Curvature, sweepouts and the length of the shortest closed geodesic

Regina Rotman

Department of Mathematics, University of Toronto

July, 2022

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Problem 13

Need to effectively contract cueves

Let M be a Riemannian 2-sphere with non-negative curvature. Prove that the length of the shortest periodic geodesic is bounded by 3d, where d is the diameter of M, thus proving a theorem of I. Adelstein and F. Vargas Pallete.

$$\mathcal{M}^{d}_{k,v}$$

For any d > 0, v > 0, k we will let $\mathcal{M}_{k,v}^d$ denote the collection of all closed connected Riemannian manifolds of dimension n, such that $K_M \ge k, d_M \le d, V_M \ge v > 0$, where d_M denotes the diameter of M, V_M denotes its volume and K_M is its sectional curvature.

Let $M^n \in \mathcal{M}^d_{-1,v}$. Then the length of the shortest geodesic $l(M^n) \leq \exp(\frac{e^{c_1(n)d}}{\min\{1,v\}^{c_2(n)}})$. Here $c_1(n)$ and $c_2(n)$ can be explicitly calculated.

A. Nabutovsky, R. Rotman, "Upper bounds on the length of a shortest closed geodesic and quantitative Hurewicz theorem", Journal of the European Mathematical Society, 5 (2003), 203-244

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ♪

Bounding homotopy types by geometry, K. Grove and P. Peterson

K. Grove, P. Peterson, "Bounding homotopy types by geometry", Annals of Mathematics, vol. 128, no. 2 (1988), 195-206

Theorem

For any $d > 0, v > 0, k, n \ge 2$, $\mathcal{M}_{k,v}^d$ contains only finitely many homotopy types.

Show that the conclusion of the above theorem fails if one drops either the volume lower bound or the diameter upper bound.

The contractibility radius, contractibility function

Let ρ: [0, R) → [0, ∞) be a function such that amy metric ball of radius ε is contractible inside the ball of radius ρ(ε). Then R is called the radius of contractibility, and ρ the contractibility function of Mⁿ.

The contractibility radius, contractibility function

- Let ρ: [0, R) → [0, ∞) be a function such that amy metric ball of radius ε is contractible inside the ball of radius ρ(ε). Then R is called the radius of contractibility, and ρ the contractibility function of Mⁿ.
- Let $M^n \in \mathcal{M}^d_{-1,v}$ By Grove-Peterson, one can estimate the contractibility radius $r_0 = r_0(n, v, d)$ and the w(n, v, d), so that any closed curve in a ball of radius r_0 or smaller can be contracted to a point by a homotopy of width $\leq w(n, v, d)$. Note that in this case, "small" balls are not necessarily simply connected.

• If the *injrad* $M^n = i$, then $\rho : [0, i) \longrightarrow [0, \infty)$ and $\rho(\epsilon) = \epsilon$

• If the *injrad* $M^n = i$, then $\rho : [0, i) \longrightarrow [0, \infty)$ and $\rho(\epsilon) = \epsilon$ • If $M^n \in \mathcal{M}^d_{-1,v}$, then $\rho(\epsilon) = C(n, v, d)\epsilon$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the space of curves of length bounded by 62. Will construct a by Gd. T in th bounded in the space of those curves, subset any closed curve of length at most 5.1. le approximated by a cueve in J can 22 I can find & 181=62 $|d| \leq 2d$ $d(a, 8) \leq \frac{r_0}{100}$ can be matel

obtain a new homotopy with Bounded width

< length of original curve + 2N Let γ be a curve of length at most 2*d* that can be contracted to a point without the length increase. Then there exists a homotopy of γ to a point over "short" loops based at $p = \gamma(t*)$.

• Cover M^n by balls of radius $\frac{r_0}{100}$. Estimate the number of such balls.

<□> <□> <□> <□> <=> <=> <=> <=> <<

• Cover M^n by balls of radius $\frac{r_0}{100}$. Estimate the number of such balls.

• Consider a 1-skeleton of the nerve of the cover.

- Cover M^n by balls of radius $\frac{r_0}{100}$. Estimate the number of such balls.
- Consider a 1-skeleton of the nerve of the cover.
- Among all such curves choose only those that are closed and are of length at most 6*d*. Call a set of such curves \mathcal{T} Find an upper bound \tilde{N} on the number of such curves.

- Cover M^n by balls of radius $\frac{r_0}{100}$. Estimate the number of such balls.
- Consider a 1-skeleton of the nerve of the cover.
- Among all such curves choose only those that are closed and are of length at most 6*d*. Call a set of such curves \mathcal{T} Find an upper bound \tilde{N} on the number of such curves.
- Show that for any curve γ of length at most 2d there exists a curve $\tilde{\gamma} \in \mathcal{T}$, such that $d(\gamma, \tilde{\gamma}) \leq \frac{r_0}{20}$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● ∽ ♀ ⊙

- Cover M^n by balls of radius $\frac{r_0}{100}$. Estimate the number of such balls.
- Consider a 1-skeleton of the nerve of the cover.
- Among all such curves choose only those that are closed and are of length at most 6*d*. Call a set of such curves \mathcal{T} Find an upper bound \tilde{N} on the number of such curves.
- Show that for any curve γ of length at most 2d there exists a curve $\tilde{\gamma} \in \mathcal{T}$, such that $d(\gamma, \tilde{\gamma}) \leq \frac{r_0}{20}$
- Show that for any such pair of γ , $\tilde{\gamma}$ there exists a homotopy H, such that its width can be bounded in terms of w(n, v, d).

