one wish to solve for it.

2.2. Leading-order dimensionless model
We now non-dimensionalise the equations and boundary conditions set out in § 2.1
and then exploit the sizes of the relevant dimensionless parameters to simplify the
resulting model. We denote typical length and thickness scales for the film by L
and H, respectively, and assume that the aspect ratio ε=H/L is small. By balancing
viscous stress with gravity in (2.15c), we infer a suitable velocity scale

U =
H2g sin θ

ν
. (2.25)

The variables are then non-dimensionalised as follows:

r= Lr′, y=Hy′, h=Hh′, t= (L/U)t′, (2.26a−d)

u=Uu′, v = εUv′, p= ρgL sin θp′, Bi
=

2ε2(1+ χ)B0LU
η cos θ

Bi′, (2.26e−h)

before dropping the primes to reduce clutter.
The relevant dimensionless parameters are:

aspect ratio ε =
H
L
=O(10−4), (2.27a)

Reynolds number Re=
UH
ν
=

gH3 sin θ
ν2

=O(1), (2.27b)

Hartmann number Ha= B0H
√
σ

ρν
=O(10), (2.27c)

Bond number Bo=
ρgH2 sin θ

γ
=O(10−5), (2.27d)

magnetic Reynolds number Rm=
UH
η
=

gH3 sin θ
νη

=O(10−5). (2.27e)

The estimated values have been calculated using the properties of liquid lithium listed
in table 1, along with a typical divertor length scale L = 1 m and film thickness
H= 0.1 mm, based on calculations from the fusion literature (Ono et al. 2017) that
have been established experimentally (Platacis et al. 2014). We also take a typical
inclination angle θ = 0.1 radians and applied magnetic field strength B0 = 1 T. For
the moment, we neglect terms of order ε2 and εRm (both of which are certainly very
small) to get a leading-order lubrication model.
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844 D. Lunz and P. D. Howell

Parameter Symbol Value range Unit

Density ρ (4.7–5.2)× 102 kg m−3

Electrical conductivity σ (2.7–4.0)× 106 S m−1

Kinematic viscosity ν (0.6–1.1)× 10−6 m2 s−1

Surface tension γ (3.4–4.0)× 10−1 N m−1

Magnetic permeability µ 1.3× 10−6 H m−1

Magnetic susceptibility χ 2.1× 10−5 —

TABLE 1. Material properties of liquid lithium in the temperature range 180–600 ◦C
(taken from Davison 1968; Shimokawa, Itami & Shimoji 1986).

The magnetic field in the substrate satisfies the leading-order version of (2.17),
namely

∂2Bis

∂y2
= 0, (2.28)

while the boundary conditions (2.22) and (2.24) reduce to

Bis
= 0 at y=−hs, (2.29a)

Bis

1+ χ s
=

Bi

1+ χ
, ηs ∂Bis

∂y
= η

∂Bi

∂y
at y= 0, (2.29b,c)

where the substrate thickness hs has been normalised with the film thickness scaling
H. By eliminating Bis, we deduce that the magnetic field in the liquid satisfies the
effective Robin boundary condition

∂Bi

∂y
= aBi at y= 0, (2.30)

where

a=
σ

hsσ s
. (2.31)

The dimensionless parameter a allows us to interpolate between the extreme cases of
a perfectly insulating substrate (a→∞) and a perfectly conducting substrate (a→ 0).

When terms of order ε2, εRm and ε3Ha2Rm are neglected, the r-component (2.15b)
of the momentum equation in the fluid layer reduces to

εRe
(
∂u
∂t
+ u

∂u
∂r
+ v

∂u
∂y

)
=−

∂p
∂r
+ 1+

∂2u
∂y2
−

2ε2(1+ χ)2Ha2

cos2 θ

1
r2

∂

∂r
(rBi). (2.32a)

Similarly, neglecting terms of order ε2, ε3Re, εRm and ε3Ha2Rm in the y-component
(2.15c) of the momentum equation, we obtain

∂p
∂y
=−ε cot θ −

2ε2(1+ χ)2Ha2

cos2 θ

1
r
∂Bi

∂y
. (2.32b)
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Flow of a thin liquid-metal film in a toroidal magnetic field 845

The normal stress boundary condition (2.20c) reduces to

p=−
ε3

Bo
~ −

χ(1+ χ)εHa2

2Rm cos2 θ

1
r2

at y= h(r, t), (2.33a)

where

~ =
∂2h
∂r2
+

1
r

(
∂h
∂r
−

tan θ
ε

)
(2.33b)

is the dimensionless curvature of the free surface. The pressure within the fluid layer
is thus found to be given by

p=−
ε3

Bo
~ −

χ(1+ χ)εHa2

2Rm cos2 θ

1
r2
+ ε cot θ(h− y)−

2ε2(1+ χ)2Ha2

cos2 θ

Bi

r
. (2.33c)

The second term on the right-hand side of (2.32a) arises from the component of
gravity parallel to the substrate, and is here equal to 1 in dimensionless terms due to
the choice of the velocity scale (2.25). The same choice gives rise to the coefficient
ε cot θ multiplying the third term on the right-hand side of (2.33c), which represents
the normalised coefficient of gravity perpendicular to the substrate.

In addition to a, we identify the other combinations of dimensionless parameters
that appear in the model as follows:

reduced Reynolds number Re∗ = εRe=O(10−4), (2.34a)

reduced Hartmann number λ2
=
ε(1+ χ)Ha

cos θ
=O(10−1), (2.34b)

magnetic stress parameter β =
χ(1+ χ)εHa2

2Rm cos2 θ
=O(10−2), (2.34c)

capillary parameter Γ =
ε3

Bo
=O(10−7), (2.34d)

geometrical parameter α = ε cot θ =O(10−3). (2.34e)

The smallness of each of these parameter groups implies that the effects of inertia,
coupling between the magnetic field and the flow, magnetic stress effects at the
free surface, surface tension and transverse gravity are all likely to be rather weak.
We note, however, that λ2 and β are proportional to B0 and to B2

0, respectively,
and so might become important at slightly higher applied magnetic field strengths.
Both surface tension and the transverse component of gravity can act as regularising
influences, so we will retain them in the model for the moment but neglect all except
the highest derivative term in the curvature ~.

In the limit where Re∗→ 0, our leading-order problem then reads

∂2Bi

∂y2
=−

u
r2
, (2.35a)

1
r
∂

∂r
(ru)+

∂v

∂y
= 0, (2.35b)

−
∂2u
∂y2
+ 4λ4 Bi

r2
= ϕ(r, t) := 1− α

∂h
∂r
−

2β
r3
+ Γ

∂3h
∂r3

, (2.35c)
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846 D. Lunz and P. D. Howell

with boundary conditions

u= v =
∂Bi

∂y
− aBi

= 0 at y= 0, (2.36a)

∂u
∂y
= v −

∂h
∂t
− u

∂h
∂r
= Bi
= 0 at y= h(r, t). (2.36b)

The four terms in the function ϕ(r, t) defined in (2.35c) represent, respectively, the
effects of gravity parallel and normal to the substrate, the magnetic contribution to
the pressure and surface tension. In particular, β measures the effect on the flow due
to a non-zero magnetic susceptibility χ in the liquid. Although χ is usually very
small, since β scales with B2

0, this effect may still be significant when the applied
field is sufficiently strong. We note also that (provided χ > 0), the magnetic pressure
contribution always acts in opposition to the gravitational body force, and could even
drive flow up the sloping substrate at large enough values of β.

3. Thin film equation
3.1. Derivation and analysis

The problem (2.35) and (2.36) can readily be solved for u, v and Bi. We normalise
the problem by defining

u(r, y, t)=
ϕ

a2ζ 2
U(Y;H, ζ ), Bi(r, y, t)=

ϕ

a4ζ 4r2
B(Y;H, ζ ), (3.1a,b)

where

Y =
y
h
, H =

λh
r
, ζ =

λ

ar
. (3.2a−c)

Then the governing equations (2.35) and boundary conditions (2.36) imply that U(Y)
and B(Y) satisfy the problem

d2B
dY2
+H2U =

d2U
dY2
− 4H2B+H2

= 0, (3.3a)

U(0)=
dB
dY
(0)−

H
ζ
B(0)=

dU
dY
(1)=B(1)= 0, (3.3b)

explicit solutions of which are given in appendix A. In figure 3 we plot these scaled
solutions versus Y for various values of the scaled thickness H and the scaled field
strength ζ .

In figure 3(a,d) we observe that, for relatively small values of H, the normalised
magnetic field and velocity both increase with increasing H; the induced field remains
concave, with a global maximum in the interior of the film, and the velocity remains
monotonic with respect to the vertical position y. This behaviour is consistent with the
classical parabolic hydrodynamic flow profile, which is recovered in the limit H→ 0.
For larger values of H, as shown in figure 3(b), the velocity becomes non-monotonic
and increasingly oscillatory, and for sufficiently large H can even become negative
within the film. Meanwhile, the induced field becomes approximately constant in the
interior of the fluid, with magnetic forces balancing gravitational forces, while other
effects manifest only in thin boundary layers, as shown in figure 3(e).
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Flow of a thin liquid-metal film in a toroidal magnetic field 847
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Ω ∊ {0, 0.3, 1, 3, ∞} Ω ∊ {0, 0.2, 0.5, 1, 2, 4, 10, ∞}
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FIGURE 3. (Colour online) Scaled velocity U (a–c) and induced magnetic field B (d–f )
plotted versus Y = y/h. In (a,b,d,e) we fix ζ = 1 and vary H; in (c, f ) we fix H = 1 and
vary ζ .

