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Problem 13

Let M be a Riemannian 2-sphere with non-negative curvature.

Prove that the length of the shortest periodic geodesic is bounded

by 3d , where d is the diameter of M, thus proving a theorem of I.

Adelstein and F. Vargas Pallete.

Need to effectively contract curves
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Md

k ,v

For any d > 0, v > 0, k we will let Md
k,v denote the collection of all

closed connected Riemannian manifolds of dimension n, such that

KM � k , dM  d , VM � v > 0, where dM denotes the diameter of

M, VM denotes its volume and KM is its sectional curvature.

T
can be negative



Length of the shortest periodic geodesic on Md

v ,k

Let M
n 2 Md

�1,v . Then the length of the shortest geodesic

l(M
n
)  exp(

ec1(n)d

min{1,v}c2(n) ). Here c1(n) and c2(n) can be explicitly

calculated.

A. Nabutovsky, R. Rotman, ”Upper bounds on the length of a

shortest closed geodesic and quantitative Hurewicz theorem”,

Journal of the European Mathematical Society, 5 (2003), 203-244



Bounding homotopy types by geometry, K. Grove and P.

Peterson

K. Grove, P. Peterson, ”Bounding homotopy types by geometry”,

Annals of Mathematics, vol. 128, no. 2 (1988), 195-206

Theorem

For any d > 0, v > 0, k , n � 2, Md
k,v contains only finitely many

homotopy types.

can estimateconsider metric balls Eemian
of thehomotopy



Problem 14

Show that the conclusion of the above theorem fails if one drops

either the volume lower bound or the diameter upper bound.



The contractibility radius, contractibility function

Let ⇢ : [0,R) �! [0,1) be a function such that amy metric

ball of radius ✏ is contractible inside the ball of radius ⇢(✏).
Then R is called the radius of contractibility, and ⇢ the

contractibility function of M
n
.

Let M
n 2 Md

�1,v By Grove-Peterson, one can estimate the

contractibility radius r0 = r0(n, v , d) and the w(n, v , d), so
that any closed curve in a ball of radius r0 or smaller can be

contracted to a point by a homotopy of width  w(n, v , d).
Note that in this case, ”small” balls are not necessarily simply

connected.
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We can assume that every p w dif
curve of length at most 2d can be

contracted to some point without the length
increase



Examples

If the injradM
n
= i , then ⇢ : [0, i) �! [0,1) and ⇢(✏) = ✏

If M
n 2 Md

�1,v , then ⇢(✏) = C (n, v , d)✏
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Consider the space of curves of lengthclosed

bounded by Gd Will construct a

subset J in the space of those curves

sit any closed curve of length at most

2d can be approximated by a curve in

H E 2d I can find a 121 61
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0

On N
can be
estimated



the

obtain a new homotopy with bounded

width

M

t homotopy 3

in which both
t

length width can

i be controlled
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Homotopies over short loops

Let � be a curve of length at most 2d that can be contracted to a

point without the length increase. Then there exists a homotopy of

� to a point over ”short” loops based at p = �(t⇤).



Cover M
n
by balls of radius

r0
100 . Estimate the number of such

balls.

Consider a 1-skeleton of the nerve of the cover.

Among all such curves choose only those that are closed and

are of length at most 6d . Call a set of such curves T Find an

upper bound Ñ on the number of such curves.

Show that for any curve � of length at most 2d there exists a

curve �̃ 2 T , such that d(�, �̃)  r0
20

Show that for any such pair of �, �̃ there exists a homotopy

H, such that its width can be bounded in terms of w(n, v , d).

Let Ft be a homotopy contracting � to a point in M
n
over

curves of length at most 2d . Show that there exists a

homotopy F̃t , such that its width can be bounded above in

terms of w(n, v , d) and Ñ.
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Cover M
n
by balls of radius

r0
100 . Estimate the number of such

balls.

Consider a 1-skeleton of the nerve of the cover.

Among all such curves choose only those that are closed and

are of length at most 6d . Call a set of such curves T Find an
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Width implies length



Bounded Ricci Curvature

Je↵ Cheeger and Aaron Naber, ”Regularity of Einstein manifolds

and the codimension 4 conjecture”, Ann. Math. (2), 182 (3)

(2015), 1093-1165

Theorem

The collection of 4-manifolds (M
4, g) with |RicM4 |  3,

Vol(M
4
) > v > 0, and diam(M

4
)  D contains at most a finite

number of di↵eomorphism classes.
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Nan Wu, Zhifei Zhu, ”Length of a shortest closed geodesic in

manifolds of dimension 4”, to appear in JDG.

Theorem

Let M be a closed 4-dimensional simply-connected Riemannian

manifold with Ricci curvature |Ric |  3, volume vol(M) > v > 0

and diameter diam(M)  D. Then the length of a shortest closed

geodesic on M is bounded by a function F (v ,D).
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Theorem
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Positive Ricci Curvature

Bonnet-Myers Theorem

Theorem

Let M
n
be a complete Riemannian manifold. Suppose that the

Ricci curvature of M satisfies Ricp(v) � n�1
r2 > 0 for all p 2 M and

all v 2 TpM
n
. Then M

n
is compact and the diameter of M is

 ⇡r . In particular, the fundamental group ⇡(Mn
) is finite.

Ric3C
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Length of a shortest closed geodesic on manifolds with

positive Ricci curvature.

H.-B. Rademacher

Let Ric � (n � 1)

For any point p any loop of length � ⇡ can be continuously

shortened over the loops based at p. In other words, any loop

of length � ⇡ has index at least one.

Likewise, any curve of length at least ⇡m has index of at least

m.

Now, let us consider a sphere f : S
q �! ⌦pM

n
. Let us

assume that the energy functional on ⌦pM
n
is Morse. Let us

deform this sphere until it is stuck on a critical point. Then

the index of this critical point is at most the dimension of the

sphere. Thus, its length is at most ⇡q. This gives us an upper

bound for the length of the shortest periodic geodesic.

. Thus, l(M
n
)  (n � 1)⇡
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Positive Scalar Curvature

Y. Liokumovich, D. Maximo, ”Wasit inequality for 3-manifolds

with positive scalar curvature”

Theorem

Let (M
3, h) be a compact three-manifold with positive scalar

curvature Rh � ⇤0 > 0. Then there is a Morse function f : M
3
R

such that for all x 2 R and each connected component ⌃ of

f
�1

(x) we have

(a) Area (⌃)  192⇡
⇤0

(b) diameter (⌃)  40⇡p
⇤0

(c) genus (⌃)  13

If M
n
is a Riemannian 3-sphere, then genus (⌃) is zero.

t

to



Proof

Let us assume that M is a Riemannian 3 sphere

JD out of this we would

002 like to obtain a

00 Do sweepout by short

0
Curves

a s

Let us consider a 2 dimensionalsphereM

of area A Can we bound the best

sweep out of M by CTA



I

can one bound the best

sweep out of M by Cd

S Frankel M Katz

not



joint with Y Liokeemovich A Nabutovsky

you can control maximal length of

curves in the best sweep out 4

in terms of d A

Also possible to do it continuously

Wrt to a sphere

Work in progress with Y Liokeemorich

D Maximo

f D AM
212 M


