Quantitative Morse Theory on Loop Spaces

Regina Rotman

Department of Mathematics, University of Toronto

July, 2022

Theorem of Lusternik and Schnirelmann

Theorem

On any Riemannian 2-sphere there exist at least three simple periodic geodesics.

joint with Y. Liokumovich and A. Nabutovsky

Theorem

Let M be a Riemannian sphere of diameter d and area A. There exist three distinct non-trivial simple periodic geodesics of length at most 20d. Moreover, there exist three distinct simple periodic geodesics on M of length at most $800d \max\{1, \log \frac{\sqrt{A}}{d}\}$ such that none of these geodesics has index zero.

Summary of the proof of Lusternik and Schnirelmann's theorem

• Consider the space ΠM of non-parametrized simple curves on a 2-dimensional Riemannian sphere. Consider its subspace $\Pi_0 M$ of constant curves of M. Note that $\Pi_0 M$ can be naturally identified with M.

Summary of the proof of Lusternik and Schnirelmann's theorem

- Consider the space ΠM of non-parametrized simple curves on a 2-dimensional Riemannian sphere. Consider its subspace $\Pi_0 M$ of constant curves of M. Note that $\Pi_0 M$ can be naturally identified with M.
- Consider the three relative homology classes of the pair $(\Pi M, \Pi_0 M)$ with coefficients in \mathbb{Z}_2

Summary of the proof of Lusternik and Schnirelmann's theorem

- Consider the space ΠM of non-parametrized simple curves on a 2-dimensional Riemannian sphere. Consider its subspace $\Pi_0 M$ of constant curves of M. Note that $\Pi_0 M$ can be naturally identified with M.
- Consider the three relative homology classes of the pair $(\Pi M, \Pi_0 M)$ with coefficients in \mathbb{Z}_2
- Lusternik and Schnirelmann constructed a curve shortening flow that should not create self-intersections. Thus, they get stuck on simple closed geodesics.

Proof

Based point loops

ullet The length of a shortest geodesic loop on M^n

Based point loops

- The length of a shortest geodesic loop on M^n
- The length of a shortest geodesic loop at each point $p \in M^n$ of a closed Riemannian manifold.

• First bounds on sgl are due to S. Sabourau

- First bounds on sgl are due to S. Sabourau
- S. Sabourau, "Global and local volume bounds and the shortest geodesic loop", Communications in Analysis and Geometry, vol. 12 (5) (2004), 1039-1053.

- First bounds on sgl are due to S. Sabourau
- S. Sabourau, "Global and local volume bounds and the shortest geodesic loop", Communications in Analysis and Geometry, vol. 12 (5) (2004), 1039-1053.
- $I_p(M^n) \leq 2nd$

- First bounds on sgl are due to S. Sabourau
- S. Sabourau, "Global and local volume bounds and the shortest geodesic loop", Communications in Analysis and Geometry, vol. 12 (5) (2004), 1039-1053.
- $I_p(M^n) \leq 2nd$
- R. R., "The length of a shortest geodesic loop at a point", JDG, 78 (2008), 497-519

J.-P. Serre's theorem

Theorem

Given a pair of points on a closed Riemannian manifold, there exist infinitely many geodesics connecting them.

J.-P. Serre, "Homologie singuliere des espaces fibres", Annals of Mathematics (1951), 425-505

Question

Let $p, q \in M^n$, where M^n is a closed Riemannian manifold of dimension n. Is there a function f(k, d), such that for every k there exist at least k geodesics connecting p and q of length at most f(k, n)d, where d is the diameter of M^n ?

Curvature-free estimates for the lengths of geodesics

A. Nabutovsky, R. R., "Length of geodesics and quantitative Morse theory on loop spaces", GAFA, 23 (2013), 367-414.

Curvature-free estimates for the lengths of geodesics

A. Nabutovsky, R. R., "Length of geodesics and quantitative Morse theory on loop spaces", GAFA, 23 (2013), 367-414.

Theorem

Let M^n be a closed Riemannian manifold of diameter d. Then for each pair of points $p, q \in M^n$ there exist at least k geodesics of length at most $4nk^2d$

• Let M be a Riemannian 2-sphere of diameter d. Then for each pair of points p, q there exists at least k geodesics of length at most 22kd, (20kd, when p=q).