Figure 3( f ) shows that the value of ζ has a pronounced effect on the induced
field. This behaviour reflects the boundary condition (3.3b) that interpolates between
a perfectly insulating substrate, with B(0)→ 0 as ζ → 0, and a perfectly conducting
substrate, with B′(0)→ 0 as ζ →∞. However, with H = 1, the magnitude of the
induced field remains rather small, and figure 3(c) shows that it has little influence
on the velocity profile.

Having solved for u(r, y, t), we integrate the mass conservation equation (2.35b) and
apply the kinematic boundary conditions at y = 0 and y = h to obtain an evolution
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100

100

F(
H

, Ω
)

10-1

10-1

Increasing Ω

Nonmonotonic flow profile

Monotonic flow profile

Arg max[F(H, Ω)]

H

H

Ω

5

4

3

2

1

0 5 10 15 20

(a) (b)

FIGURE 4. (Colour online) (a) The normalised flux function F(H, ζ ), given by (3.7),
plotted versus H with ζ ∈ {0, 0.2, 1, 5,∞}; the dashed curves show the asymptotic limits
(3.8) and the dotted curve shows the locus of the maximum value of F, given implicitly
by (3.10). (b) The (ζ ,H) parameter space. The dotted black curve shows the maximising
value H of the function F(H, ζ ), defined implicitly as a function of ζ by (3.9). The
solid blue curve shows the boundary between parameter values where the flow profile is
monotonic or non-monotonic.

equation for the film thickness in the form

∂h
∂t
+

1
r
∂

∂r
(rϕQ)= 0, (3.4)

where ϕ is given by (2.35c), and the flux function Q is defined by

Q(h; r)=
1

ϕ(r, t)

∫ h(r,t)

0
u(r, y, t) dy. (3.5)

Again, we find that a suitably normalised version of Q may be expressed purely in
terms of H and ζ , namely

a3ζ 3Q=H
∫ 1

0
U(Y) dY = F(H, ζ ), (3.6)

say. By substituting for U(Y) from appendix A and performing the integral, we find
that F is given by

F(H, ζ )=
2ζ (sinh 2H − sin 2H)+ 3 cos 2H + 3 cosh 2H − 8 cos H cosh H + 2

4[ζ (cos 2H + cosh 2H + 2)+ sin 2H + sinh 2H]
. (3.7)

For each fixed value of the parameter ζ , the scaled flux F(H, ζ ) is a non-monotonic
function of the scaled thickness H, as shown in figure 4(a). Note that the scaling
factor aζ =λ/r reflects the strength of the magnetic forces. As the film thickness tends
to zero, viscous forces dominate magnetic effects, and the classical lubrication theory
result is recovered, with

F(H, ζ )∼
H3

3
as H→ 0. (3.8a)
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Flow of a thin liquid-metal film in a toroidal magnetic field 849

However, as the film thickness increases, the magnetic stress takes over, and the flux
ultimately becomes independent of H, with

F(H, ζ )→
1
4

(
2+

1
1+ ζ

)
as H→∞. (3.8b)

At intermediate values, F(H, ζ ) is an oscillatory function of H. The first extremal
value of H, corresponding to the global maximum in F, is given as a function of ζ
by the implicit relation

ζ =
cos 2H − 2 sin H sinh H − 2 cos H cosh H + 1

2 cos H sinh H + 2 sin H cosh H
. (3.9)

As shown by the dotted black curve in figure 4(b), as ζ ranges from 0 to ∞, the
extremal value of H increases monotonically from H0 to H∞, where H0 ≈ 2.284 and
H∞≈ 2.365 are the first positive zeros of the numerator and denominator, respectively,
of the right-hand side of (3.9).

By substituting (3.9) into (3.7), we find that the maximum value of F(H, ζ ) is given
parametrically as a function of ζ by (3.9) and

max F(H)=
sec H sinh H + tan H(sec H cosh H − 2)

4
, (3.10)

with H ∈ (H0,H∞). The relation (3.10) is plotted as a dotted curve in figure 4(a). To
the left of this dotted curve, F is an increasing function of H but, as H increases
past its extremal value, F starts to decrease again and then to oscillate. We will argue
below in § 3.2 that only the increasing branch of F to the left of the dotted curve in
figure 4(a) is relevant and, therefore, that no physical solutions exist in the region of
(ζ ,H) parameter space above the dotted curve in figure 4(b).

Figure 3(b) shows that the velocity profile becomes non-monotonic at larger values
of H; indeed the oscillations in the flow profile become increasingly dramatic as H
increases, and may even lead to flow reversal in the interior of the film. The solid blue
curve in figure 4(b) shows the boundary between regions of the (ζ , H) parameter
space where u(y) is monotonic or non-monotonic. We note that non-monotonic
solutions occur only for value of (ζ ,H) above the black dotted curve in figure 4(b),
showing the value of H that maximises F. We will thus contend in the next section
that, although similar oscillatory flow profiles have been reported in the literature
(Gao & Morley 2002), they are unphysical and could never be observed in practice.

3.2. Steady states
We begin by letting all of the small parameters α, β and Γ tend to zero so that
ϕ(r, t)≡1. We also consider the divertor to occupy the dimensionless interval r∈[1,2].
Steady solutions h0(r) of (3.4) are then given by

Q(h0(r); r)=
q
r
, (3.11)

where the constant q is set by specifying the inlet flux: Q|r=1 = q.
Differentiation of (3.11) with respect to r leads to

dh0

dr
=−

(
∂Q
∂r
+

q
r2

)/
∂Q
∂h
. (3.12)
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FIGURE 5. (Colour online) (a) The normalised r-derivative of the steady state solution
h0(r), defined by (3.13), plotted versus H with ζ ∈ {0, 0.2, 1, 5,∞}. The black dotted
lines show the asymptotic behaviour as H → 0, namely 71H4/315 (ζ = 0),176H4/315
(ζ > 0). (b) The right-hand side of (3.21) plotted versus H with ζ ∈ {0, 0.2, 1, 5,∞}.
The black dotted lines show the asymptotic behaviour as H → 0, namely 284H4/315
(ζ = 0), 704H4/315 (ζ > 0).

By differentiating (3.7), we find that

− r
d
dr
[log(r1/3h0(r))] =−

4
3
+

4F− ζ∂F/∂ζ
H∂F/∂H

, (3.13)

where F(H, ζ ) is the function defined in (3.7). This expression is uniformly positive
(see figure 5a), and it follows that h0(r) is a monotonic decreasing function which
is bounded above by h0(1)/r1/3. However, as the imposed flux q increases, so too
does the film thickness at the inlet, eventually approaching the maximum of Q,
where ∂Q/∂h= 0, so that the denominator of the (3.12) approaches zero and the free
surface forms a gradient singularity.

Solutions of (3.11) for h0(r) with various values of the parameters λ, a and q are
plotted in figure 6(a–c). In figure 6(a) we observe that increasing the normalised
field strength λ causes higher free surfaces due to increased magnetic drag on
the flow. Figure 6(b) demonstrates that increasing the conductivity of the substrate
(decreasing a) likewise decreases the flow velocity and thus increases the film
thickness. Finally, in figure 6(c) we show the effects of increasing the flux, which
acts to increase the film thickness globally. Since both H and ζ tend to zero, the
viscous dominated behaviour (3.8a) applies in the limit as r→∞, and thus (3.11)
implies that

h0(r)∼
(

3q
r

)1/3

as r→∞. (3.14)

This limit is plotted as the black dotted curves in figure 6(a–c). In each of
figure 6(a,b) the value of the flux q is held constant, as a consequence of which the
free-surface profiles all converge as r→∞.

Crucially, each of the solutions plotted in figure 6(a) to 6(c) exhibits a critical value
of λ, a, and q, respectively, at which a singularity forms in the free surface, associated
with ∂Q/∂h tending to zero at the inlet r = 1. Beyond each of these critical values,
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FIGURE 6. (Colour online) (a–c) Steady free-surface solutions of (3.11) with the large-r
limit (3.14) overlaid as black dotted curves, and the corresponding velocity profiles. (d–f )
Snapshots of numerical simulations for the film thickness h(r, t), satisfying equation (3.4),
at the indicated times, with the time-dependent inlet flux given by (3.15).

no steady free surface profile exists along the full extent of the divertor. The origin of
the free-surface singularity may also be understood by considering the time-dependent
problem (3.4). When ϕ≡ 1, equation (3.4) is a first-order nonlinear hyperbolic partial
differential equation (PDE), with characteristics satisfying dr/dt= ∂Q/∂h. As the value
of ∂Q/∂h at r = 1 changes sign, the characteristics cease to point into the domain,
and it becomes impossible to specify the flux at the inlet.

Since, as shown in figure 4(a), Q is an oscillatory function of h, there may be
further regions of parameter space in which ∂Q/∂h becomes positive again, but
we now argue that such branches cannot be physical. As shown above, h0(r) is a
monotonic decreasing function, and it follows that, as r increases, a singular point
where ∂Q/∂h tends to zero is necessarily encountered within a finite (and in practice
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very small) extent, so there still cannot exist steady solutions for an arbitrarily long
divertor.

