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Riemannian Geometry is generalization of geometry of
surfaces in R3

Surfaces in R3 inherit their geometry from R3 in the following
sense:

given two vectors vp,wp at p, there is the a natural inner
product < vp,wp > in R3, and so given a smooth surface S
immersed into R3, and two vectors tangent to S at p, there is
an inner product that is inherited from R3.



Riemannian Geometry is generalization of geometry of
surfaces in R3

Surfaces in R3 inherit their geometry from R3 in the following
sense:

given two vectors vp,wp at p, there is the a natural inner
product < vp,wp > in R3, and so given a smooth surface S
immersed into R3, and two vectors tangent to S at p, there is
an inner product that is inherited from R3.



Riemannian Geometry is generalization of geometry of
surfaces in R3

Surfaces in R3 inherit their geometry from R3 in the following
sense:

given two vectors vp,wp at p, there is the a natural inner
product < vp,wp > in R3, and so given a smooth surface S
immersed into R3, and two vectors tangent to S at p, there is
an inner product that is inherited from R3.



This inner product satisfies the following properties:

symmetric

bi-linear

positive definite

smoothly varying



This inner product satisfies the following properties:

symmetric

bi-linear

positive definite

smoothly varying



This inner product satisfies the following properties:

symmetric

bi-linear

positive definite

smoothly varying



This inner product satisfies the following properties:

symmetric

bi-linear

positive definite

smoothly varying



This inner product satisfies the following properties:

symmetric

bi-linear

positive definite

smoothly varying



Now that we have the inner product, we can define the
following:

length of curves and distance between points

angles

area



Now that we have the inner product, we can define the
following:

length of curves and distance between points

angles

area



Now that we have the inner product, we can define the
following:

length of curves and distance between points

angles

area



Now that we have the inner product, we can define the
following:

length of curves and distance between points

angles

area



Directional Derivative

Moreover, S also inherits from R3 its directional derivative,
and, thus, the possibility of differentiating a vector field in the
direction of another vector field.

Let X ,Y be two vector fields on S .

If we want to differentiate X in the direction of Y we can
consider DYX . Of course, if we do this, we will not
necessarily get a vector field tangent to S , but we can then
take the tangential component: (DYX )T .

we can define curvature

we can define special curves, called geodesics
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Geodesics in R3

Straight lines

minimize distance between points

they are straight

given a pair of points there exists a unique line connecting
them

given a point and a vector there exists a unique line passing
through this point and tangent to the given vector

lines are infinite in both directions
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Definition of Geodesic

We take as a definition the property of being straight. Namely,
γ : (−1, 1) −→ S such that γ(0) = p is geodesic at p if Ddγ

dtdt = 0
at t = 0.
The curve is geodesic if it is geodesic at all of its points.



Examples
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Is there always at least one periodic geodesic on a closed
Riemannian manifold?

Are there infinitely many?

Let p, q ∈ M, where M is a closed Riemannian manifold. Is
there infinitely many geodesics connecting these points?
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Definition, (see Do Carmo’s ”Riemannian Geometry”, page
254)

A set L of closed paths in M is called a free homotopy class if
given f ∈ L and g : I −→ M such that there exists a homotopy
F : I 2 −→ M,F (0, t) = f (t),F (1, t) = g(t),F (s, 0) = F (s, 1),
then g ∈ L. We will denote the set of such classes by C1(M)



Cartan’s Theorem

Theorem

If M is compact and L ∈ C1(M) is not the constant class, then
there exists a periodic geodesic of M in L.



Birkhoff Curve Shortening

C. B. Croke, ”Area and the Length of the Shortest Closed
Geodesic”, JDG 27 (1988), pages 3-7.





Proof of Cartan’s Theorem



Definition

Let M be a complete connected oriented surface. Let γ be a
simple closed curve on M which divides M into two components.
Let Ω be one of these components. Then γ will be called convex
to Ω if there is an ϵ > 0 such that for all x , y ∈ γ, with
d(x , y) < ϵ, the minimizing geodesic τ from x to y satisfies τ ∈ Ω̄.