- Let M be a Riemannian 2-sphere of diameter d. Then for each pair of points p, q there exists at least k geodesics of length at most 22kd, (20kd, when p = q).
- A. Nabutovsky, R. Rotman, "Linear bounds for lengths of geodesic segments on Riemannian 2-sphere", Journal of Topology and Analysis, 5 (2013), no. 04, 409-438

- Let M be a Riemannian 2-sphere of diameter d. Then for each pair of points p, q there exists at least k geodesics of length at most 22kd, (20kd, when p=q).
- A. Nabutovsky, R. Rotman, "Linear bounds for lengths of geodesic segments on Riemannian 2-sphere", Journal of Topology and Analysis, 5 (2013), no. 04, 409-438
- This bound was improved to 8kd, and to 6kd, when p=q by Herng Yi Cheng.

- Let M be a Riemannian 2-sphere of diameter d. Then for each pair of points p, q there exists at least k geodesics of length at most 22kd, (20kd, when p = q).
- A. Nabutovsky, R. Rotman, "Linear bounds for lengths of geodesic segments on Riemannian 2-sphere", Journal of Topology and Analysis, 5 (2013), no. 04, 409-438
- This bound was improved to 8kd, and to 6kd, when p=q by Herng Yi Cheng.
- Herng Yi Cheng, "Curvature-free linear length bounds on geodesics in closed Riemannian surfaces", Transactions of the AMS.

• The starting point of the proof is the existence proof of A. Schwarz of Serre's theorem.

- The starting point of the proof is the existence proof of A.
 Schwarz of Serre's theorem.
- A. S. Schwarz, "Geodesic arcs on Riemannian manifolds", Uspekhi Matematicheskikh Nauk 13 (1958), no. 6, 181-184.

- The starting point of the proof is the existence proof of A. Schwarz of Serre's theorem.
- A. S. Schwarz, "Geodesic arcs on Riemannian manifolds", Uspekhi Matematicheskikh Nauk 13 (1958), no. 6, 181-184.
- Cartan-Serre's theorem implies the existence of an even-dimensional real cohomology class u of the loop space $\Omega_p M^n$ such that all of its cup powers are non-trivial. Using rational homotopy theory one can prove that there exists such a class u of dimension at most 2n-2.

- The starting point of the proof is the existence proof of A.
 Schwarz of Serre's theorem.
- A. S. Schwarz, "Geodesic arcs on Riemannian manifolds", Uspekhi Matematicheskikh Nauk 13 (1958), no. 6, 181-184.
- Cartan-Serre's theorem implies the existence of an even-dimensional real cohomology class u of the loop space $\Omega_p M^n$ such that all of its cup powers are non-trivial. Using rational homotopy theory one can prove that there exists such a class u of dimension at most 2n-2.
- Apply Morse theory to produce critical points of the length functional on $\Omega_p M^n$ corresponding to cohomology classes u^i .

 A. Schwarz's proof of Serre's theorem: Consider a product in rational homology group of the loop space induced by the concatenation of loops.

- A. Schwarz's proof of Serre's theorem: Consider a product in rational homology group of the loop space induced by the concatenation of loops.
- Dual real homology class c of u is the homology class of the same dimension such that < c, u >= 1. The classes u, c can be chosen so that c is spherical.

- A. Schwarz's proof of Serre's theorem: Consider a product in rational homology group of the loop space induced by the concatenation of loops.
- Dual real homology class c of u is the homology class of the same dimension such that < c, u >= 1. The classes u, c can be chosen so that c is spherical.
- Schwarz showed that for every positive i, the ith Pontryagin power of c and a real multiple of uⁱ are dual up to a multiplicative constant.