- Cover M^n by balls of radius $\frac{r_0}{100}$. Estimate the number of such balls.
- Consider a 1-skeleton of the nerve of the cover.
- Among all such curves choose only those that are closed and are of length at most 6*d*. Call a set of such curves \mathcal{T} Find an upper bound \tilde{N} on the number of such curves.
- Show that for any curve γ of length at most 2d there exists a curve $\tilde{\gamma} \in \mathcal{T}$, such that $d(\gamma, \tilde{\gamma}) \leq \frac{r_0}{20}$
- Show that for any such pair of γ, γ there exists a homotopy
 H, such that its width can be bounded in terms of w(n, v, d).
- Let F_t be a homotopy contracting γ to a point in Mⁿ over curves of length at most 2d. Show that there exists a homotopy F_t, such that its width can be bounded above in terms of w(n, v, d) and Ñ.

Width implies length

◆□ > <□ > < Ξ > < Ξ > < Ξ < ○ < ○</p>

Jeff Cheeger and Aaron Naber, "Regularity of Einstein manifolds and the codimension 4 conjecture", Ann. Math. (2), 182 (3) (2015), 1093-1165

Jeff Cheeger and Aaron Naber, "Regularity of Einstein manifolds and the codimension 4 conjecture", Ann. Math. (2), 182 (3) (2015), 1093-1165

Theorem

The collection of 4-manifolds (M^4, g) with $|Ric_{M^4}| \le 3$, $Vol(M^4) > v > 0$, and $diam(M^4) \le D$ contains at most a finite number of diffeomorphism classes.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Nan Wu, Zhifei Zhu, "Length of a shortest closed geodesic in manifolds of dimension 4", to appear in JDG.

Nan Wu, Zhifei Zhu, "Length of a shortest closed geodesic in manifolds of dimension 4", to appear in JDG.

Theorem

Let M be a closed 4-dimensional simply-connected Riemannian manifold with Ricci curvature $|Ric| \le 3$, volume vol(M) > v > 0and diameter diam $(M) \le D$. Then the length of a shortest closed geodesic on M is bounded by a function F(v, D).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Positive Ricci Curvature

$$Ric \ge (n-1)$$

Bonnet-Myers Theorem

Bonnet-Myers Theorem

Theorem

Let M^n be a complete Riemannian manifold. Suppose that the Ricci curvature of M satisfies $\operatorname{Ric}_p(v) \ge \frac{n-1}{r^2} > 0$ for all $p \in M$ and all $v \in T_p M^n$. Then M^n is compact and the diameter of M is $\le \pi r$. In particular, the fundamental group $\pi(M^n)$ is finite.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

• H.-B. Rademacher

- H.-B. Rademacher
- Let $Ric \ge (n-1)$

- H.-B. Rademacher
- Let $Ric \ge (n-1)$
- For any point p any loop of length ≥ π can be continuously shortened over the loops based at p. In other words, any loop of length ≥ π has index at least one.

- H.-B. Rademacher
- Let $Ric \ge (n-1)$
- For any point p any loop of length ≥ π can be continuously shortened over the loops based at p. In other words, any loop of length ≥ π has index at least one.
- Likewise, any curve of length at least πm has index of at least m.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

- H.-B. Rademacher
- Let $Ric \ge (n-1)$

- For any point p any loop of length ≥ π can be continuously shortened over the loops based at p. In other words, any loop of length ≥ π has index at least one.
- Likewise, any curve of length at least πm has index of at least m.
- Now, let us consider a sphere $f: S^q \longrightarrow \Omega_p M^n$. Let us assume that the energy functional on $\Omega_p M^n$ is Morse. Let us deform this sphere until it is stuck on a critical point. Then the index of this critical point is at most the dimension of the sphere. Thus, its length is at most πq . This gives us an upper bound for the length of the shortest periodic geodesic.

- H.-B. Rademacher
- Let $Ric \ge (n-1)$
- For any point p any loop of length ≥ π can be continuously shortened over the loops based at p. In other words, any loop of length ≥ π has index at least one.
- Likewise, any curve of length at least πm has index of at least m.
- Now, let us consider a sphere $f: S^q \longrightarrow \Omega_p M^n$. Let us assume that the energy functional on $\Omega_p M^n$ is Morse. Let us deform this sphere until it is stuck on a critical point. Then the index of this critical point is at most the dimension of the sphere. Thus, its length is at most πq . This gives us an upper bound for the length of the shortest periodic geodesic.
- . Thus, $\textit{I}(M^n) \leq (n-1)\pi$

Y. Liokumovich, D. Maximo, "Wast inequality for 3-manifolds with positive scalar curvature"

Theorem

Let (M^3, h) be a compact three-manifold with positive scalar curvature $R_h \ge \Lambda_0 > 0$. Then there is a Morse function $f : M^3 R$ such that for all $x \in R$ and each connected component Σ of $f^{-1}(x)$ we have (a) Area $(\Sigma) \le \frac{192\pi}{\Lambda_0}$ (b) diameter $(\Sigma) \le \frac{40\pi}{\sqrt{\Lambda_0}}$ (c) genus $(\Sigma) \le 13$ If M^n is a Riemannian 3-sphere, then genus (Σ) is zero.

Proof

gef	US	assume	that	M îs a Riemannian 8-sphere
			66 (?)	Out of this we would
			(6K M	line to obtain a
				sweepout by short
		۵ 🕼	(1)	
		• •	• •	
Je	+ 4	les consi	der a	2-dimensional sphere M
of	p Cer	rea A	(Can	we bound the best
·	, SWCQ	pout of	g M	by CIA

joint with Y. Sionumonich, A. Nabutoreky you can control maximal length of careves in the "best sweepout" in terms of d_1A Also possible to do it continuoully with to a sphere Work in progress with Y. Stokermeric, J. Maximo $f: D^2 \rightarrow M$