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Definition

Let M be a complete connected oriented surface. Let γ be a
simple closed curve which divides M into two components. Let Ω
be one of these components. Then we will say that γ convex to Ω
if there exists an ϵ > 0 such that for all x , y ∈ γ, with d(x , y) < ϵ,
the minimizing geodesic τ from x to y satisfies τ ∈ Ω̄. When γ is
a piecewise geodesic curve, this condition is equivalent to the the
condition that all of the angles of γ are convex to Ω, (see Croke’s
paper ”Area and the length of the shortest closed geodesic”, page
5.)



Diameter bound on a Riemannian 2-sphere; proof





Co-area formula

Co-area formula expresses the integral of a function over an open
set in terms of integrals over the level sets of another function.

∫
Ω g(x)|∇u(x)|dx =

∫
R(
∫
u−1(t) g(x)dHn−1(x))dt

In our case u is the distance function and level sets are geodesic
”spheres” of dimension 1. Thus,∫
R Lengths(St)dt =

∫
dA = A, where A is the area of M
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Berger’s lemma

.
Let M be a compact Riemannian manifold and let p, q ∈ M be
such that d(p, q) = d , where d is the diameter of M. Then for all
W ∈ TpM, there exists a minimizing geodesic γ from p = γ(0) to
q with < γ′(0),W >≥ 0.



Problem 5

(a) Use Berger’s lemma to prove that there exist x , y ∈ M and
minimizing geodesics connecting x and y , {γ1, ..., γn}, such that
γi (0) = x and γi (1) = y and γi ∪ −γi+1 is a geodesic digon with
both angles ≤ π.
(b) Let γ be a simple closed curve in M separating M into two
components. Let us denote one of these components Ωγ . Let
x ∈ Ωγ be a point such that d(x , γ) ≤ d(y , γ) for all y ∈ Ω. Prove
that for every W ∈ TxM, there exists a minimizing geodesic α
from x to some point on γ with < α′(0),W >≥ 0.



Problem 6 (a)

Let M be a Riemannian 2-sphere of area A, diameter d >
√
2A.

Let x , y ∈ M be two points, such that d(x , y) = d . Let α(t) be a
minimal geodesic parametrized by its arclength.
Consider the geodesic spheres S(x , t) centered at x of radius t for

all t ∈ [t0 −
√
2A
2 , t0 +

√
2A
2 ].

(a) Let t0 be any number in (
√
2A
2 , d −

√
2A
2 ). Compare the

inequality
∫ t0+

√
2A
2

t0−
√
2A
2

length(S(x , t))dt < A and the equality∫ t0+
√
2A
2

t0−
√
2A
2

(
√
2A− 2|t − t0|)dt = A to conclude that for generic

t ∈ [t0 −
√
2A
2 + t0 +

√
2A
2 ] length(S(x , t)) <

√
2A− 2|t − t0|



Problem 6 (b)

(b) Show that there exists a simple geodesic loop based at α(t0)
that divides M into two domains, one containing x and another
containing y . (Hint: Consider the geodesic spheres S(x , t)

centered at x of radius t for all t ∈ [t0 −
√
2A
2 , t0 +

√
2A
2 ]. (Note

that for any generic t there exists a closed curve σ ⊂ S(x , t) with
no self-intersections that intersects α transversely at α(t) and this
intersection with α is unique. Moreover, this curve divides M into
two disks, one of which containing x and another one containing y
(see Croke’s paper, Section 3)). Consider a loop based at α(t0)
that goes to α(t) along α, then along along σ, next returns to
α(t0) along α. What is the length of this curve? Is this curve
contractible in M − {x , y}?)



Problem 6 (c)

Suppose there exist a simple geodesic loop γ of length at most√
2A not contractible in M − {x , y} separating M into two

domains Ωx and Ωy such that x ∈ Ωx , y ∈ Ωy , based at α(
√
2A
2 ),

convex to Ωy . Moreover, γ intersects α only at its base point and
the tangent vectors to γ at its beginning and end lie on opposite
sides of the straight line tangent to α in the plane tangent to M at
the base point of γ. Prove that there exists a periodic geodesic in
M of length at most 4

√
2A. (Hint: use Berger’s lemma to further

subdivide Ωx .)



Proof of the first case





Problem 7

Let M be a complete non-compact surface with a finite area A
diffeomorphic to a 2-sphere with three punctures. Prove that there
exists a periodic geodesic on M. Can you find an area upper bound
for its length?



Filling Radius

The notion of Filling Radius of a Riemannian manifold was
introduced by M. Gromov in 1983.

Let us first consider a simple loop C in the plane. Its filling
radius is the largest radius R of a circle that fits inside C .
FillRad(C ⊂ R2) = R

Let us define it in another way: consider the ϵ-neighborhood
of the loop C , NϵC ⊂ R2. FillRad(C ⊂ R2) = inf ϵ > 0, such
that C contracts to a point in NϵC .

Next let us consider a closed Riemannian manifold M
embedded in Euclidean space RN . We define
FillRad(M ⊂ RN) as inf ϵ > 0 such that M can be homotoped
to something smaller dimensional.
FillRad(M ⊂ RN) = inf{ϵ > 0|iϵ∗([M]) = 0 ∈ Hn(NϵM)}.
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Note that we have not insisted that an embedding is an
isometric embedding, i. e. the one that satisfies the property
that distances between points in the ambient space are the
same as measure inside the space.

