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Theorem of Lusternik and Schnirelmann

On any Riemannian 2-sphere there exist at least three simple
periodic geodesics.




joint with Y. Liokumovich and A. Nabutovsky

Let M be a Riemannian sphere of diameter d and area A. There

exist three distinct non-trivial simple periodic geodesics of length

at most 20d. Moreover, there exist three distinct simple periodic

geodesics on M of length at most 800d max{1, log @} such that
none of these geodesics has index zero.
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theorem

@ Consider the space 1M of non-parametrized simple curves on
a 2-dimensional Riemannian sphere. Consider its subspace
MoM of constant curves of M. Note that NgM can be
naturally identified with M.
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a 2-dimensional Riemannian sphere. Consider its subspace
MoM of constant curves of M. Note that NgM can be
naturally identified with M.

@ Consider the three relative homology classes of the pair
(MM, NoM) with coefficients in Z,

@ Lusternik and Schnirelmann constructed a curve shortening
flow that should not create self-intersections. Thus, they get
stuck on simple closed geodesics.
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@ The length of a shortest geodesic loop at each point p € M”
of a closed Riemannian manifold.
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@ First bounds on sgl are due to S. Sabourau

e S. Sabourau, " Global and local volume bounds and the
shortest geodesic loop”, Communications in Analysis and
Geometry, vol. 12 (5) (2004), 1039-1053.

o [p(M") <2nd

@ R. R., "The length of a shortest geodesic loop at a point”,
JDG, 78 (2008), 497-519



J.-P. Serre's theorem

Given a pair of points on a closed Riemannian manifold, there exist
infinitely many geodesics connecting them.

J.-P. Serre, "Homologie singuliere des espaces fibres”, Annals of
Mathematics (1951), 425-505



Let p,g € M", where M" is a closed Riemannian manifold of
dimension n. Is there a function f(k, d), such that for every k
there exist at least k geodesics connecting p and g of length at
most f(k, n)d, where d is the diameter of M"?



Curvature-free estimates for the lengths of geodesics

A. Nabutovsky, R. R., "Length of geodesics and quantitative Morse
theory on loop spaces”, GAFA, 23 (2013), 367-414.
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A. Nabutovsky, R. R., "Length of geodesics and quantitative Morse
theory on loop spaces”, GAFA, 23 (2013), 367-414.

Let M™ be a closed Riemannian manifold of diameter d. Then for

each pair of points p,q € M" there exist at least k geodesics of
length at most 4nk®d




Linear bounds for the length of geodesics on closed

Riemannian surfaces

@ Let M be a Riemannian 2-sphere of diameter d. Then for
each pair of points p, g there exists at least k geodesics of
length at most 22kd, (20kd, when p = q).
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@ Let M be a Riemannian 2-sphere of diameter d. Then for
each pair of points p, g there exists at least k geodesics of
length at most 22kd, (20kd, when p = q).

@ A. Nabutovsky, R. Rotman, "Linear bounds for lengths of
geodesic segments on Riemannian 2-sphere”, Journal of
Topology and Analysis, 5 (2013), no. 04, 409-438

@ This bound was improved to 8kd, and to 6kd, when p = g by
Herng Yi Cheng.

@ Herng Yi Cheng, " Curvature-free linear length bounds on

geodesics in closed Riemannian surfaces”, Transactions of the
AMS.
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@ The starting point of the proof is the existence proof of A.
Schwarz of Serre's theorem.

@ A.S. Schwarz, " Geodesic arcs on Riemannian manifolds”,
Uspekhi Matematicheskikh Nauk 13 (1958), no. 6, 181-184.

o Cartan-Serre's theorem implies the existence of an
even-dimensional real cohomology class u of the loop space
Q,M" such that all of its cup powers are non-trivial. Using
rational homotopy theory one can prove that there exists such
a class u of dimension at most 2n — 2.

@ Apply Morse theory to produce critical points of the length
functional on ,M" corresponding to cohomology classes u'.
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@ A. Schwarz's proof of Serre's theorem: Consider a product in
rational homology group of the loop space induced by the
concatenation of loops.