- A. Schwarz's proof of Serre's theorem: Consider a product in rational homology group of the loop space induced by the concatenation of loops.
- Dual real homology class c of u is the homology class of the same dimension such that < c, u >= 1. The classes u, c can be chosen so that c is spherical.
- Schwarz showed that for every positive i, the ith Pontryagin power of c and a real multiple of uⁱ are dual up to a multiplicative constant.
- Therefore, critical point corresponding to u^i also corresponds to c^i . We need to choose a representative of c.

- A. Schwarz's proof of Serre's theorem: Consider a product in rational homology group of the loop space induced by the concatenation of loops.
- Dual real homology class c of u is the homology class of the same dimension such that < c, u >= 1. The classes u, c can be chosen so that c is spherical.
- Schwarz showed that for every positive i, the ith Pontryagin power of c and a real multiple of uⁱ are dual up to a multiplicative constant.
- Therefore, critical point corresponding to u^i also corresponds to c^i . We need to choose a representative of c.
- Let L be such that this representative c is contained in the set of loops of length $\leq L$. Then c^i can be represented by a set of loops of length $\leq iL$.

Linear bounds on a sphere

 For the simplicity of exposition we will consider only geodesic loops

Linear bounds on a sphere

- For the simplicity of exposition we will consider only geodesic loops
- In the case of the sphere, the c is of dimension 1. Let $p \in M$ be given. We would like to construct $f: S^1 \longrightarrow \Omega_p M$ that passes through short loops, unless there exist already many sufficiently short loops.

Linear bounds on a sphere

- For the simplicity of exposition we will consider only geodesic loops
- In the case of the sphere, the c is of dimension 1. Let $p \in M$ be given. We would like to construct $f: S^1 \longrightarrow \Omega_p M$ that passes through short loops, unless there exist already many sufficiently short loops.
- We will use the same pseudo-extension technique.

Proof

General dimension

If there are not many geodesic loops, then any sphere in the loop space can be replaced by a homotopic sphere passing through short loops and our result follows.

General dimension

If there are not many geodesic loops, then any sphere in the loop space can be replaced by a homotopic sphere passing through short loops and our result follows.

Theorem

Let M^n be a closed Riemannian manifold of dimension nand diameter d. Then either there exist non-trivial geodesic loops with lengths in every interval (2(i-1)d,2d] for $i\in\{1,...,k\}$ or all maps $f:S^m\longrightarrow\Omega_p(M^n)$ can be homotoped to a map of loops based at p of length that does not exceed ((4k+2)m+(2k-3))d, and the length of loops during this homotopy does not increase that much in comparison with the maximal length of loops in the image of f.

• If there are no geodesic loops of length in some interval (I, I + 2d], then any curve of length L can be shortened so that

- If there are no geodesic loops of length in some interval (I, I + 2d], then any curve of length L can be shortened so that
- the endpoints stay fixed

- If there are no geodesic loops of length in some interval (1, 1+2d], then any curve of length L can be shortened so that
- the endpoints stay fixed
- the length of curves in the homotopy is at most L + 2d

- If there are no geodesic loops of length in some interval (I, I + 2d], then any curve of length L can be shortened so that
- the endpoints stay fixed
- the length of curves in the homotopy is at most L + 2d
- the length of the resulting curve is at most l + d

- If there are no geodesic loops of length in some interval (I, I + 2d], then any curve of length L can be shortened so that
- the endpoints stay fixed
- the length of curves in the homotopy is at most L + 2d
- the length of the resulting curve is at most l + d
- there exist a family of curves β_t which connect p with $\gamma(t)$ and the maximal length of the curves in this family is at most $l+3d+\delta$

Proof of the observation

Proof

- (a) Let M^{2n} be a Riemannian 2n-sphere for some natural number n with a positive sectional curvature. Let $\gamma:[0,1]\longrightarrow M^{2n}$ be a periodic geodesic on M^{2n} . Show that the index $i(\gamma)\geq 1$.
- (b) Let M^n be a closed Riemannian manifold with $Ric \geq (n-1)$ where Ric is the Ricci curvature of M^n . Show that any geodesic loop $\gamma_p \in \Omega_p M^n$ of length $> \pi$ has index $i(\gamma_p) \geq 1$.