Let γ be a piecewise geodesic curve. Suppose γ is convex to Ω.
Then all the angles of γ are convex to Ω.
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Problem 1

(a) Show that the sequence of curves {γi} defined by γ = γ0 and
γi+1 = βN(γi ) has a subsequence that converges to a (potentially
trivial) periodic geodesic.
(b) Let M be a closed Riemannian manifold of diameter d .
Suppose that M is not simply-connected. Prove that the length of
the shortest periodic geodesic on M is bounded above by 2d ,
where d is the diameter of M.
(c) Let γ be convex to Ω and have length L. Assume Ω̄ is compact
and let N > L

inj(Ω̄)
. Then if we apply B.C.S.P. with N breaks to γ

the resulting curves γt satisfy:
(1) γt ⊂ Ω̄;
(2) γt is simple and convex to Ωt = Ω− {x ∈ γs |0 ≤ s ≤ t}.



Existence theorem due to L. Lusternik and A. Fet

Theorem

On every closed Riemannian manifold there exists at least one
periodic geodesic.

R. Bott, ”Lectures on Morse Theory, Old and New”, Bulletin of
the AMS, Volume 7, Number 2, 1982 (page 335).



Proof by Morse theory on ΛM



Proof



Problem 2

Let M be a closed Riemannian manifold. Suppose π1(M) has
infinitely many conjugacy classes (up to powers). Prove that there
exist infinitely many periodic geodesics on M.



Infinitely many periodic geodesics

If the sequence bk(ΛM) is not bounded, then there exist
infinitely many geometrically distinct periodic geodesics in M.

D. Gromoll, W. Meyer, ”Periodic geodesics on compact
Riemannian manifolds”, JDG, 3 (3-4), 1969, 493-510.

Let Mn be a closed Riemannian manifold. Suppose the real
cohomology ring of the manifold or any of its covers requires
at least two generators, then there exist infinitely many
periodic geodesics on M.

Micheline Vigue-Poirier, Dennis Sullivan, ”The homology
theory of the closed geodesic problem”, JDG 11 (1976),
633-644.

Any Riemannian metric on a 3-dimensional compact manifold
with infinite fundamental group has infinitely many closed
geodesics.

H.-B. Rademacher, I. A. Taimanov, ”Closed geodesics on
connected sums and 3-manifolds, JDG, 120 (3), 557-573.
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Infinitely many periodic geodesics

For a C 4-generic Riemannian metric on a compact and
simply-connected manifold there are infinitely many closed
geodesics.

H.-B. Rademacher, ”On the average indices of closed
geodesics”, JDG, 29 (1989), 65-83.

W. Ballmann, V. Bangert, N. Hingston, A. Katok, W.
Klingenberg, M. Tanaka, G. Thorbergsson, W. Ziller



Infinitely many periodic geodesics

For a C 4-generic Riemannian metric on a compact and
simply-connected manifold there are infinitely many closed
geodesics.

H.-B. Rademacher, ”On the average indices of closed
geodesics”, JDG, 29 (1989), 65-83.

W. Ballmann, V. Bangert, N. Hingston, A. Katok, W.
Klingenberg, M. Tanaka, G. Thorbergsson, W. Ziller



Infinitely many periodic geodesics

For a C 4-generic Riemannian metric on a compact and
simply-connected manifold there are infinitely many closed
geodesics.

H.-B. Rademacher, ”On the average indices of closed
geodesics”, JDG, 29 (1989), 65-83.

W. Ballmann, V. Bangert, N. Hingston, A. Katok, W.
Klingenberg, M. Tanaka, G. Thorbergsson, W. Ziller



Surfaces

For surfaces with a Riemannian metric there is an even stronger
result, which combines methods from dynamical systems and
Morse theory: For any Riemannian metric on the sphere of
dimension 2 there are infinitely many closed geodesics, (Birkhoff,
N. Hingston, V. Bangert).
V. Bangert, ”On the existence of closed geodesics on two-spheres”,
Internat. J. Math. 4 (1993).



Result of J. P. Serre

Theorem

Let M be a closed Riemannian manifold. Then for any pair of
points p, q ∈ M there exist infinitely many geodesics connecting
them.



Quantitative Geometry

The series of lectures will be focused on some question in
Quantitative Topology. There we seek to establish a quantitative
version of well-known existence theorems in Riemannian Geometry
proven by methods of Algebraic Topology, which ultimately lead to
knew geometric inequalities.



Theorem of the three geodesics, aka
Lusternik-Schnirelmann theorem

Theorem

Let M be a Riemannian 2-sphere. Then there exist at least three
simple periodic geodesics on M.



Quantitative Questions

Let Mn be a closed Riemannian manifold of dimension n. Is
there a constant c(n) such that the length of a shortest closed

geodesic on Mn, l(Mn) is bounded above by c(n)vol(Mn)
1
n ?