@ Dual real homology class ¢ of u is the homology class of the
same dimension such that < c,u >= 1. The classes u, ¢ can
be chosen so that c is spherical.

@ Schwarz showed that for every positive i, the ith Pontryagin
power of ¢ and a real multiple of u' are dual up to a
multiplicative constant.

@ Therefore, critical point corresponding to u also corresponds
to c¢'. We need to choose a representative of c.

@ Let L be such that this representative c is contained in the set
of loops of length < L. Then ¢’ can be represented by a set of
loops of length < iL.
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Linear bounds on a sphere

@ For the simplicity of exposition we will consider only geodesic
loops

@ In the case of the sphere, the c is of dimension 1. Let p € M
be given. We would like to construct f : S — Q,M that
passes through short loops, unless there exist already many
sufficiently short loops.

@ We will use the same pseudo-extension technique.
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short loops and our result follows.



General dimension

If there are not many geodesic loops, then any sphere in the loop
space can be replaced by a homotopic sphere passing through
short loops and our result follows.

Let M" be a closed Riemannian manifold of dimension nand
diameter d. Then either there exist non-trivial geodesic loops with
lengths in every interval (2(i —1)d,2d] fori € {1, ..., k} or all maps
f: 8™ — Qp(M") can be homotoped to a map of loops based at
p of length that does not exceed ((4k +2)m+ (2k — 3))d, and the
length of loops during this homotopy does not increase that much
in comparison with the maximal length of loops in the image of f. )
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Observation

@ If there are no geodesic loops of length in some interval
(1,14 2d], then any curve of length L can be shortened so that

@ the endpoints stay fixed
o the length of curves in the homotopy is at most L + 2d
o the length of the resulting curve is at most / + d

@ there exist a family of curves 8; which connect p with ~(t)
and the maximal length of the curves in this family is at most
I+3d+6



Proof of the observation









(a) Let M?" be a Riemannian 2n-sphere for some natural number
n with a positive sectional curvature. Let v : [0,1] — M?" be a

periodic geodesic on M2". Show that the index i(7y) > 1.

(b) Let M" be a closed Riemannian manifold with Ric > (n — 1)

where Ric is the Ricci curvature of M". Show that any geodesic

loop vp € Q,M" of length > 7 has index i(yp) > 1.



Let M" be a Riemannian manifold, such that Ric > (n — 1)H.
Given r,e > 0 and p € M" prove that there exists a covering of
B.(p) by balls B.(p;), where p; € B.(p), with the number of balls
N bounded in terms of n, H, r,e. Compute some bound on N.



We will say that a point g on a manifold M" is critical with respect
to p, if for all vectors v in the tangent space T4M, there exists a
minimal geodesic «v from g to p with the absolute value of the
angle between 7/(0) and v at most 7

Let g1 be critical point with respect to p and let g, satisfy

d(p, g2) > ad(p, q1) for some o > 1. Let 71,72 be minimal
geodesics from p to g1, g» respectively, and let 6 be the angle
between ~1(0) and ~5(0). If sectional curvature Ky, of a closed
Riemannian manifold M is bounded from below by —1 show that

. Here d denotes the diameter of M.
Hint: Use Toponogov comparison theorem twice.
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Geodesic nets on closed Riemannian manifolds

@ Geodesic nets that are cycles are called geodesic cycles

o a(M") < 7(n+42)!d

o a(M™) < (n+2){(n+1)n"\/(n+ 1)vol(M")

1
n



Geodesic nets on closed Riemannian manifolds

Geodesic nets that are cycles are called geodesic cycles

n n+2)ld
a(Mn) < (2t

a(M™) < (n+2)I(n + 1)n"/(n + 1)lvol(M")

@ A. Nabutovsky, R. Rotman, "Volume, diameter and the
minimal mass of a stationary 1-cycle”, GAFA, 14 (2004),
748-790
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@ Y. Liokumovich, B. Staffa, " Generic density of geodesic nets”

o Let M" be a closed manifold, M¥ be the space of CK
Riemannian metrics on M, 3 < k < co. For a generic subset

of M¥ the union of the images of all embedded stationary
geodesic nets in (M, g) is dense.

