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Theorem of Lusternik and Schnirelmann

Theorem

On any Riemannian 2-sphere there exist at least three simple
periodic geodesics.



joint with Y. Liokumovich and A. Nabutovsky

Theorem

Let M be a Riemannian sphere of diameter d and area A. There
exist three distinct non-trivial simple periodic geodesics of length
at most 20d . Moreover, there exist three distinct simple periodic

geodesics on M of length at most 800d max{1, log
p
A
d } such that

none of these geodesics has index zero.



Summary of the proof of Lusternik and Schnirelmann’s

theorem

Consider the space ⇧M of non-parametrized simple curves on
a 2-dimensional Riemannian sphere. Consider its subspace
⇧0M of constant curves of M. Note that ⇧0M can be
naturally identified with M.

Consider the three relative homology classes of the pair
(⇧M,⇧0M) with coe�cients in Z2

Lusternik and Schnirelmann constructed a curve shortening
flow that should not create self-intersections. Thus, they get
stuck on simple closed geodesics.



Summary of the proof of Lusternik and Schnirelmann’s

theorem

Consider the space ⇧M of non-parametrized simple curves on
a 2-dimensional Riemannian sphere. Consider its subspace
⇧0M of constant curves of M. Note that ⇧0M can be
naturally identified with M.

Consider the three relative homology classes of the pair
(⇧M,⇧0M) with coe�cients in Z2

Lusternik and Schnirelmann constructed a curve shortening
flow that should not create self-intersections. Thus, they get
stuck on simple closed geodesics.



Summary of the proof of Lusternik and Schnirelmann’s

theorem

Consider the space ⇧M of non-parametrized simple curves on
a 2-dimensional Riemannian sphere. Consider its subspace
⇧0M of constant curves of M. Note that ⇧0M can be
naturally identified with M.

Consider the three relative homology classes of the pair
(⇧M,⇧0M) with coe�cients in Z2

Lusternik and Schnirelmann constructed a curve shortening
flow that should not create self-intersections. Thus, they get
stuck on simple closed geodesics.



Proof







Based point loops

The length of a shortest geodesic loop on Mn

The length of a shortest geodesic loop at each point p 2 Mn

of a closed Riemannian manifold.

We can study based point loops
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First bounds

First bounds on sgl are due to S. Sabourau

S. Sabourau, ”Global and local volume bounds and the
shortest geodesic loop”, Communications in Analysis and
Geometry, vol. 12 (5) (2004), 1039-1053.

lp(Mn)  2nd

R. R. , ”The length of a shortest geodesic loop at a point”,
JDG, 78 (2008), 497-519
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J.-P. Serre’s theorem

Theorem

Given a pair of points on a closed Riemannian manifold, there exist
infinitely many geodesics connecting them.

J.-P. Serre, ”Homologie singuliere des espaces fibres”, Annals of
Mathematics (1951), 425-505

P.EE
Take p q
you will get

infinitely many geo
loo

Is there f ni k s t A pets

I at least k geodesic loops based at p

of length at most f nik d dis
the diameter



Question

.
Let p, q 2 Mn, where Mn is a closed Riemannian manifold of
dimension n. Is there a function f (k , d), such that for every k
there exist at least k geodesics connecting p and q of length at
most f (k , n)d , where d is the diameter of Mn?

Maybe there always at least K

of length at most Kd



Curvature-free estimates for the lengths of geodesics

A. Nabutovsky, R. R., ”Length of geodesics and quantitative Morse
theory on loop spaces”, GAFA, 23 (2013), 367-414.

Theorem

Let Mn be a closed Riemannian manifold of diameter d . Then for
each pair of points p, q 2 Mn there exist at least k geodesics of
length at most 4nk2d
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Theorem
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Linear bounds for the length of geodesics on closed

Riemannian surfaces

Let M be a Riemannian 2-sphere of diameter d . Then for
each pair of points p, q there exists at least k geodesics of
length at most 22kd , (20kd , when p = q).

A. Nabutovsky, R. Rotman, ”Linear bounds for lengths of
geodesic segments on Riemannian 2-sphere”, Journal of
Topology and Analysis, 5 (2013), no. 04, 409-438

This bound was improved to 8kd , and to 6kd , when p = q by
Herng Yi Cheng.

Herng Yi Cheng, ”Curvature-free linear length bounds on
geodesics in closed Riemannian surfaces”, Transactions of the
AMS.
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Proof of the Theorem: the starting point

The starting point of the proof is the existence proof of A.
Schwarz of Serre’s theorem.

A. S. Schwarz, ”Geodesic arcs on Riemannian manifolds”,
Uspekhi Matematicheskikh Nauk 13 (1958), no. 6, 181-184.

Cartan-Serre’s theorem implies the existence of an
even-dimensional real cohomology class u of the loop space
⌦pMn such that all of its cup powers are non-trivial. Using
rational homotopy theory one can prove that there exists such
a class u of dimension at most 2n � 2.