Therefore, when ϕ ≡ 1, smooth steady profiles only exist in the ‘subcritical’ region
of parameter space below the dotted black curve in figure 4(b). This constraint places
a strict bound on the value of Q (or, equivalently, h) imposed at the inlet. Importantly,
figure 4(b) demonstrates that the non-monotonic velocity profiles seen, for example, in
figure 3(b) occur for supercritical parameter values corresponding to unphysical steady
state solutions, and we therefore do not expect to observe such exotic profiles in the
wild.

3.3. Unsteady solutions
In this section we consider unsteady solutions of the governing equation (3.4), again
neglecting the higher-order effects of transverse gravity and surface tension in the
first instance, so that ϕ ≡ 1. We solve the resulting nonlinear hyperbolic equation
numerically using the Kurganov–Tadmor scheme (Kurganov & Tadmor 2000) with
the parameter-free Superbee limiter (Roe 1986). For the purposes of illustration, we
initiate the simulation at the steady-state film profile, h(r,0)=h0(r) with specified flux
q, and subsequently perturb the inlet flux by one period of a sinusoid by applying the
boundary condition

Q= q+ A sin(60t)Π(2π/60− t) at r= 1 for t> 0, (3.15)

where Π is the Heaviside function. The values of q and A are chosen to ensure that
the criticality bound described in § 3.2 is never exceeded, and the hyperbolic evolution
problem thus remains well posed for all time.

In figure 6(d,e) we plot the computed free-surface profiles at various times and
for various values of q, A, λ and a. We observe that, despite the smooth profile of
the inlet perturbation, the free surface develops a sawtooth appearance, due to wave
steepening that results in the formation of shocks and rarefactions, typical of nonlinear
wave propagation. We also observe that either a higher field strength (larger λ) or
a more conducting substrate (smaller a) slows the propagation of the disturbance
(in particular the higher free-surface heights), but does not necessarily lead to the
disturbance magnitude being damped. This is consistent with our observations for
the steady case where these two effects both lead to a higher free surface due to
increased drag.

Finally, in figure 6( f ), we relax the assumption that ϕ ≡ 1 to demonstrate how the
sharp sawtooth is regularised by small contributions of the higher-order effects; here
we reintroduce transverse gravity, by using small but non-zero values of the parameter
α, while still neglecting surface tension. When introducing higher-order derivatives, we
must impose the correct number of associated boundary conditions for the problem to
be well posed. In the simulations shown in figure 6( f ), we impose the flux condition
(3.15) at the inlet and a passive zero-derivative boundary condition ∂h/∂r= 0 at the
outlet r = 2. The results show that more diffusion (larger α) does not change the
propagation speed but smooths the slope discontinuities and somewhat dampens the
perturbation magnitude.

3.4. Linear stability analysis
The simulations plotted in figure 6(d–f ) display no growth of the perturbations as they
propagate downstream, suggesting that the steady-state free-surface profile is stable.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f O

xf
or

d,
 o

n 
28

 M
ar

 2
01

9 
at

 1
2:

45
:4

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.173


Flow of a thin liquid-metal film in a toroidal magnetic field 853

We now investigate this behaviour analytically by looking at the linear stability of
the system. Let us suppose that the inlet flux at r = 1 is subject to small-amplitude
time-harmonic fluctuations, so that

Q= q+ δe−iωt at r= 1, (3.16)

where the frequency ω is specified and 0 < δ � 1. Since the coefficients of h vary
in space in the governing equation (3.4), we consider perturbations to the free-surface
profile of the form

h= h0(r)+ δh1(r)e−iωt, (3.17)

where h0(r) is the steady-state solution. Substituting (3.17) into (3.4) and neglecting
terms of O(δ2), we obtain the equation

1
h1

dh1

dr
=−

(
∂Q
∂h

)−1 [
−iω+

1
r

d
dr

(
r
∂Q
∂h

)]
, (3.18a)

subject to the boundary condition

h1 =

(
∂Q
∂h

)−1

at r= 1, (3.18b)

where derivatives of Q are evaluated at (h0(r); r).
The solution of the problem (3.18) may be expressed in the form

h1(r)=
(

r
∂Q
∂h
(h0(r); r)

)−1

exp

(
iω
∫ r

1

(
∂Q
∂h
(h0(s); s)

)−1

ds

)
. (3.19)

The perturbation in (3.19) evidently comprises a spatially dependent amplitude
function

|h1(r)| =
(

r
∂Q
∂h
(h0(r); r)

)−1

, (3.20)

multiplied by an exponential oscillatory term which captures all the ω-dependence and
has modulus 1. To explore the behaviour of the perturbation amplitude (3.20), we
compute

− r
d
dr

log(|h1|/h0)=H
∂

∂H

(
4F− ζ∂F/∂ζ

H∂F/∂H

)
, (3.21)

where F is again the expression given in (3.7). The expression on the right-hand
side of (3.21) is a positive increasing function of H, which tends to infinity as H
approaches the critical maximal value where ∂Q/∂h= 0 (see figure 5b). We deduce
that, as r increases, the perturbation amplitude |h1(r)| decreases monotonically relative
to the leading-order film thickness h0(r), and therefore respects the upper bounds

|h1(r)|6
|h1(1)|
h0(1)

h0(r)6
|h1(1)|

r1/3
. (3.22)

The analysis of this section appears to show that there is no possibility of the
steady base state suffering a linear instability. However, our governing thin-film (3.4)
was derived by setting Re∗ = 0 and thus assuming that inertia effects are uniformly
negligible. In the next section, we perform a more detailed stability analysis that
relaxes this assumption.
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4. High-frequency stability analysis
4.1. Synopsis

We start by outlining the derivations and analysis to follow, to guide the reader
through the technical details. In § 4.2 we perform a multiple-scale perturbation analysis
of the underlying (2.35) and (2.36) to produce a linearised system governing small
perturbations that act over sufficiently small space and time scales for inertial effects
to become important. We seek separable solutions in the form of harmonic waves
propagating in the r-direction, and thus ultimately obtain a generalised eigenvalue
problem that, in principle, determines the linearised wave speed c as a function of the
wavenumber k. This eigenvalue problem is normalised in § 4.3 to reduce the number
of independent parameters in the problem. Our focus then is on studying how the
normalised wave speed c depends on the normalised wavenumber κ . In particular, we
want to determine whether the imaginary part of c is positive for any κ ∈ (0,∞), in
which case the base state is linearly unstable. To this end, we analyse in detail the
limiting behaviours as κ→ 0 and as κ→∞ in §§ 4.4 and 4.5, respectively.

In the small-κ limit, we find that there are two families of solution branches: § 4.4.1
concerns the bounded branch, on which c tends to a constant, while § 4.4.2 concerns
the divergent branches, on which c tends to infinity as κ→ 0. Our analysis reveals the
set of parameter values for which the steady base state is stable in the limit κ→ 0,
corresponding to arbitrarily long waves, thus generalising the hydrodynamic stability
analysis of Yih (1963). The corresponding large-κ analysis in § 4.5 establishes that,
for all parameter values, Im[c] is ultimately negative in the limit as κ→∞, and thus
that the base state is stable to perturbations with arbitrarily small wavelength.

A numerical approach to determine c for any value of κ is described in § 4.6. We
find that the different solution branches identified in § 4.4 may intersect and switch
places, and it is therefore necessary to track all relevant branches carefully as κ is
varied. For certain parameter values, although the problem is predicted to be stable
in the limits as κ→ 0 and as κ→∞, the sign of Im[κ] may change at intermediate
values of κ and thus render the problem unstable to finite-wavelength perturbations.

Finally, in § 4.7 we summarise the results of the stability analysis and explain
their real-world relevance. In particular, we show how the critical Reynolds number,
below which the steady base flow is stable, varies with the physical parameters in
the problem.

4.2. Multiple-scale perturbation
Here we consider the stability of high-frequency disturbances on time and length
scales that are small enough for inertia effects to become significant, despite the
smallness of Re∗. With the inertia terms reinstated, the thin-film problem (2.35)
and (2.36) becomes

∂2Bi

∂y2
+

u
r2
= 0, (4.1a)

1
r
∂

∂r
(ru)+

∂v

∂y
= 0, (4.1b)

Re∗
(
∂u
∂t
+ u

∂u
∂r
+ v

∂u
∂y

)
−
∂2u
∂y2
+ 4λ4 Bi

r2
= ϕ(r, t), (4.1c)
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with boundary conditions

u= v =
∂Bi

∂y
− aBi

= 0 at y= 0, (4.2a)

∂u
∂y
= v −

∂h
∂t
− u

∂h
∂r
= Bi
= 0 at y= h(r, t). (4.2b)

Let u0(r, y), v0(r, y), B0(r, y) and h0(r) refer to steady-state solutions of the leading-
order (inertia-free) model, as constructed in § 3.2. We now perform a multiple-scale
perturbation about this base state, setting

u∼ u0(r, y)+ Re∗u1(r̂, r, y, t̂)+ · · · , (4.3a)
Bi
∼ B0(r, y)+ Re∗B1(r̂, r, y, t̂)+ · · · , (4.3b)
v ∼ v0(r, y)+ v1(r̂, r, y, t̂)+ · · · , (4.3c)
h∼ h0(r)+ Re∗h1(r̂, r, t̂)+ · · · , (4.3d)

where

r̂=
r

Re∗
, t̂=

t
Re∗

(4.4a,b)

are fast length and time variables. We substitute (4.3) into (4.1) and (4.2) and
then take the asymptotic limit Re∗ → 0. To proceed, we have to decide how to
decompose the pressure gradient term ϕ in powers of Re∗. Bearing in mind the
relative typical sizes of the parameters α, β, Γ and Re∗ given in (2.34), and
aiming to include transverse gravity and surface tension at first order, we define
ϕ ∼ ϕ0(r)+ Re∗ϕ1(r̂, r, y, t̂)+ · · · , with