Here vol(Mn) denotes the volume of Mn. (The question is
due to

M. Gromov, ”Filling Riemannian manifolds”, JDG 18 (1983),
1-147.)

Let Mn be a closed Riemannian manifold of dimension n. Is
there c̃(n) such that l(Mn) ≤ c̃(n)d , where d is the diameter
of Mn?

Can we bound lengths of Lusternik-Schnirelmann’s geodesics
in terms of the diameter of M?

Is there C (n) such that for any pair of points on a closed
Riemannian Mn there exist at least k geodesics connecting
them of length at most C (n)kd?
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Connection between closed geodesics and the injectivity
radius

See ”Riemannain Geometry” by Do Carmo, Chapter 13.

Let p ∈ M. Suppose there exists a point q ∈ Cm(p) which
realizes the distance from p to Cm(p). Here Cm(p) denotes
the cut locus of p. Then:

(a) either there exists a minimizing geodesic γ from p to q
along which q is conjugate to p, or

(b) there exist exactly two minimizing geodesics γ and σ from
p to q; in addition, γ′(l) = −σ′(l), l = d(p, q).

Let ρ be the distance between two closest conjugate points on
M. Then injradMn = min{ρ, l(M)

2 }.
Obviously, injradMn ≤ d , but also M. Berger proved the
isoembolic theorem: Vol(M) ≥ Cninj(M)n. (”Une Borne
inferieure pout le volume d’une variete riemannienne en
fonction du rayon d’injectivite”).
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Example of Balacheff, Croke, Katz

However, it is possible for a periodic geodesic to be greater
than twice the diameter of Mn

F. Balacheff, C. Croke, M. Katz, ”A Zoll Counterexample to a
geodesic length conjecture”, GAFA, 19 (2009), 1-10.
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Geodesic nets

Let M be a Riemannian manifold, G be a graph. Consider a
continuous map f : G −→ M, such that the restriction of f to
each edge of G is a piecewise differentiable curve. A variation of G
is a continuous mapping F : (−ϵ, ϵ)× G −→ M such that :
F (0, x) = f (G )
Each edge can be subdivided into subintervals [ti , ti+1], such that
the restriction of F to each (−ϵ, ϵ)× [ti , ti+1] is differentiable.
We can speak about variational vector fields along G , by extending
the notion of the variational vector fields along curves. We just
need to make sure that they all agree at the vertices.
One can then define length (or energy) of the graph by adding
lengths (or, correspondingly energies) of its curves.

Geodesic net will be defined as a critical point of the length (or
equivalently energy) functional on the space of graphs.
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Problem 3

(a) Prove that a net G is geodesic if and only if every edge of G is
geodesic and that the following condition is satisfied at every
vertex qs ∈ S : the sum of the unit vectors tangent to the edges
originating at qs and diverging from qs equals 0.
(b) Let G be a ”figure 8” geodesic net on a surface M, i. e.
geodesic net with one vertex and two geodesic loops based at that
vertex. Prove that it is a self-intersecting geodesic. Will it be true
if the dimension of M equals to 3?



Problem 4

Let G be a geodesic θ-graph, i. e. a geodesic net consisting of two
vertices and three edges γ1, γ2, γ3 connecting these vertices. We
can define a variation of G by defining variations Hi (t, s) of each
curve γi (t) that agree on both vertices. We can define
E (Gs) = Σi=1E ((γi )s), where (γi )s is the variational curve of γi .
Let M be a positively curved Riemannian 2-sphere. Prove that for
any geodesic θ-graph there exists a variation, such that E ′′(0) < 0.
Conclude that any stationary θ-graph on a positively curved
2-sphere admits directions of decrease for a length shortening flow.
(I. Adelstein, F. Vargas Pallete, ”The length of the shortest closed
geodesic on positively curved 2-spheres”).



Hint: Let γi be the edges of the θ-graph. for i ∈ {1, 2, 3} define
vector fields Vi along γi as follows:
V1(t) =

1√
3
cos( (t−a1)π

b1−a1
)γ′1(t) + (γ′1)

⊥(t)

V2(t) =
1√
3
cos( (t−a2)π

b2−a2
)γ′2(t)− (γ′2)

⊥(t)

V3(t) =
−2√
3
cos( (t−a3)π

b3−a3
)γ′3(t)

Check that V1(a1) = V2(a1) = V3(a1) and that
V1(b1) = V2(b2) = V3(b3), concluding that Vi induce a variation
of this θ-graph in the space of θ-graphs. Compute its second
variation of energy and verify that E ′′(0) < 0.