Apply Morse theory to produce critical points of the length
functional on ⌦pMn corresponding to cohomology classes ui .
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A. Schwarz’s proof of Serre’s theorem: Consider a product in
rational homology group of the loop space induced by the
concatenation of loops.

Dual real homology class c of u is the homology class of the
same dimension such that < c , u >= 1. The classes u, c can
be chosen so that c is spherical.

Schwarz showed that for every positive i , the ith Pontryagin
power of c and a real multiple of ui are dual up to a
multiplicative constant.

Therefore, critical point corresponding to ui also corresponds
to c i . We need to choose a representative of c .

Let L be such that this representative c is contained in the set
of loops of length  L. Then c i can be represented by a set of
loops of length  iL.

induces

Pontryagin product
for homology
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Linear bounds on a sphere

For the simplicity of exposition we will consider only geodesic
loops

In the case of the sphere, the c is of dimension 1. Let p 2 M
be given. We would like to construct f : S1 �! ⌦pM that
passes through short loops, unless there exist already many
su�ciently short loops.

We will use the same pseudo-extension technique.
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General dimension

If there are not many geodesic loops, then any sphere in the loop
space can be replaced by a homotopic sphere passing through
short loops and our result follows.

Theorem

Let Mn be a closed Riemannian manifold of dimension nand
diameter d . Then either there exist non-trivial geodesic loops with
lengths in every interval (2(i �1)d , 2d ] for i 2 {1, ..., k} or all maps
f : Sm �! ⌦p(Mn) can be homotoped to a map of loops based at
p of length that does not exceed ((4k + 2)m+ (2k � 3))d , and the
length of loops during this homotopy does not increase that much
in comparison with the maximal length of loops in the image of f .
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Observation

If there are no geodesic loops of length in some interval
(l , l +2d ], then any curve of length L can be shortened so that

the endpoints stay fixed

the length of curves in the homotopy is at most L+ 2d

the length of the resulting curve is at most l + d

there exist a family of curves �t which connect p with �(t)
and the maximal length of the curves in this family is at most
l + 3d + �
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Proof of the observation
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Now generalize to higher dimension



Problem 8

(a) Let M2n be a Riemannian 2n-sphere for some natural number
n with a positive sectional curvature. Let � : [0, 1] �! M2n be a
periodic geodesic on M2n. Show that the index i(�) � 1.
(b) Let Mn be a closed Riemannian manifold with Ric � (n � 1)
where Ric is the Ricci curvature of Mn. Show that any geodesic
loop �p 2 ⌦pMn of length > ⇡ has index i(�p) � 1.



Problem 9

Let Mn be a Riemannian manifold, such that Ric � (n � 1)H.
Given r , ✏ > 0 and p 2 Mn prove that there exists a covering of
Br (p) by balls B✏(pi ), where pi 2 Br (p), with the number of balls
N bounded in terms of n,H, r , ✏. Compute some bound on N.



Problem 10

We will say that a point q on a manifold Mn is critical with respect
to p, if for all vectors v in the tangent space TqM, there exists a
minimal geodesic � from q to p with the absolute value of the
angle between �0(0) and v at most ⇡

2
Let q1 be critical point with respect to p and let q2 satisfy
d(p, q2) � ↵d(p, q1) for some ↵ > 1. Let �1, �2 be minimal
geodesics from p to q1, q2 respectively, and let ✓ be the angle
between �01(0) and �02(0). If sectional curvature KM of a closed
Riemannian manifold M is bounded from below by �1 show that

cos ✓ 
tanh d

↵

tanh d

. Here d denotes the diameter of M.
Hint: Use Toponogov comparison theorem twice.

a Critical points of Distance functions and

h

applications to geometry
J Cheeger

I

math uchicago.edu



Geodesic nets on closed Riemannian manifolds

Geodesic nets that are cycles are called geodesic cycles

↵(Mn)  (n+2)!d
4

↵(Mn)  (n + 2)!(n + 1)nn
p
(n + 1)!vol(Mn)

1
n

A. Nabutovsky, R. Rotman, ”Volume, diameter and the
minimal mass of a stationary 1-cycle”, GAFA, 14 (2004),
748-790
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”How many geodesic nets are there?”

Y. Liokumovich, B. Sta↵a, ”Generic density of geodesic nets”

Let Mn be a closed manifold, Mk be the space of C k

Riemannian metrics on M, 3  k  1. For a generic subset
of Mk the union of the images of all embedded stationary
geodesic nets in (M, g) is dense.

K. Irie, ”Dense existence of periodic Reeb orbits and ECH
spectral invariants”, J. Mod. Dyn. 9 (2015)
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Similar density result for periodic geodesics on surfaces.