@ K. Irie, "Dense existence of periodic Reeb orbits and ECH
spectral invariants”, J. Mod. Dyn. 9 (2015)
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@ Similar density result for periodic geodesics on surfaces.

o K. Irie, F. C. Marques, A. Neves, " Density of minimal
hypersurfaces for generic metrics”, Ann. Math. Vol. 187 (3),
following:

@ Y. Liokumovich, F. C. Marques, A. Neves, "Weyl law for the
volume spectrum, Ann. Math., vol. 187 (3) (2018), 933-961.

@ Similar result for minimal hypersurfaces, 3 < n <7.
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@ One can study shapes of geodesic nets on Riemannian
manifolds

@ J. Hass, F. Morgan, " Geodesic nets on the 2-sphere”,
Proceedings of the AMS 124 (1996), no. 12, 3843-3850

Let S be a 2-sphere with a smooth Riemannian metric with positive
curvature. There exists a geodesic net G partitioning S into three
components shaped either as a 0-graph, "figure 8", or "glasses”.

o Given a graph, a positively curved 2-sphere and target total
curvatures, there is a length-minimizing graph (0, figure 8,
glasses), which divides the two-sphere into regions with those
total curvatures.

e F. Morgan, "Soap bubbles in R? and in surfaces”, Pc. J.
Math 96 (1989), 333-348
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Questions

@ Do all metrics on the 2-sphere contain a geodesic net
homeomorphic to a f-graph?

@ Does the conclusion of Theorem 1 hold for arbitrary metrics
on the 2-sphere?



Let M be a Riemannian 2-sphere. Let N be a geodesic net
modelled either on -graph, figure 8, or glasses, that subdivides M
into three regions R;, i = {1,2,3}.

(a) Evaluate the total curvature K; of each of R;, when A is either
a f-graph or glasses;

(b) Find the bounds for K;, when A\ is a figure 8 with vertex
angles % <t< %’T
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Poincare problem and related questions

@ Let M be a convex two-dimensional surface, then the curve of
smallest length that splits the total curvature of M into two
pieces of equal curvature is a periodic geodesic.

o C. B. Croke, Poincare’s problem on the shortest closed
geodesic on a convex hypersurface, JDG 17 (1982), 595-634

@ Find length bounds on closed curves that subdivide surfaces
into pieces of comparable areas.

@ P. Papazoglou, " Cheeger constants of surfaces and
isoperimetric inequalities”, Trans. Amer. Math. Soc. 361
(2009), no. 10, 5139-5162.



Let M be a Riemannian 2-sphere of area A and diameter d.

(a) Show that for any § > 0 there exist a closed curve of length at
most 2d that subdivides M into two pieces of area at least é —9.
(b) Besicovitch Lemma. Let D be a Riemannian 2-disk. Consider a
subdivision of 9D into four consecutive sub-arcs with disjoint
interiors, i.e. 0D =aUbUcUd. Let /; denote the length of a
minimizing geodesic between a and ¢, b denote the length of a
minimizing geodesic between b and d. Then the area of D,
A>hb.

Use Besicovitch Lemma to show that there exists a closed curve of
length at most 41/A that subdivides M into two pieces of area at
least é.



Subdividing n-dimensional manifolds into pieces of

comparable volume

@ Question of P. Papazoglou: Let M be a Riemannian 3-disk
with diameter d, boundary area A, volume V. Is there a
function f(d, A, V) such that there exists a homotopy S;
contracting the boundary to a point, so that the area of S; is
bounded by f(d, A, V)? Is it possible to subdivide M by a
disk D into two regions of volume at least % so that the area
of D is bounded by h(d, A, V)?