ϕ0 = 1−
2β
r3
, ϕ1 =−α̂

(
dh0

dr
+
∂h1

∂ r̂

)
+ Γ̂

∂3h1

∂ r̂3
, (4.5a,b)

where

α̂ =
α

Re∗
, Γ̂ =

Γ

Re∗3 . (4.6a,b)

The leading-order governing equations and boundary conditions are satisfied
identically, by construction. At O(Re∗), we obtain the governing equations

∂2B1

∂y2
+

u1

r2
=
∂u1

∂ r̂
+
∂v1

∂y
= 0, (4.7a)

∂u1

∂ t̂
+ u0

∂u1

∂ r̂
+
∂u0

∂y
v1 −

∂2u1

∂y2
+ 4λ4 B1

r2
+ α̂

∂h1

∂ r̂
− Γ̂

∂3h1

∂ r̂3

=−α̂
dh0

dr
− u0

∂u0

∂r
− v0

∂u0

∂y
, (4.7b)

and boundary conditions

u1 = v1 =
∂B1

∂y
− aB1 = 0 at y= 0, (4.8a)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f O

xf
or

d,
 o

n 
28

 M
ar

 2
01

9 
at

 1
2:

45
:4

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.173


856 D. Lunz and P. D. Howell

∂u1

∂y
+
∂2u0

∂y2
h1 = B1 +

∂B0

∂y
h1 = v1 −

∂h1

∂ t̂
− u0

∂h1

∂ r̂
= 0 at y= h0(r). (4.8b)

The inhomogeneous right-hand side of (4.7b) is a function only of the slow variables
(r, y), and may be eliminated by considering a particular integral {u1p(r, y), B1p(r, y)}
satisfying the boundary-value problem

∂2B1p

∂y2
+

u1p

r2
= 0, (4.9a)

−
∂2u1p

∂y2
+ 4λ4 B1p

r2
=−α̂

dh0

dr
− u0

∂u0

∂r
− v0

∂u0

∂y
, (4.9b)

u1p(r, 0)=
∂B1p

∂y
(r, 0)− aB1p(r, 0)=

∂u1p

∂y
(r, h0(r))= B1p(r, h0(r))= 0. (4.9c)

The system (4.9) is in effect an ordinary differential equation (ODE) problem that
depends parametrically on r, and in principle explicit, although unwieldy, solutions
may be found for u1p and B1p. For our purposes, it suffices to note that, since that
the leading-order problem (3.3) is well posed, so too is (4.9), and by subtracting off
the resulting particular integral, we can henceforth focus on the homogeneous version
of (4.7b) where the right-hand side is replaced by zero.

The resulting problem is linear and autonomous in t̂ and r̂, and depends only
parametrically on r. We therefore suppress the dependence on r, for the moment, and
seek separable harmonic solutions of wavenumber k and wave speed c, that is,

u1 = u1p + û(y)eik(r̂−ct̂), v1 = v̂(y)eik(r̂−ct̂), (4.10a,b)

B1 = B1p + B̂(y)eik(r̂−ct̂), h1 = ĥeik(r̂−ct̂), (4.10c,d)

which results in the ODE problem

d2B̂
dy2
+

û
r2
=

dv̂
dy
+ ikû= 0, (4.11a)

ik(u0 − c)û+
du0

dy
v̂ −

d2û
dy2
+

4λ4

r2
B̂+ ik(α̂ + Γ̂ k2)ĥ= 0, (4.11b)

with boundary conditions

û= v̂ =
dB̂
dy
− aB̂= 0 at y= 0, (4.12a)

dû
dy
− ϕ0ĥ= B̂+

dB0

dy
ĥ= v̂ − ik(u0 − c)ĥ= 0 at y= h0. (4.12b)

The system (4.11) and (4.12) is similar to the linearised problem derived by Gao &
Morley (2002), except that (i) our geometry is axisymmetric, not two-dimensional;
(ii) we have included conductivity in the substrate; (iii) we do not artificially ignore
the perturbation B̂ to the magnetic field.
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We can eliminate û and B̂ from (4.11) and thus obtain a single ODE for v̂(y),
namely

d4v̂

dy4
+ ik(c− u0)

d2v̂

dy2
+

(
4λ4

r4
+ ik

d2u0

dy2

)
v̂ +

4ikaλ4

r2
B̂(0)= 0, (4.13)

which is subject to

v̂ =
dv̂
dy
=

d3v̂

dy3
− k2(α̂ + Γ̂ k2)ĥ+

4ikλ4B̂(0)
r2

= 0 at y= 0, (4.14a)

v̂ − ik(u0 − c)ĥ=
d2v̂

dy2
+ ikϕ0ĥ

=
d3v̂

dy3
− ik(u0 − c)

dv̂
dy
−

(
k2(α̂ + Γ̂ k2)+

4ikλ4

r2

dB0

dy

)
ĥ= 0 at y= h0. (4.14b)

4.3. Normalised problem
We normalise the leading-order solutions u0 and B0 using (3.1) and (3.2) as in § 3.1,
and similarly scale the first-order problem as follows:

v̂(y)=−
4ikaλ4h4

0B̂(0)
r2

V(Y), k=
λ2

ϕ0r2h2
0
κ, α̂ = ϕ2

0h3
0α̃, (4.15a−c)

ĥ=
4aλ2H4B̂(0)

ϕ0
H, c=

ϕ0

a2ζ 2
c, Γ̂ = ϕ4

0h11
0 Γ̃ . (4.15d−f )

We thus obtain the normalised equation

d4V
dY4
+ iκ(c− U)

d2V
dY2
+

(
4H4
+ iκ

d2U
dY2

)
V = 1, (4.16)

which is analogous to equation (4.2) in Stuart (1954), albeit with a different form of
the base flow U(Y) and also with different boundary conditions, namely

V(0)=
dV
dY
(0)=

d2V
dY2

(1)−
H2

c− U(1)
V(1)= 0, (4.17a)

d3V
dY3

(0)−
iH4κ(α̃ +H4Γ̃ κ2)

c− U(1)
V(1)=

ζ

H
. (4.17b)

In principle, the four boundary conditions (4.17) are sufficient to solve the ODE
(4.16) for V(Y), with the solution depending parametrically on the normalised
wavenumber κ and wave speed c, as well as on the parameters H, ζ , α̃ and Γ̃ .
The remaining boundary condition

d3V
dY3

(1)+ iκ(c− U(1))
dV
dY
(1)=

(
iH2κ(α̃ +H4Γ̃ κ2)− 4

dB
dY
(1)
)

d2V
dY2

(1) (4.18)
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thus effectively provides an algebraic dispersion relation between c and κ . The
temporal stability of the base state then depends on the imaginary part of c: if
Im[κc] is positive for any real value of κ , then the base state is linearly unstable;
otherwise it is linearly stable. Since the problem (4.16)–(4.18) is invariant under the
transformation {V, κ, c} 7→ {V, −κ, c} (where the bar denotes complex conjugation),
in practice we can restrict our attention to positive values of κ .

For any given values of the parameters H, ζ , α̃, Γ̃ and the normalised wavenumber
κ , the generalised eigenvalue problem (4.16)–(4.18) gives an infinite set of possible
values for the wave speed c, and we are interested in the one with the largest
imaginary part. Numerical solution of the problem is discussed below in § 4.6, but
first, to guide and validate the numerics, we examine the asymptotic limits as the
wavenumber tends to zero or to infinity.

4.4. Small wavenumber limit
4.4.1. Bounded branch

We follow the approach of Yih (1963) to analyse the dispersion relation in the limit
as κ→0. We find that limiting solutions of (4.16)–(4.18) fall into two possible classes:
one in which c is bounded and one in which c scales with 1/κ as κ→ 0. We begin
by analysing the former case. Since the first-order coefficients of κ in (4.16)–(4.18)
are pure imaginary, we seek solutions for V and c as asymptotic expansions of the
form

V(Y)∼ V0(Y)+ iκV1(Y)+ · · · , c∼ c0 + iκc1 + · · · , (4.19a,b)

where c0 and c1 are real. The steady base state is then stable or unstable, in the limit
κ→ 0, depending on whether c1 is negative or positive, respectively.

At leading order, we obtain the problem

d4V0

dY4
+ 4H4V0 = 1, (4.20)

subject to

V0(0)=
dV0

dY
(0)=

d3V0

dY3
(0)−

ζ

H
=

d3V0

dY3
(1)+ 4

dB
dY
(1)

d2V0

dY2
(1)= 0, (4.21)

and the leading-order wave speed is then found from

c0 = U(1)+H2V0(1)
/

d2V0

dY2
(1). (4.22)

The solution of the boundary-value problem (4.20) and (4.21) may be written in the
form

V0(Y)=−
ζ

H4 ∂

∂H

[
1

H2

∂3Ψ

∂Y3
(0;H)

] [Ψ (Y;H)+H
∂Ψ

∂H
(Y;H)− Y

∂Ψ

∂Y
(Y;H)

]
, (4.23)

where Ψ is the leading-order streamfunction, defined by

Ψ (Y;H)=
∫ Y

0
U(Ȳ) dȲ. (4.24)
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FIGURE 7. (Colour online) (a) The leading-order wave speed c0; (b) the first-order wave
speed c1,0 evaluated at α̃ = 0; (c) the coefficient c1,α in the first-order wave speed c1;
(d) the critical value of α̃ for stability of long waves. All are plotted versus H for
ζ ∈ {0, 0.2, 1, 5,∞}, with a grey dashed curve bounding the range of parameters where
physical steady solutions exist. In (b), the black circle indicates the ζ→∞ curve crossing
the horizontal axis at the critical value of H. In (d), the black dotted curve shows the
asymptotic behaviour α̃c0→ 2/5 as H→ 0.