Thus defined, the Filling Radius of M depends on the
embedding.
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Absolute Filling Radius

Consider Kuratowski embedding. We will embedd M into L∞(M).
Here L∞(M) is the Banach space of bounded Borel functions on
M equipped with the sup norm || · ||. x ∈ M −→ fx ∈ L∞(M),
where fx(y) = d(x , y) for all y ∈ M. This is an isometric
embedding. Thus, FillRad(M) = FillRad(M ⊂ L∞(M)).



FillRad(M) ≤ d
3 (M. Katz).

M. Katz, ”The filling raidus of two-point homogeneous
spaces”, JDG, 18 (3), (1983), 505-511

FillRad(M) ≤ c(n)vol(M)
1
n (M. Gromov, L. Guth, Y.

Liokumovich, B. Lishak, A. Nabutovsky, P. Papazoglou, R. R.,
S. Wenger).

The best current bound c(n) = n!
2

1
n ≤ n

2 (A. Nabutovsky)

M. Gromov, ”Filling Riemannian manifolds”, JDG, 18 (1),
1-147 (1983)

L. Guth, ”Metaphors in systolic geometry”, Proceedings of
the ICM, Hyderabad, India, 2010

P. Papazoglou, ”Uryson Width and Volume”, GAFA, 30 (4)
(2020), 574-587

A. Nabutovsky, ”Linear bounds for constants in Gromov’s
systolic inequality and related results”
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Filling Radius and the Length of the shortest periodic
geodesic

S. Sabourau, ”Filling Radius and short closed geodesic of the
2-sphere”, Bulletin de la Societe Mathematique de France, Tome
132 (2004), no. 1, 105-136.
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Related topics: contracting based point loops, width of
homotopies



Lemma

Let p, q ∈ M. Let e1, e2 be two segments connecting p and q. Let
li be the length of ei for i = 1, 2. Suppose e1 ⋆ ē2 is contractible to
p over loops based at p of length at most l3. Then e1. is path
homotopic to e2 over paths of length at most l3 +min{l1, l2}.



Proof



Homotopies vs. Isotopies

Let M be a Riemannian 2-disk, |∂M| = L. Suppose there exists a
homotopy of ∂M to p over curves of length at most L. Is there a
homotopy of ∂M to some point in M over simple closed curves of
length at most L that also don’t intersect each other?



Quantitative version of theorem of R. Baer and D. B. A.
Epstein

G. Chambers, Y. Liokumovich, ”Converting homotopies to
isotopies and dividing homotopies in half in an effective way”,
GAFA, vol. 24 (20014), 1080-1100

Theorem

Let M be a 2-dimensional Riemannian manifold with or without
boundary, and let γ0, γ1 be non-contractible simple closed curves
which are homotopic through curves bounded in length by L via a
homotopy γ. Then for any ϵ > 0 there exists an isotopy from γ0 to
γ1 through curves of length at most L+ ϵ.



Can one construct an embedded geodesic via min−max
methods on Λ(S2, g)? (M. Friedman, 1980)

G. Chambers, Y. Liokumovich, ”Optimal sweepouts of a
Riemannian 2-sphere”, J. Eur. Math. Soc., 21 (2019), 1361-1377
Given a sweepout of a Riemannian 2-sphere which is composed of
curves of length less than L, one can construct a second sweepout
composed of curvess of length less than L which are either simple
curves or constant curves. (G. Chambers and Y. Liokumovich).
Motivation: Consider a similar problem for families of
2-dimensional spheres in a homotopy sphere M. If we could replace
a sweepout of M by immersed 2-spheres with a sweepout by
embedded 2-spheres, then by ambient isotopy theorem it follow
that M is diffeomorphic to S3, thus, implying the Poincare
conjecture.
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E. W. Chambers, G. Chambers, A. de Mesmay, T. Ophelders, R.
Rotman, ”Constructing monotone homotopies and sweepouts”,
JDG, 119 (3), 383-401

Theorem

Suppose that (D, g) be a Riemannian disc, and suppose there is a
contraction of ∂D through curves of length less than L. Then
there exist a monotone contraction of ∂D ghrough curves of length
less than L.



E. W. Chambers, G. Chambers, A. de Mesmay, T. Ophelders, R.
Rotman, ”Constructing monotone homotopies and sweepouts”,
JDG, 119 (3), 383-401

Theorem

Suppose that (D, g) be a Riemannian disc, and suppose there is a
contraction of ∂D through curves of length less than L. Then
there exist a monotone contraction of ∂D ghrough curves of length
less than L.



Can we control lengths of curves in homotopies?

Let D be a Riemannian 2-disk of area A and |∂D| = L. Is
there a constant, c(L,A) such that there exist a homotopy
between ∂D and some point in D such that lengths of curves
in the homotopy are bounded by c(L,A)?

Is there k(L, d), (where d is the diameter of D), such that
lengths of curves in the homotopy is bounded by k(L, d)?

How about if we can control L, d and A?
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Example of S. Frankel and M. Katz

S. Frankel, M. Katz, ”The Morse Landscape of a Riemannian
disk”, Annales de l’Inst. Fourier, 43 (1993), no. 2, 503-507.

Theorem

One can construct a sequence of metrics gn on D, such that
|∂D| = 1, d(D, gn) ≤ 2 and a function f (n) tending to infinity with
n, such that every homotopy of S1 to a point in (D, gn) contains
an intermediate curve of length bigger than f (n).
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Imbed the binary tree Tn in the disk D. Consider a homotopy of
∂D to a point, such that each intermediate curve passes through
at most 1 vertex of Tn. Frankel and Katz have shown that some
intermediate curve meets at least O( n

log n ) edges of Tn