K. Irie, F. C. Marques, A. Neves, ”Density of minimal
hypersurfaces for generic metrics”, Ann. Math. Vol. 187 (3),
following:

Y. Liokumovich, F. C. Marques, A. Neves, ”Weyl law for the
volume spectrum, Ann. Math., vol. 187 (3) (2018), 933-961.

Similar result for minimal hypersurfaces, 3  n  7.
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One can study shapes of geodesic nets on Riemannian
manifolds

J. Hass, F. Morgan, ”Geodesic nets on the 2-sphere”,
Proceedings of the AMS 124 (1996), no. 12, 3843-3850

Theorem

Let S be a 2-sphere with a smooth Riemannian metric with positive
curvature. There exists a geodesic net G partitioning S into three
components shaped either as a ✓-graph, ”figure 8”, or ”glasses”.

Given a graph, a positively curved 2-sphere and target total
curvatures, there is a length-minimizing graph (✓, figure 8,
glasses), which divides the two-sphere into regions with those
total curvatures.

F. Morgan, ”Soap bubbles in R2 and in surfaces”, Pc. J.
Math 96 (1989), 333-348
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Does the conclusion of Theorem 1 hold for arbitrary metrics
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Problem 11

Let M be a Riemannian 2-sphere. Let N be a geodesic net
modelled either on ✓-graph, figure 8, or glasses, that subdivides M
into three regions Ri , i = {1, 2, 3}.
(a) Evaluate the total curvature Ki of each of Ri , when N is either
a ✓-graph or glasses;
(b) Find the bounds for Ki , when N is a figure 8 with vertex
angles ⇡

3  t  2⇡
3 .



Poincare problem and related questions

Let M be a convex two-dimensional surface, then the curve of
smallest length that splits the total curvature of M into two
pieces of equal curvature is a periodic geodesic.

C. B. Croke, Poincare’s problem on the shortest closed
geodesic on a convex hypersurface, JDG 17 (1982), 595-634

Find length bounds on closed curves that subdivide surfaces
into pieces of comparable areas.

P. Papazoglou, ”Cheeger constants of surfaces and
isoperimetric inequalities”, Trans. Amer. Math. Soc. 361
(2009), no. 10, 5139-5162.
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Problem 12

Let M be a Riemannian 2-sphere of area A and diameter d .
(a) Show that for any � > 0 there exist a closed curve of length at
most 2d that subdivides M into two pieces of area at least A

3 � �.
(b) Besicovitch Lemma. Let D be a Riemannian 2-disk. Consider a
subdivision of @D into four consecutive sub-arcs with disjoint
interiors, i.e. @D = a [ b [ c [ d . Let l1 denote the length of a
minimizing geodesic between a and c , l2 denote the length of a
minimizing geodesic between b and d . Then the area of D,
A � l1l2.
Use Besicovitch Lemma to show that there exists a closed curve of
length at most 4

p
A that subdivides M into two pieces of area at

least A
4 .



Subdividing n-dimensional manifolds into pieces of

comparable volume

Question of P. Papazoglou: Let M be a Riemannian 3-disk
with diameter d , boundary area A, volume V . Is there a
function f (d ,A,V ) such that there exists a homotopy St
contracting the boundary to a point, so that the area of St is
bounded by f (d ,A,V )? Is it possible to subdivide M by a
disk D into two regions of volume at least M

4 so that the area
of D is bounded by h(d ,A,V )?

The answer is NO.

P. Glynn-Adey, Z. Zhu, ”Subdividing three-dimensional
Riemannian disks”, Journal of Topology and Analysis, vol. 09
(2017), no. 03, 533-550

based on D. Burago, S. Ivanov, ”On asymptotic constant of
tori”, GAFA 8 (1998), no. 5, 783-787
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P. Papazoglou, E. Swenson, ”A surface with discontinuous
isoperimetric profile and expander manifolds”, Geometriae
Dedicata, 206 (2020), 43-54

For any ✏,M > 0 there exists a Riemannian 3-sphere S of
volume 1 such that any, not necessarily connected surface
separating S into two regions of volume > ✏ has area greater
than M
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Geodesic flowers and wide loops

R. Rotman, ”Flowers on Riemannian manifolds”,
Mathematische Zeitschrift, 269 (2011), 543-554

Let Mn be a closed Riemannian manifold. There exists a
geodesic net with one vertex and at most (2n � 1) geodesic
loops of length at most 2n!d , where d is the diameter of Mn

There exists a geodesic net with one vertex and at most
3(n+1)2 geodesic loops of total length at most
2(n + 1)!

5
2 3(n+1)3(n + 1)nnvol(Mn)

1
n , where vol(Mn) is the

volume of Mn

R. Rotman, ”Wide short geodesic loops on closed Riemannian
manifolds”

Let ✏ > 0 be given. There exists a geodesic loop with angle
⇡ � ✏  ✓  ⇡ of length at most 2n!and .

Also there exists a wide geodesic loop of length at most
n(n + 1)!a(n+1)3vol(Mn)

1
n
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