By substituting (4.23) into (4.22), we find that the leading-order wave speed is given
by

c0 =
∂F
∂H

, (4.25)

where F(H, ζ )=HΨ (1;H) is equivalent to the normalised flux defined in (3.7). Thus
the leading-order wave speed is just the characteristic wave speed of the underlying
hyperbolic equation (4.22), a result that is also consistent with the simple linearised
solution (3.19). The resulting behaviour of c0 as a function of H for varying ζ is
plotted in figure 7(a). Notably, the wave speed is positive for physically relevant
values of H, but tends to zero as H approaches the critical value where ∂Q/∂H = 0.

The first-order problem reads

d4V1

dY4
+ 4H4V1 =− (c0 − U)

d2V0

dY2
− V0

d2U
dY2

, (4.26)

subject to

V1(0)=
dV1

dY
(0)=

d3V1

dY3
(0)−

H4α̃V0(1)
c0 − U(1)

= 0, (4.27a)
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d3V1

dY3
(1)+ 4

dB
dY
(1)

d2V1

dY2
(1)=H2α̃

d2V0

dY2
(1)− (c0 − U(1))

dV0

dY
(1), (4.27b)

and the first correction to the wave speed is then given by

c1 =

(
H2V1(1)− (c0 − U(1))

d2V1

dY2
(1)
)/

d2V0

dY2
(1). (4.28)

It may be shown that the solutions for V1 and c1 can only vary affinely with the
stabilising gravitational parameter α̃, i.e. we can write

V1(Y)≡ V1,0(Y)+ α̃V1,α(Y), c1 ≡ c1,0 + α̃c1,α, (4.29a,b)

and the coefficients c1,0 and c1,α may thus be solved for independently. The terms
proportional to α̃ are relatively straightforward to evaluate, in the forms

V1,α(Y)=
1

4H2∂B(0)/∂H
[4H3B(0)V0(Y)− ζΨ (Y)], (4.30a)

c1,α =−HF(H, ζ ), (4.30b)

where F is again the function defined by (3.7). Explicit solutions can also be found
for V1,0 and c1,0, but they are too long winded to reproduce here. The solutions for
c1,0 and c1,α are plotted versus H for various values of ζ in figure 7(b,c).

The coefficient c1,0 may be positive or negative for physically relevant values of ζ
and H. We note for future reference that, in the limit ζ→∞, one can express c1,0 in
the form

c1,0 = [cos(H) sinh(H)+ sin(H) cosh(H)]G(H), (4.31)

where the function G(H) is finite for all H. We recall from § 3.1 that the term in
square brackets in (4.31) is zero when ζ →∞ and H is at its critical value where
∂Q/∂H = 0. It follows that, when ζ →∞, corresponding to a perfectly conducting
substrate, c1,0 is zero precisely at the critical value of H. This behaviour is highlighted
by the black circle in figure 7(b): the curve corresponding to ζ →∞ crosses the
horizontal axis precisely when it intersects the grey dashed curve which marks the
critical value of H.

The coefficient c1,α is always negative, as we would expect since transverse gravity
always has a stabilising effect. Therefore, the steady base state is stable if α̃ is
sufficiently large, specifically if it exceeds a critical value α̃c0 = −c1,0/c1,α, which
is plotted in figure 7(d). Intriguingly, we see that there is a range of parameter
values for which α̃c0 is negative, and therefore for which the base state is stable to
long-wave perturbations regardless of the value of α̃. It thus appears that magnetic
effects may be sufficient to stabilise long waves even when there is no transverse
component of gravity, in contrast with the results of Yih (1963), which are recovered
in the hydrodynamic limit H → 0. However, we will see below in § 4.6 that the
picture changes when all values of κ are considered, and not just the limit κ→ 0.
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4.4.2. Divergent solutions
Here we analyse the second class of solutions to the problem (4.16)–(4.18), in

which c diverges as κ→ 0, by posing the asymptotic expansions

V(Y)∼ V0(Y)+ iκV1(Y)+ · · · , c∼−
ic−1

κ
+ · · · . (4.32a,b)

This ansatz corresponds to perturbations proportional to e−c−1t, so that c−1 represents
the limiting linear decay rate as κ → 0. The leading-order problem then takes the
form

d4V0

dY4
+ c−1

d2V0

dY2
+ 4H4V0 = 1, (4.33)

subject to the boundary conditions

V0(0)=
dV0

dY
(0)=

d2V0

dY2
(1)=

d3V0

dY3
(0)−

ζ

H
=

d3V0

dY3
(1)+ c−1

dV0

dY
(1)= 0. (4.34)

By solving the constant-coefficients equation (4.33) and applying the five boundary
conditions in (4.34), we obtain a functional relation between the leading-order wave
speed c−1 and the parameters H and ζ , which may be expressed in the form

ζ =
(c−1 + 2H2)(c−1 − 4H2)∆+ sin∆+ − (c−1 + 4H2)(c−1 − 2H2)∆− sin∆−

2H[16H4 − (c−1 + 2H2)(c−1 − 4H2) cos∆+ − (c−1 + 4H2)(c−1 − 2H2) cos∆−]
,

(4.35a)

where we have introduced the shorthand

∆± =
√

c−1 ± 4H2. (4.35b)

There are three cases to consider: if c−1 > 4H2, then ∆+ and ∆− are both real; if
−4H2 6 c−1 < 4H2, then ∆− becomes pure imaginary; and if c−1 <−4H2, then both
∆+ and ∆− are pure imaginary. However, it may be shown that (4.35) returns non-
negative values of ζ only when c−1> 0, so the final case can be discarded. In figure 8,
the blue and orange solid curves show (H, c−1) parameter values where the numerator
and the denominator of (4.35) are zero, respectively. These curves bound the shaded
grey regions corresponding to positive values of ζ , and the particular contours with
ζ = 1 are picked out as black dotted curves. We conclude that, for any positive values
of ζ and H, equation (4.35) admits a countably infinite spectrum of solutions for c−1.
The nth branch emerges from c−1→ (n+ 1/2)2π2 as H→ 0, with n= 0, 1, 2, . . . , and
indeed every branch satisfies c−1 >π2/4. It follows that our system has an infinite set
of solution branches where the wave speed diverges like 1/κ as κ→ 0, but that each
of them has positive decay rate and so is exponentially damped.

4.5. Large wavenumber limit

It is clear that surface tension, characterised by the parameter Γ̃ , must ultimately
dominate and stabilise the problem if the wavenumber κ is sufficiently large. However,
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FIGURE 8. (Colour online) Limiting linear decay rate c−1 versus normalised film
thickness H. The grey shaded regions indicate parameter values for which (4.35) gives
positive values of ζ , bounded below by the solid blue curves where ζ = 0 and above
by the solid orange curves where ζ→∞. The black dotted curves show contours where
ζ = 1.

we are interested in the ‘worst-case scenario’ where surface tension is negligible, and
the question of whether the problem is stable even in its absence. To corroborate the
numerical results presented below, we now consider the asymptotic limit as κ→∞
with Γ̃ set to zero. Before proceeding with the asymptotic analysis, we first note that
integration of (4.16) with respect to Y and application of the boundary conditions
(4.17) leads to the identity

4H4
∫ 1

0
V(Y) dY −

4H2B′(0)V(1)
c− U(1)

= 1+
ζ

H
. (4.36)

We seek an outer solution for V by taking the limit κ→∞ in (4.16), resulting in

(c− U)
d2V
dY2
+

d2U
dY2

V =O(κ−1). (4.37)

Evidently the order of (4.16) has been reduced by two, so this is a singular
perturbation. However, the boundary conditions (4.17) and (4.18) at Y = 1 may
be expressed in the forms

[c− U(1)]
d2V
dY2

(1)−H2V(1)= 0, (4.38a)

[c− U(1)]
dV
dY
(1)−H2α̃

d2V
dY2

(1)=O(κ−1), (4.38b)

[c− U(1)]2
dV
dY
(1)−H4α̃V(1)=O(κ−1), (4.38c)

and, recalling that U ′′(1) = −H2, we find that two of the three conditions in (4.38)
are satisfied identically by solutions of the outer problem (4.37) up to O(κ−1). As a
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consequence of this redundancy, there is no boundary layer at Y = 1, and we apply
(4.38) directly to the outer problem (4.37).

Now we substitute the asymptotic expansions

V(Y)∼ V∞(Y)+ κ−1/2V∞1(Y)+ · · · , c∼ c∞ + κ
−1/2c∞1 + · · · (4.39a,b)

into (4.37). The leading-order equation may be integrated once to give

(c∞ − U)
dV∞
dY
+

dU
dY

V∞ = A1, (4.40)

where A1 is an integration constant. As we will see below, matching with the boundary
layer at Y = 0 requires V∞(0) to be zero. Following one further integration with
respect to Y , we thus find the leading-order outer solution in the form

V∞(Y)= A1[c∞ − U(Y)]
∫ Y

0

dη
[c∞ − U(η)]2

. (4.41)

Using the leading-order solution (4.41), we find that (as anticipated) (4.38) collapses
to a single relation

A1 =
H4α̃V∞(1)
c∞ − U(1)

=H4α̃A1

∫ 1

0

dY
[c∞ − U(Y)]2

. (4.42)

For non-trivial solutions, we must therefore have

H4α̃

∫ 1

0

dY
[c∞ − U(Y)]2

= 1, (4.43)

which determines the leading-order wave speed c∞ as κ →∞, as a function of α̃,
H and ζ . The amplitude A1 remains undetermined by (4.42) but may in principle be
found by substituting (4.41) into the identity (4.36).