Let M^n be a Riemannian manifold, such that $Ric \geq (n-1)H$. Given $r, \epsilon > 0$ and $p \in M^n$ prove that there exists a covering of $B_r(p)$ by balls $B_\epsilon(p_i)$, where $p_i \in B_r(p)$, with the number of balls N bounded in terms of n, H, r, ϵ . Compute some bound on N.

We will say that a point q on a manifold M^n is critical with respect to p, if for all vectors v in the tangent space T_qM , there exists a minimal geodesic γ from q to p with the absolute value of the angle between $\gamma'(0)$ and v at most $\frac{\pi}{2}$ Let q_1 be critical point with respect to p and let q_2 satisfy $d(p,q_2) \geq \alpha d(p,q_1)$ for some $\alpha>1$. Let γ_1,γ_2 be minimal geodesics from p to q_1,q_2 respectively, and let θ be the angle between $\gamma'_1(0)$ and $\gamma'_2(0)$. If sectional curvature K_M of a closed Riemannian manifold M is bounded from below by -1 show that

$$\cos \theta \leq \frac{\tanh \frac{d}{\alpha}}{\tanh d}$$

. Here *d* denotes the diameter of *M*. Hint: Use Toponogov comparison theorem twice.

Geodesic nets that are cycles are called geodesic cycles

- Geodesic nets that are cycles are called geodesic cycles
- $\alpha(M^n) \leq \frac{(n+2)!d}{4}$

- Geodesic nets that are cycles are called geodesic cycles
- $\alpha(M^n) \leq \frac{(n+2)!d}{4}$
- $\alpha(M^n) \leq (n+2)!(n+1)n^n\sqrt{(n+1)!}vol(M^n)^{\frac{1}{n}}$

- Geodesic nets that are cycles are called geodesic cycles
- $\alpha(M^n) \leq \frac{(n+2)!d}{4}$
- $\alpha(M^n) \leq (n+2)!(n+1)n^n\sqrt{(n+1)!}vol(M^n)^{\frac{1}{n}}$
- A. Nabutovsky, R. Rotman, "Volume, diameter and the minimal mass of a stationary 1-cycle", GAFA, 14 (2004), 748-790

• "How many geodesic nets are there?"

- "How many geodesic nets are there?"
- Y. Liokumovich, B. Staffa, "Generic density of geodesic nets"

- "How many geodesic nets are there?"
- Y. Liokumovich, B. Staffa, "Generic density of geodesic nets"
- Let M^n be a closed manifold, \mathcal{M}^k be the space of C^k Riemannian metrics on M, $3 \le k \le \infty$. For a generic subset of \mathcal{M}^k the union of the images of all embedded stationary geodesic nets in (M,g) is dense.

- "How many geodesic nets are there?"
- Y. Liokumovich, B. Staffa, "Generic density of geodesic nets"
- Let M^n be a closed manifold, \mathcal{M}^k be the space of C^k Riemannian metrics on M, $3 \le k \le \infty$. For a generic subset of \mathcal{M}^k the union of the images of all embedded stationary geodesic nets in (M,g) is dense.
- K. Irie, "Dense existence of periodic Reeb orbits and ECH spectral invariants", J. Mod. Dyn. 9 (2015)

• Similar density result for periodic geodesics on surfaces.

- Similar density result for periodic geodesics on surfaces.
- K. Irie, F. C. Marques, A. Neves, "Density of minimal hypersurfaces for generic metrics", Ann. Math. Vol. 187 (3), following:

- Similar density result for periodic geodesics on surfaces.
- K. Irie, F. C. Marques, A. Neves, "Density of minimal hypersurfaces for generic metrics", Ann. Math. Vol. 187 (3), following:
- Y. Liokumovich, F. C. Marques, A. Neves, "Weyl law for the volume spectrum, Ann. Math., vol. 187 (3) (2018), 933-961.