Subdividing n-dimensional manifolds into pieces of

comparable volume

@ Question of P. Papazoglou: Let M be a Riemannian 3-disk
with diameter d, boundary area A, volume V. Is there a
function f(d, A, V) such that there exists a homotopy S;
contracting the boundary to a point, so that the area of S; is
bounded by f(d, A, V)? Is it possible to subdivide M by a
disk D into two regions of volume at least % so that the area
of D is bounded by h(d, A, V)?

@ The answer is NO.



Subdividing n-dimensional manifolds into pieces of

comparable volume

@ Question of P. Papazoglou: Let M be a Riemannian 3-disk
with diameter d, boundary area A, volume V. Is there a
function f(d, A, V) such that there exists a homotopy S;
contracting the boundary to a point, so that the area of S; is
bounded by f(d, A, V)? Is it possible to subdivide M by a
disk D into two regions of volume at least % so that the area
of D is bounded by h(d, A, V)?

@ The answer is NO.

o P. Glynn-Adey, Z. Zhu, "Subdividing three-dimensional
Riemannian disks", Journal of Topology and Analysis, vol. 09
(2017), no. 03, 533-550



Subdividing n-dimensional manifolds into pieces of

comparable volume

@ Question of P. Papazoglou: Let M be a Riemannian 3-disk
with diameter d, boundary area A, volume V. Is there a
function f(d, A, V) such that there exists a homotopy S;
contracting the boundary to a point, so that the area of S; is
bounded by f(d, A, V)? Is it possible to subdivide M by a
disk D into two regions of volume at least % so that the area
of D is bounded by h(d, A, V)?

@ The answer is NO.

o P. Glynn-Adey, Z. Zhu, "Subdividing three-dimensional
Riemannian disks", Journal of Topology and Analysis, vol. 09
(2017), no. 03, 533-550

@ based on D. Burago, S. lvanov, "On asymptotic constant of
tori”, GAFA 8 (1998), no. 5, 783-787



e P. Papazoglou, E. Swenson, " A surface with discontinuous
isoperimetric profile and expander manifolds”, Geometriae
Dedicata, 206 (2020), 43-54



e P. Papazoglou, E. Swenson, " A surface with discontinuous
isoperimetric profile and expander manifolds”, Geometriae
Dedicata, 206 (2020), 43-54

@ For any ¢, M > 0 there exists a Riemannian 3-sphere S of
volume 1 such that any, not necessarily connected surface
separating S into two regions of volume > € has area greater
than M
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@ R. Rotman, " Flowers on Riemannian manifolds”,
Mathematische Zeitschrift, 269 (2011), 543-554

o Let M" be a closed Riemannian manifold. There exists a
geodesic net with one vertex and at most (2n — 1) geodesic
loops of length at most 2n!d, where d is the diameter of M”"

@ There exists a geodesic net with one vertex and at most
3(n+1)° geodesic loops of total length at most
2(n+1)123(+D°(n 4 1)n"vol(M") 7, where vol(M™) is the
volume of M"

@ R. Rotman, "Wide short geodesic loops on closed Riemannian
manifolds”

@ Let € > 0 be given. There exists a geodesic loop with angle
m— e <0 < of length at most 2n!a"d.



Geodesic flowers and wide loops

@ R. Rotman, " Flowers on Riemannian manifolds”,
Mathematische Zeitschrift, 269 (2011), 543-554

@ Let M" be a closed Riemannian manifold. There exists a
geodesic net with one vertex and at most (2n — 1) geodesic
loops of length at most 2n!d, where d is the diameter of M”"

@ There exists a geodesic net with one vertex and at most
3(n+1)° geodesic loops of total length at most
2(n+1)123(+D°(n 4 1)n"vol(M") 7, where vol(M™) is the
volume of M"

@ R. Rotman, "Wide short geodesic loops on closed Riemannian
manifolds”

@ Let € > 0 be given. There exists a geodesic loop with angle
m— e <0 < of length at most 2n!a"d.

@ Also there exists a wide geodesic loop of length at most
n(n + 1)1’ vol (M) x