Equation (4.43) admits real roots for the limiting wave speed c∞. To determine the
stability, we must therefore proceed to O(κ−1/2) in (4.37), obtaining

c∞1
dV∞
dY
+ (c∞ − U)

dV∞1

dY
+

dU
dY

V∞1 = A2, (4.44)

where A2 is another integration constant. By integrating once more with respect to Y ,
we find that the first correction to the outer solution takes the form

V∞1(Y)
c∞ − U(Y)

=
V∞1(0)
c∞

+
c∞1V∞(Y)
[c∞ − U(Y)]2

+A2

∫ Y

0

dη
[c∞ − U(η)]2

− 2c∞1A1

∫ Y

0

dη
[c∞ − U(η)]3

, (4.45)

where V∞1(0) remains to be determined through asymptotic matching with the
boundary layer at Y = 0.
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To this end, we perform the scalings

Y = κ−1/2Ŷ, V(Y)= κ−1/2V̂(Ŷ), (4.46a,b)

transforming the governing equation (4.16) into

d4V̂
dŶ4
+ ic∞

d2V̂
dŶ2
=O(κ−1/2), (4.47)

subject to

V̂ =
dV̂
dŶ
= 0 at Ŷ = 0. (4.48)

By matching with the leading-order outer solution (4.41) (and verifying a posteriori
our supposition that V∞(0)= 0), we obtain the leading-order inner solution

V̂(Ŷ)∼
A1

c∞

[
Ŷ −

(1± i)
√

2|c∞|
(1− e−(1∓i)Ŷ

√
|c∞|/2)

]
, (4.49)

where c∞=±|c∞|. By expanding (4.49) as Ŷ→∞, we obtain the matching condition

V∞1(0)=−
(i± 1)A1
√

2|c∞|3/2
. (4.50)

Again at O(κ−1/2), the three boundary conditions (4.38) at Y=1 collapse to a single
relation, namely

c∞1A1 + [c∞ − U(1)]A2 =H4α̃V∞1(1). (4.51)

The right-hand side of (4.51) is evaluated using the O(κ−1/2) outer solution (4.45).
Again we find that the amplitude A2 drops out (although it could in principle be
calculated using (4.36)), and we obtain the following expression for the first-order
wave speed

c∞1 =−
(i± 1)

23/2|c∞|5/2

/∫ 1

0

dY
|c∞ − U(Y)|3

. (4.52)

For given positive values of H, ζ and α̃, equation (4.43) admits two possible real
roots for c∞: one positive, with c∞ > U(1), and one negative. The first correction
to each solution is then found by substituting c∞ into (4.52). For the positive root,
we plot c∞ − U(1) and −Im[c∞1] versus α̃ with ζ = 1 and various values of H in
figure 9(a) and (b), respectively. The dotted lines show the asymptotic limits

c∞ ∼ U(1)+
H2

2
(πα̃)2/3, as α̃→ 0, (4.53a)

c∞1 ∼−
(i+ 1)π2/3H6

3
√

2U(1)5/2
α̃5/3, as α̃→ 0, (4.53b)

c∞ ∼H2
√

α̃ +
F(H, ζ )

H
, as α̃→∞, (4.53c)
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FIGURE 9. (Colour online) The leading-order (a,c) and first-order (b,d) wave speeds in
the short-wavelength limit κ→∞ plotted versus the gravitational parameter α̃ with ζ = 1
and H ∈ {0.5, 1, 1.5, 2}, for the positive (a,b) and negative (c,d) roots of (4.43). The dotted
lines show the asymptotic limits (4.53) and (4.54).

c∞1 ∼−
(i+ 1)H

23/2

[
α̃1/4
−

5F(H, ζ )
2H3

α̃−1/4

]
, as α̃→∞. (4.53d)

Evidently, the leading-order wave speed increases monotonically from U(1) to +∞
as α̃ increases. Meanwhile, the correction c∞1 always has negative imaginary part,
although it tends to zero as α̃→ 0.

In figure 9(c,d), with the same values of ζ and H, we plot −c∞ and −Im[c∞1]

versus α̃ for the negative root of (4.43). The dotted lines show the asymptotic limits

c∞ ∼−
H4

U ′(0)
α̃, as α̃→ 0, (4.54a)

c∞1 ∼−
(i− 1)U ′(0)3/2

H2
√

2α̃
, as α̃→ 0, (4.54b)

c∞ ∼−H2
√

α̃ +
F(H, ζ )

H
, as α̃→∞, (4.54c)

c∞1 ∼−
(i− 1)H

23/2

[
α̃1/4
+

5F(H, ζ )
2H3

α̃−1/4

]
, as α̃→∞. (4.54d)

This time we see that c∞ decreases from 0 to −∞ as α̃ increases. The imaginary
part of the first correction c∞1 has a rather complicated dependence on ζ and H, but
always remains negative, tending to −∞ both as α̃→ 0 and as α̃→∞.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f O

xf
or

d,
 o

n 
28

 M
ar

 2
01

9 
at

 1
2:

45
:4

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.173


866 D. Lunz and P. D. Howell

For each of the roots depicted in figure 9, the limiting wave speed c∞ as κ→∞
is purely real, and the first correction c∞1 always has negative imaginary part. We
conclude that the base state is indeed stable to large wavenumber disturbances.
However, figure 9(b) shows that, for the positive root c∞, the magnitude of c∞1 tends
to zero as α̃→ 0, and consequently we will find that increasingly large values of the
wavenumber κ are required for the behaviour (4.39) to emerge when α̃ is small.

4.6. Numerical solution for arbitrary wavenumber
We now pursue numerical solutions of the problem (4.16)–(4.18) for arbitrary values
of the wavenumber κ . Let us introduce the fourth-order differential operator L,
defined by writing (4.16) as L[V] = 1. Then for any given κ we consider the
particular solutions V1, V2 and V3 satisfying

L[V1
] = 1, V1(0)=

dV1

dY
(0)=

d2V1

dY2
(0)=

d3V1

dY3
(0)= 0, (4.55a)

L[V2
] = 0, V2(0)=

dV2

dY
(0)=

d2V2

dY2
(0)= 0,

d3V2

dY3
(0)= 1, (4.55b)

L[V3
] = 0, V3(0)=

dV3

dY
(0)=

d3V3

dY3
(0)= 0,

d2V3

dY2
(0)= 1. (4.55c)

Note that the operator L depends on κ , which we take as given, and on c, which at
this stage we guess, say c(κ)= c1. Given the values of κ and c1, it is straightforward to
solve the initial-value problems (4.55) for the particular solutions V j. Any combination
of the form V = V1

+ c2V2
+ c3V3 then solves the original equation (4.16), and the

boundary conditions (4.17) can be satisfied by an appropriate choice of the constants
c2 and c3. The remaining auxiliary boundary condition (4.18) is then the residual
we seek to bring to zero, and thus this procedure reduces to a complex root-finding
process for c1.

For each set of parameters {H, ζ , α̃, Γ̃ } and each value of the wavenumber κ ,
we are interested in the root for c with the largest imaginary part, corresponding to
the most unstable perturbation mode. The analysis from § 4.4 is used to initialise the
root finding at small values of κ , and continuation is then used to track individual
branches of c(κ) over a range of values of κ . However, we will see that the values
of Im[c] on different solution branches may cross as κ is varied. We therefore also
discover distinct branches using deflation (Farrell, Birkisson & Funke 2015): having
found one root of our residual function, say c(κ) = c1, we next seek a root of the
deflated residual, given by multiplying the residual function by (1+ |c(κ)− c1|

−2).
The procedure outlined above effectively reduces the original problem in equations

(4.16)–(4.18) to three initial-value problems along with an auxiliary root-finding
procedure, which can be implemented using any standard ordinary differential equation
solver and numerical root finder. We used Mathematica’s NDSolve and FindRoot
routines (Wolfram Research, Inc. 2018).

We first verify that the results of the numerical procedure outlined above are
consistent with the asymptotic predictions from §§ 4.4 and 4.5. In figure 10(a), we
show numerically computed solutions for Re[c] and Im[c] on the bounded branch
of the dispersion relation for c(κ), with the parameters H = ζ = 1 and Γ̃ = 0 held
fixed while the value of α̃ is varied. The black dotted lines demonstrate that Re[c]
approaches the value predicted by (4.25) and Im[c] tends to zero, with limiting
gradient as predicted by (4.28).
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FIGURE 10. (Colour online) The bounded branch of c plotted versus κ , computed
numerically by solution of (4.16)–(4.18) with H= ζ = 1. In (a), solid curves show Im[c],
dashed curves show Re[c]. The black dotted curves show the small-κ asymptotic behaviour
predicted by (4.25) and (4.28).