- Similar density result for periodic geodesics on surfaces.
- K. Irie, F. C. Marques, A. Neves, "Density of minimal hypersurfaces for generic metrics", Ann. Math. Vol. 187 (3), following:
- Y. Liokumovich, F. C. Marques, A. Neves, "Weyl law for the volume spectrum, Ann. Math., vol. 187 (3) (2018), 933-961.
- Similar result for minimal hypersurfaces, $3 \le n \le 7$.

One can study shapes of geodesic nets on Riemannian manifolds

- One can study shapes of geodesic nets on Riemannian manifolds
- J. Hass, F. Morgan, "Geodesic nets on the 2-sphere", Proceedings of the AMS 124 (1996), no. 12, 3843-3850

- One can study shapes of geodesic nets on Riemannian manifolds
- J. Hass, F. Morgan, "Geodesic nets on the 2-sphere", Proceedings of the AMS 124 (1996), no. 12, 3843-3850

- One can study shapes of geodesic nets on Riemannian manifolds
- J. Hass, F. Morgan, "Geodesic nets on the 2-sphere",
 Proceedings of the AMS 124 (1996), no. 12, 3843-3850

Theorem

Let S be a 2-sphere with a smooth Riemannian metric with positive curvature. There exists a geodesic net G partitioning S into three components shaped either as a θ -graph, "figure 8", or "glasses".

•

- One can study shapes of geodesic nets on Riemannian manifolds
- J. Hass, F. Morgan, "Geodesic nets on the 2-sphere",
 Proceedings of the AMS 124 (1996), no. 12, 3843-3850

Theorem

Let S be a 2-sphere with a smooth Riemannian metric with positive curvature. There exists a geodesic net G partitioning S into three components shaped either as a θ -graph, "figure 8", or "glasses".

0

• Given a graph, a positively curved 2-sphere and target total curvatures, there is a length-minimizing graph (θ , figure 8, glasses), which divides the two-sphere into regions with those total curvatures.

- One can study shapes of geodesic nets on Riemannian manifolds
- J. Hass, F. Morgan, "Geodesic nets on the 2-sphere",
 Proceedings of the AMS 124 (1996), no. 12, 3843-3850

Theorem

Let S be a 2-sphere with a smooth Riemannian metric with positive curvature. There exists a geodesic net G partitioning S into three components shaped either as a θ -graph, "figure 8", or "glasses".

- 0
- Given a graph, a positively curved 2-sphere and target total curvatures, there is a length-minimizing graph (θ , figure 8, glasses), which divides the two-sphere into regions with those total curvatures.
- F. Morgan, "Soap bubbles in R² and in surfaces", Pc. J. Math 96 (1989), 333-348

Questions

• Do all metrics on the 2-sphere contain a geodesic net homeomorphic to a θ -graph?

Questions

- Do all metrics on the 2-sphere contain a geodesic net homeomorphic to a θ -graph?
- Does the conclusion of Theorem 1 hold for arbitrary metrics on the 2-sphere?

Let M be a Riemannian 2-sphere. Let \mathcal{N} be a geodesic net modelled either on θ -graph, figure 8, or glasses, that subdivides M into three regions R_i , $i=\{1,2,3\}$.

- (a) Evaluate the total curvature K_i of each of R_i , when \mathcal{N} is either a θ -graph or glasses;
- (b) Find the bounds for K_i , when $\mathcal N$ is a figure 8 with vertex angles $\frac{\pi}{3} \leq t \leq \frac{2\pi}{3}$.

• Let M be a convex two-dimensional surface, then the curve of smallest length that splits the total curvature of M into two pieces of equal curvature is a periodic geodesic.