In figure 10(b) we explore in more detail the behaviour for small values of α̃ close
to the critical value α̃c0 ≈ 0.09 when H = ζ = 1 (see figure 7d). As predicted, the
gradient of Im[c(κ)] at κ = 0 becomes negative, and long waves are thus stabilised,
when α̃ > α̃c0. However, we observe that there is a range of values of α̃ such that
Im[c] is negative as κ→ 0 but changes sign as κ increases. From § 4.5, we know that
Im[c] must ultimately become negative again at sufficiently large κ but, nevertheless,
there is a range of intermediate values of κ for which Im[c]> 0. For such parameter
values, the problem is unstable although the small-κ asymptotic analysis from § 4.4.1
predicts otherwise, and the critical value α̃c is therefore larger than the small-κ value
α̃c0. We will show below how figure 7(d) is modified when all wavenumbers κ are
taken into account, and not just the limit as κ→ 0.

Figure 10(c) illustrates the stabilising influence of surface tension, measured by
the parameter Γ̃ . Increasing the value of Γ̃ rapidly damps high wavenumbers, as
expected, but does not affect the behaviour as κ→ 0: only transverse gravity is able
to counteract the long-wave instability.

In figure 11 we explore the behaviour of the divergent branches as κ → 0.
In figure 11(a) we plot the linear growth rate κIm[c(κ)] versus κ for the first
divergent branch (i.e. with smallest value of c−1) with a variety of H values, while,
in figure 11(b), we fix H = 1 and plot the first five divergent branches. In all cases,
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FIGURE 11. (Colour online) The linear growth rate, κIm[c], plotted versus κ for the
divergent solution branches, computed numerically by solution of (4.16)–(4.18) with α̃ =

Γ̃ = 0 and ζ = 1. (a) The divergent branch with minimal c−1 and varying H. (b) The first
five divergent branches with H = 1. The black dotted lines show the small-κ asymptotic
behaviour predicted by (4.35).

we observe excellent agreement with the small-κ asymptotic approximations given by
(4.35) (shown as black dotted lines), over a surprisingly wide range of values of κ .

In figure 12, we show the behaviours of Re[c] and Im[c] at large values of κ ,
with H = 1, ζ = 1, Γ̃ = 0 and various values of α̃. The large-κ predictions given by
(4.43) and (4.52) are shown as black dashed curves. Figure 12(a,d) demonstrates
that the values of Re[c] on the bounded and divergent branches approach the
positive and negative roots c∞ of (4.43), respectively. Figure 12(b,e) shows the
corresponding values of Im[c], which appear to tend slowly towards the predicted
behaviour Im[c∞1]κ

−1/2, with c∞1 given by (4.52). Figure 12(c, f ) demonstrates that the
numerical and asymptotic results do indeed converge, with the discrepancy between
them scaling with 1/κ as κ→∞. As shown in § 4.5, the coefficient c∞1 of κ−1/2 in
the large-κ asymptotic expansion of c may be rather small when α̃ is small, while
figure 12(c, f ) suggests that the coefficient of κ−1 is relatively insensitive to the value
of α̃. It follows that increasingly large values of κ need to be used to observe the
predicted κ−1/2 behaviour of Im[c] when α̃ is small. This is even more the case
for the higher divergent solution branches, on which, as seen in figure 11(b) and
explained in § 4.4.2, the coefficient c−1 can be tens or hundreds of times larger than
the minimal value, requiring κ to be hundreds or thousands of times larger for the
solution to converge to the large-κ regime.

Having verified that our numerical results reproduce the asymptotic predictions for
the various solution branches as κ→ 0 and as κ→∞, we are ready to investigate
numerically how these branches are connected via intermediate κ . For example, in
figure 12 the branches with c∞ > U(1) as κ →∞ all correspond to branches with
bounded imaginary part as κ → 0, while the branches with c∞ < 0 as κ →∞ all
correspond to branches with divergent imaginary part as κ→ 0. However, this is not
always the case: figure 13 illustrates a bifurcation that occurs whereby the bounded
and divergent solution branches exchange their tails at an intermediate value of κ .

Consider the blue solid curve in figure 13(a), showing the bounded branch of
Im[c(κ)] with ζ = 1, Γ̃ = α̃ = 0 and H = 1.45. Figure 7(d) shows that α̃c0 < 0
when (ζ , H) = (1, 1.45), and the bounded branch for Im[c] is therefore negative for
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FIGURE 12. (Colour online) Numerically computed dispersion relation between c and κ ,
with H = ζ = 1, Γ̃ = 0 and α̃ ∈ {1, 2, 3, 5, 7, 10}. (a–c) Show the bounded branch, while
(d–f ) show the first divergent branch. The large-κ predictions given by (4.43) and (4.52)
are shown as black dashed curves. In (c, f ) we confirm that the errors in (b) and (e),
respectively, scale with 1/κ as κ→∞.

0< κ� 1. However, we see that Im[c] subsequently starts to increase and eventually
becomes positive, so that the base state is stable to very long waves but unstable
to an intermediate range of wavenumbers. Meanwhile, the corresponding divergent
branch, indicated as the blue dashed curve, remains below the bounded branch, with
Im[c]< 0 for all κ .

In contrast, the solid orange curve in figure 13(a) shows that the bounded branch
of Im[c(κ)] at the slightly larger value of H = 1.5 remains negative for all κ > 0.
This time it is the first divergent branch of Im[c(κ)], indicated by the orange dashed
curve, which increases and becomes positive. A bifurcation has occurred at some value
of H between 1.45 and 1.5 which swaps the connections between the asymptotic
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FIGURE 13. (Colour online) Numerically computed dispersion relations computed with
Γ̃ = 0, ζ = 1 and various values of H and α̃. Branches bounded as κ → 0 are plotted
as solid curves, while the divergent branches appear as dashed curves. In both cases, we
observe a bifurcation whereby the behaviours for large κ interchange between the bounded
branch and the first divergent branch.

behaviours of the two branches as κ → 0 and as κ → ∞. It is because of this
bifurcation that we must take care to compute all the relevant solution branches: had
we followed only the bounded branch, we would have erroneously concluded that the
base state with H = 1.5 is stable to all wavenumbers.

An analogous bifurcation in the dependence of Re[c] on κ is shown in figure 13(b),
with ζ =1, Γ̃ =0 and α̃=1. For H=1.35 the real part of the bounded branch (plotted
as a blue solid curve) tends to the positive root of (4.43) for large κ , and the divergent
branch (blue dashed) to the corresponding negative root. Following the bifurcation, for
H = 1.55, these behaviours are interchanged, and the bounded branch (yellow solid)
connects to negative c∞ for large κ , while the divergent branch (yellow dashed) has
positive real part for all κ .

4.7. Summary
Here we summarise the results of this section, compare them with the pure
hydrodynamic version of the problem analysed by Yih (1963) and highlight their
central physical implications. As above, let us neglect surface tension in the first
instance, so that the normalised problem is characterised by the three parameters H,
ζ and α̃. By reversing the scalings (4.15), (4.6) and (2.34), we can express α̃ in
terms of physical parameters in the form

α̃ =
cot θ
ϕ2

0h3
0Re
=

cot θ
ReL

, (4.56)

say. Thus the dependence of the stability behaviour on α̃ may alternatively be thought
of in terms of the ‘local’ Reynolds number ReL.

The base flow is stable in the limit κ→ 0 if α̃ exceeds the critical value α̃c0(H, ζ ).
As shown in figure 7(d), there is a region of (H, ζ ) parameter space where α̃c0 is
negative, and the flow is therefore stable in the long-wave limit for all values of
α̃, i.e. for all Reynolds numbers. In contrast, as shown by Yih (1963), the pure
hydrodynamic flow is always unstable in the limit κ→ 0 if the Reynolds number is
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FIGURE 14. (Colour online) The critical value α̃c of the gravitational parameter α̃ for
stability of the base state to all wavenumbers, plotted versus H with Γ̃ = 0 and varying
ζ : (a) ζ ∈ {0, 0.2, 1, 5,∞}; (b) ζ ∈ {0, 1,∞}, with the long-wave analogue α̃c0 for stability
in the limit κ→ 0 shown by the dashed curves.

sufficiently large, so the stable region implied by figure 7(d) must be attributed to
the stabilising effects of magnetic coupling with the flow. We note in addition that
the simplified theory of Gao & Morley (2002), which artificially neglects coupling
between the perturbations in the flow and in the magnetic field, likewise predicts that
the flow is always unstable in the limit κ→ 0 at sufficiently high Reynolds numbers.