- Let M be a convex two-dimensional surface, then the curve of smallest length that splits the total curvature of M into two pieces of equal curvature is a periodic geodesic.
- C. B. Croke, Poincare's problem on the shortest closed geodesic on a convex hypersurface, JDG 17 (1982), 595-634

- Let M be a convex two-dimensional surface, then the curve of smallest length that splits the total curvature of M into two pieces of equal curvature is a periodic geodesic.
- C. B. Croke, Poincare's problem on the shortest closed geodesic on a convex hypersurface, JDG 17 (1982), 595-634
- Find length bounds on closed curves that subdivide surfaces into pieces of comparable areas.

- Let M be a convex two-dimensional surface, then the curve of smallest length that splits the total curvature of M into two pieces of equal curvature is a periodic geodesic.
- C. B. Croke, Poincare's problem on the shortest closed geodesic on a convex hypersurface, JDG 17 (1982), 595-634
- Find length bounds on closed curves that subdivide surfaces into pieces of comparable areas.
- P. Papazoglou, "Cheeger constants of surfaces and isoperimetric inequalities", Trans. Amer. Math. Soc. 361 (2009), no. 10, 5139-5162.

Problem 12

Let M be a Riemannian 2-sphere of area A and diameter d.

- (a) Show that for any $\delta > 0$ there exist a closed curve of length at most 2d that subdivides M into two pieces of area at least $\frac{A}{3} \delta$.
- (b) Besicovitch Lemma. Let D be a Riemannian 2-disk. Consider a subdivision of ∂D into four consecutive sub-arcs with disjoint interiors, i.e. $\partial D = a \cup b \cup c \cup d$. Let l_1 denote the length of a minimizing geodesic between a and c, l_2 denote the length of a minimizing geodesic between b and d. Then the area of D, $A \ge l_1 l_2$.

Use Besicovitch Lemma to show that there exists a closed curve of length at most $4\sqrt{A}$ that subdivides M into two pieces of area at least $\frac{A}{4}$.

• Question of P. Papazoglou: Let M be a Riemannian 3-disk with diameter d, boundary area A, volume V. Is there a function f(d,A,V) such that there exists a homotopy S_t contracting the boundary to a point, so that the area of S_t is bounded by f(d,A,V)? Is it possible to subdivide M by a disk D into two regions of volume at least $\frac{M}{4}$ so that the area of D is bounded by h(d,A,V)?

- Question of P. Papazoglou: Let M be a Riemannian 3-disk with diameter d, boundary area A, volume V. Is there a function f(d, A, V) such that there exists a homotopy S_t contracting the boundary to a point, so that the area of S_t is bounded by f(d, A, V)? Is it possible to subdivide M by a disk D into two regions of volume at least $\frac{M}{4}$ so that the area of D is bounded by h(d, A, V)?
- The answer is NO.

- Question of P. Papazoglou: Let M be a Riemannian 3-disk with diameter d, boundary area A, volume V. Is there a function f(d, A, V) such that there exists a homotopy S_t contracting the boundary to a point, so that the area of S_t is bounded by f(d, A, V)? Is it possible to subdivide M by a disk D into two regions of volume at least $\frac{M}{4}$ so that the area of D is bounded by h(d, A, V)?
- The answer is NO.
- P. Glynn-Adey, Z. Zhu, "Subdividing three-dimensional Riemannian disks", Journal of Topology and Analysis, vol. 09 (2017), no. 03, 533-550

- Question of P. Papazoglou: Let M be a Riemannian 3-disk with diameter d, boundary area A, volume V. Is there a function f(d, A, V) such that there exists a homotopy S_t contracting the boundary to a point, so that the area of S_t is bounded by f(d, A, V)? Is it possible to subdivide M by a disk D into two regions of volume at least $\frac{M}{4}$ so that the area of D is bounded by h(d, A, V)?
- The answer is NO.
- P. Glynn-Adey, Z. Zhu, "Subdividing three-dimensional Riemannian disks", Journal of Topology and Analysis, vol. 09 (2017), no. 03, 533-550
- based on D. Burago, S. Ivanov, "On asymptotic constant of tori", GAFA 8 (1998), no. 5, 783-787

 P. Papazoglou, E. Swenson, "A surface with discontinuous isoperimetric profile and expander manifolds", Geometriae Dedicata, 206 (2020), 43-54

- P. Papazoglou, E. Swenson, "A surface with discontinuous isoperimetric profile and expander manifolds", Geometriae Dedicata, 206 (2020), 43-54
- For any $\epsilon, M>0$ there exists a Riemannian 3-sphere S of volume 1 such that any, not necessarily connected surface separating S into two regions of volume $>\epsilon$ has area greater than M

 R. Rotman, "Flowers on Riemannian manifolds", Mathematische Zeitschrift, 269 (2011), 543-554

- R. Rotman, "Flowers on Riemannian manifolds", Mathematische Zeitschrift, 269 (2011), 543-554
- Let M^n be a closed Riemannian manifold. There exists a geodesic net with one vertex and at most (2n-1) geodesic loops of length at most 2n!d, where d is the diameter of M^n

- R. Rotman, "Flowers on Riemannian manifolds", Mathematische Zeitschrift, 269 (2011), 543-554
- Let M^n be a closed Riemannian manifold. There exists a geodesic net with one vertex and at most (2n-1) geodesic loops of length at most 2n!d, where d is the diameter of M^n
- There exists a geodesic net with one vertex and at most $3^{(n+1)^2}$ geodesic loops of total length at most $2(n+1)!^{\frac{5}{2}}3^{(n+1)^3}(n+1)n^n vol(M^n)^{\frac{1}{n}}$, where $vol(M^n)$ is the volume of M^n

- R. Rotman, "Flowers on Riemannian manifolds", Mathematische Zeitschrift, 269 (2011), 543-554
- Let M^n be a closed Riemannian manifold. There exists a geodesic net with one vertex and at most (2n-1) geodesic loops of length at most 2n!d, where d is the diameter of M^n
- There exists a geodesic net with one vertex and at most $3^{(n+1)^2}$ geodesic loops of total length at most $2(n+1)!^{\frac{5}{2}}3^{(n+1)^3}(n+1)n^n vol(M^n)^{\frac{1}{n}}$, where $vol(M^n)$ is the volume of M^n
- R. Rotman, "Wide short geodesic loops on closed Riemannian manifolds"

- R. Rotman, "Flowers on Riemannian manifolds", Mathematische Zeitschrift, 269 (2011), 543-554
- Let M^n be a closed Riemannian manifold. There exists a geodesic net with one vertex and at most (2n-1) geodesic loops of length at most 2n!d, where d is the diameter of M^n
- There exists a geodesic net with one vertex and at most $3^{(n+1)^2}$ geodesic loops of total length at most $2(n+1)!^{\frac{5}{2}}3^{(n+1)^3}(n+1)n^n vol(M^n)^{\frac{1}{n}}$, where $vol(M^n)$ is the volume of M^n
- R. Rotman, "Wide short geodesic loops on closed Riemannian manifolds"
- Let $\epsilon > 0$ be given. There exists a geodesic loop with angle $\pi \epsilon \le \theta \le \pi$ of length at most $2n! a^n d$.

- R. Rotman, "Flowers on Riemannian manifolds", Mathematische Zeitschrift, 269 (2011), 543-554
- Let M^n be a closed Riemannian manifold. There exists a geodesic net with one vertex and at most (2n-1) geodesic loops of length at most 2n!d, where d is the diameter of M^n
- There exists a geodesic net with one vertex and at most $3^{(n+1)^2}$ geodesic loops of total length at most $2(n+1)!^{\frac{5}{2}}3^{(n+1)^3}(n+1)n^n vol(M^n)^{\frac{1}{n}}$, where $vol(M^n)$ is the volume of M^n
- R. Rotman, "Wide short geodesic loops on closed Riemannian manifolds"
- Let $\epsilon > 0$ be given. There exists a geodesic loop with angle $\pi \epsilon \le \theta \le \pi$ of length at most $2n!a^nd$.
- Also there exists a wide geodesic loop of length at most $n(n+1)!a^{(n+1)^3}vol(M^n)^{\frac{1}{n}}$