Bearing in mind the possible bifurcation behaviour shown in figure 13, we can now
use the numerical approach described in § 4.6 to trace all relevant branches of c(κ) and
thus determine the stability of the base state to disturbances of arbitrary wavenumber.
Again we find that, for each set of values of (H, ζ ), there is a critical value α̃c(H, ζ )
such that the flow is stable for α̃ > α̃c. The resulting stability diagram, generalising
figure 7(d) to consider all wavenumbers, is shown in figure 14(a), where we plot α̃c
versus H for various fixed values of ζ . For comparison, in figure 14(b) we plot α̃c
alongside the corresponding small-κ limiting value α̃c0 (for a smaller set of ζ values,
to avoid over-cluttering). We already know from figure 7(d) that α̃c0 is negative for
some values of H and ζ , but figure 14 shows that α̃c always remains positive. Thus,
although there is a region of (H, ζ ) parameter space where long waves are stable
for all values of α̃, when all wavenumbers are considered, the base state is always
unstable if the Reynolds number is sufficiently large, specifically if

ReL

cot θ
>

1
α̃c(H, ζ )

. (4.57)

For small values of H, the most dangerous modes are those with κ→ 0, and the
curves for α̃c and α̃c0 therefore converge. In particular, the maximum value of α̃c is
still 2/5, so the flow is stable for all (H, ζ ) if the local Reynolds number satisfies the
criterion of Yih (1963):

ReL

cot θ
<

5
2
. (4.58)

This observation is important, because the values of H and ζ are not fixed in advance
but decrease slowly with r along the length of the divertor. In the physically relevant
regime where β� 1, we have ϕ0∼ 1 so that ReL∼ h0(r)3Re is a uniformly decreasing
function of r and therefore, if the inequality (4.58) is satisfied at the inlet r= 1, then
it is satisfied everywhere.
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FIGURE 15. (Colour online) Numerically computed critical local Reynolds number
ReL/cot θ as a function of H, for ζ ∈ {0, 0.2, 1, 5,∞}. The dashed curves show the critical
Reynolds number in the κ→ 0 limit, given by ReL/cot θ =−c1,α/c1,0, as derived in § 4.4.1.

The critical Reynolds number defined by (4.57) is plotted versus H in figure 15.
For each value of ζ , as H increases from zero, the critical Reynolds number rapidly
increases from the purely hydrodynamic value of 5/2, before suffering a slope
discontinuity, at H=H0(ζ ), say. This discontinuity stems from a switch in the location
of the critical wavenumber κ where the flow first loses stability. For 0 < H < H0,
stability is lost at an intermediate non-zero value of κ , whereas, for H > H0, the
instability first manifests for arbitrary long wavelengths with κ � 1. This explains
why, for H > H0, the numerical results (solid curves in figure 15) coincide perfectly
with the dashed curves showing the critical Reynolds number 1/α̃c0 = −c1,α/c1,0, as
derived in § 4.4.1. Indeed, we can observe in figure 14(b) that the numerical results
for α̃c lie on top of the small-κ predictions α̃c0 at sufficiently large values of H.

As pointed out in § 4.4.1, it can be shown analytically that, in the ζ =∞ limiting
case, α̃c0(H) = 0 for H at its critical value below which physical steady solutions
exist (see (4.31) and the paragraph below). Thus the ζ =∞ purple curve in figure 15
diverges to infinity as H approaches its critical upper bound. Consequently, the film is
stabilised for all Reynolds numbers if and only if the substrate is perfectly conducting
and the film thickness is at its theoretical maximum value. Even for smaller values of
ζ and H, the critical Reynolds number may become orders of magnitude larger than
its hydrodynamic value of 5/2, reflecting the very strong stabilising influence of the
magnetic field.

Finally, we note that surface tension stabilises the problem, particularly damping
high wavenumbers, but is not effective at low wavenumbers. Therefore in regions of
(H, ζ ) parameter space where the problem is unstable as κ→ 0, the flow cannot be
stabilised by surface tension alone. As in (4.56), the relevant parameter Γ̃ may be
expressed in terms of ReL and a local Bond number BoL = h2

0Bo/ϕ2
0 , that is,

Γ̃ =
1

BoLRe3
L
. (4.59)

The approximate values in (2.27) suggest that Γ̃ is likely to be large in parameter
regimes relevant to a lithium divertor. If so, then we can assume that all except the
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smallest values of κ are stabilised by surface tension, and the asymptotic analysis as
κ→ 0 from § 4.4 suffices to determine the stability of the flow.

5. Conclusions

In this paper we model the flow of a thin film of liquid metal, driven by gravity
down a conical substrate in the presence of a strong toroidal magnetic field. Provided
the aspect ratio ε and the magnetic Reynolds number Rm are both small (the latter
is invariably the case for liquid metals), the induced magnetic field is much smaller
than the applied magnetic field, and is significantly coupled to the flow only when a
sufficiently strong field is applied (such that the Hartmann number is of order ε−1).
Assuming also that the reduced Reynolds number is small enough for inertia effects
to be negligible, we solve the resulting quasi-steady leading-order MHD problem to
find both the liquid velocity and the induced magnetic field.

By invoking net mass conservation, we reduce the problem to a generalised thin-film
PDE (3.4) governing the film thickness h(r, t). The behaviour of solutions to (3.4)
depends crucially on the form of the flux Q, which is a complicated function of the
film thickness, as well as various physical properties of the liquid and the substrate.
By suitably normalising, we show that Q may be reduced to a function of just two
dimensionless parameters, H and ζ , given by (3.7) and plotted in figure 4(a). We thus
show that there is a maximum value of the flux that can be achieved, in contrast both
with purely hydrodynamic flow and with so-called Hartmann flow, which occurs when
the applied magnetic field is orthogonal to the substrate. As the critical value of the
flux is approached, the free surface of the liquid develops a gradient singularity, and
we thus argue that physically relevant solutions exist only in a restricted region of the
(ζ ,H) parameter space, namely the region below the solid blue curve in figure 4. We
show that the exotic oscillatory solutions for the velocity and induced field, reported
in previous studies and illustrated in figure 3(b,e), correspond to unphysical regions
of parameter space, and we thus argue that they could not be observed in practice.

Steady and unsteady solutions of the thin-film (3.4) are plotted in figure 6. The
steady film thickness h0(r) decreases uniformly with distance r along the substrate.
Figure 6(d, f ) demonstrates that time-dependent disturbances to the free surface
introduced at the inlet r= 1 decay as they are convected into r> 1, and the explicit
upper bound (3.22) ensures that such disturbances never grow to swamp the steady
liquid film. As expected for a nonlinear hyperbolic wave equation, as they propagate
the disturbances steepen into shocks; as shown in figure 6( f ), these can be smoothed
by including regularising higher-order terms corresponding to transverse gravity and/or
surface tension, characterised by the small parameters α and Γ , respectively.

We show that a multiple-scale approach allows one to analyse the stability of
inertial perturbations even though the reduced Reynolds number is small enough to
be neglected at leading order. Our stability analysis demonstrates that coupling with
the induced magnetic field always acts to stabilise the flow, in contrast with previous
studies (for example Wooler 1961; Sozou 1970) which concluded that a constant
toroidal magnetic field has no effect on stability. We show that the problem can be
stable for much larger Reynolds numbers than in the pure hydrodynamic problem,
if the magnetic and geometric parameters are chosen appropriately. Similarly, there
is a critical Reynolds number below which the problem is guaranteed to be stable,
regardless of any other parameter values.

However, the detailed stability analysis extends beyond these simple universal
results to reveal in full the complicated dependence of the stability on the local
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Reynolds and Bond numbers, as well as the material parameters in the problem.
When surface tension is negligible, the condition for linear instability is given
by (4.57), in terms of the local Reynolds number, the divertor inclination angle θ ,
and the two parameters H and ζ . The resulting critical Reynolds number is shown
as a function of H and ζ in figure 15. For the practitioner, the dimensionless groups
H and ζ combine several physical parameters that may be selected, such as the
substrate thickness and electrical conductivity, the location, inclination and extent of
the divertor, the field strength, the aspect ratio and so on (see (3.2)). The results
presented here in principle allow one to tune these physical parameters to provide
the largest possible critical Reynolds number, and thus the most stable flow regime.

We have limited our attention in this work to the simplest axisymmetric geometry
that allows for non-zero gradient in the applied magnetic field. In this configuration,
the magnetic field B is purely in the toroidal direction and the liquid velocity u
confined to the plane orthogonal to B. It is the subject of current research to determine
how our stability results are affected if these geometrical constraints are relaxed and,
in particular, whether the axisymmetric solutions obtained here might lose stability to
symmetry-breaking perturbations that vary with the azimuthal coordinate φ.
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Appendix A. Velocity and magnetic field solutions
The solution to the normalised leading-order problem (3.3) is given by

U(Y;H, ζ )=
L(Y;H, ζ )

D(H, ζ )
, B(Y;H, ζ )=

M(Y;H, ζ )
2D(H, ζ )

, (A 1a,b)

where

L(Y;H, ζ )= sinh(HY) (cos(HY) {2 sinh(H)[ζ cos(H)+ sin(H)]
+ 2 cosh(H)[ζ sin(H)+ cos(H)] − cos(2H)− 1}
− sin(HY)[4ζ cos(H) cosh(H)+ sin(2H)+ sinh(2H)])
+ 2 sin(HY) cosh(HY) {sinh(H)[ζ cos(H)+ sin(H)]
+ cosh(H)[ζ sin(H)− cos(H)+ cosh(H)]}, (A 2)

M(Y;H, ζ )= sinh(H){ζ sinh(H)+ 2 cos(HY) sinh(HY)[ζ cos(H)+ sin(H)]}
+ ζ [cos(2H)+ 2] + sin(2H)+ sinh(2H)+ cosh2(H)[ζ + 2 cos(HY) sinh(HY)]
+ 2 cosh(H) (cos(HY) sinh(HY)[ζ sin(H)− cos(H)]
− cosh(HY){sin(HY)[ζ sin(H)+ cos(H)] + cos(HY)[2ζ cos(H)+ sinh(H)]})
− 2 cosh(HY){sinh(H) sin(HY)[ζ cos(H)+ sin(H)] + cos(H) sin(H −HY)}, (A 3)

D(H, ζ )= 2{ζ [cos(2H)+ cosh(2H)+ 2] + sin(2H)+ sinh(2H)}, (A 4)

and the scaled coordinate Y = y/h lies in the interval Y ∈ [0, 1].
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