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1. Background 

 SMA crystals exhibit microstructures at many scales 

during reversible martensitic phase transformation 

 How do the microstructures evolve with the loading? 

the phase transformation is in general not a continuous 

process – space and time intermittency can be observed 

under both thermal and mechanical driving 

- Jerky dynamics through avalanches, shown for instance by acoustic emission studies 

[Carrillo et al., Phys Rev Lett 98, Vives et al. Phys Rev B 09,  Planes et al., J All Comp 11, Harrison & Salje 2014] 

- in typical cases, avalanches follow statistical distributions with heavy tails, 

often power laws  absence of characteristic scale 

power 

law tail 

4/41 
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Morphologies largely 

constrained by crystallographic 

compatibility between  

phases and variants  

[Tan et al.,  

Cont Mech Thermodyn 90] 

[Chu & James,  

Phase Trans 09] 

1 mm 1 cm 1 mm 

[Nishida et al.,  

Acta Mat 97] 
[Seiner et al.,  

Phase Trans 09] 

1 mm 



 Some recent work on evolution of spatial features of 

phase transformation:  

optical microscopy + AE + specific device to 

get small stress rate 

 Local analysis of intermittency in a 

needle progression  „noise of the needle‟  

[Harrison & Salje,  Appl Phys Lett 10] 

Rubber  

piston 

AE analysis with 2 transducers to localize 

transformation events 

 imaging of (1-d) dynamics of temperature-

driven martensitic transformation over SMA 

CuZnAl sample 

[Vives et al,  Phys Rev B 11] 

Ferroelastic  

LaAlO_3 

 needle 

5 

1 cm 



6 

monitoring AE with 4 transducers + 

optical analysis 

 Localization of AE sources during 

martensitic transformation across 

sample + relation to microstructural 

changes 

[Niemann et al,  

Phys Rev B 14] 

  lack of systematic sample-wide strain data about intermittent progress of phase transformation 

[R. Niemann, et al. PRB 2014] 
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  strain field measurement made using the grid method, suitable for investigation 

of strain bursts 

Aims of present study: 

 loading device: 

 

- capable of imposing a constant and small stress rate to the specimen (obtain 

monotonic loading) 

  try to investigate transformation strain intermittency occurring in the crystal in 

its most elementary and basic form 

- with minimal imposition of BC: crystal capable to freely adjust orientation in 

relation to loading to get the „least complex‟ microstructures, developed in the 

absence of effects such as friction, plastification 
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2. Experimental setup 

- Cu Al11.4 Be0.5 (wt.%) 

- single crystal  

- martensite start Ms =  2°C  austenitic at ambient temperature 

- superelastic behavior at ambient temperature 

 Specimen 

- austenite: cubic (DO3 structure) 

  martensite: monoclinic (M18R structure)  

martensite compatible with austenite  
(no need of martensite twinning for phase coexistence) 

[James & Hane, Acta Mat 00] 

thickness 

 0.97 mm 
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mechanical device based on gravity –  water-filled tank hung to specimen 

and system of electronic pumps controls a constant very low water flow 

 Loading apparatus    
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- Step 2:  loading rate of 1.055 MPa/h ( 17 N/h  5 mN/s) 

               up to 57.29 MPa (lasted about 22 h) 

- Step 1:  preload (up to 60 liters)   elastic regime, no phase transition 

- Step 3:  unloading rate of -0.915 MPa/h ( -16 N/h  -4.4 mN/s) 

               down to 35.95 MPa (lasted about 23 h) 

Specific attention to maintain 

constant ambient temperature  

over test duration 

Advantages 

- perfectly monotonic stress-controlled loading 

- ball joints, minimal boundary conditions 

 - loading conditions not achievable with conventional testing 

machines (no feedback loop) 

 - very small load increments 

Rates in present test 

austenite  martensite 

austenite  martensite 

test duration:  ≈ 45 h 
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Earlier dead loading tests on SMA (acoustic emission): 

 

[Carrillo et al., Phys Rev B 97] 

[Bonnot et al., Phys Rev B 07] 

[Vives et al., Phys Rev B 09] 



[Piro et al, Exp Tech 2004, Badulescu, et al, Exp Mech, 2009, Badulescu et al, Meas Sci and Tech, 2009] 

- Square grid transferred onto specimen, encoded with 5 pixels/period  

pitch = 200 mm 

 Measuring strain with the grid method 

- Sensicam QE camera featuring 12-bit/1040×1376 pixel sensor and 

105 mm Sigma lens 

x 

y 

- one grid image every 8 s, ≈2.2 kPa or ≈0.038 N increase between 

consecutive images; also ≈10-min break every 100 min for data recording 

and filling reservoirs  

 

 in total ≈ 20,000 images obtained along loading/unloading path 

-   images of the grid captured during entire loading process give the three      

in-plane strain components and the local rotation about the z-axis, one 

value per pixel 
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 Method gives ≈ 600,000 strain 

gauges bonded onto sample 
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[Delpueyo et al, 

 Mech. Mater. 2012] [Delpueyo et al, 

 Mat. Sci. Eng. A 2011] 

3. Comparison with earlier tests  

Present test 

rather small and quite smooth hysteresis loop 

 stress-strain curve under different loading conditions (same specimen) 

- MTS hydraulic testing machine 

- ambient  22 °C 

- plateau duration  30 min 

- strain-controlled 

- MTS hydraulic testing machine 

- ambient  22 °C 

- plateau duration  1 min 

- strain-controlled during loading 

  stress-controlled during unloading 

- present loading system 

- ambient  27 °C 

- plateau duration  6 hours 

- stress-controlled 
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 The strain fields under different loading conditions 

[Delpueyo et al. 2012] Present test 

A 

Martensite twin  

(two martensite variants) 

Single martensite 

variant  

A 

A 

Ball joint + 

 constant force direction 

ball joint 

gravity 

x 

y 

Imposed elongation  

+ horizontal displacement  

not allowed 

imposed  

displacement 

heterogeneous  

stress field 

uniaxial  

loading 
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Tracking the A↔M transformation and its intermittency under the loading 

 

 

       4     Results 

 

 

4.1 Hysteresis and strain maps 

 

4.2  Strain clustering 

 

4.3  Intermittency 

 

4.4  Coordinated spatial activity, avalanching 
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       4 Results 

 

 

4.1 Hysteresis and strain maps 

 

4.2 Strain clustering 

 

4.3 Intermittency 

 

4.4 Coordinated spatial activity, avalanching 

 



- Simple microstructures 

- Different strain distributions 

between loading and unloading 

- Transformation through nucleation and front 

propagation  

- Evolution of martensitic band-like formations 

     (angles compatible with theory) 
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-  hysteresis in the evolution of  n  vs.           

- martensitic volume fraction n = % sample surface where εyy>0.05 (≈50% of max of εyy during tests) 

yy

- at these scales fairly smooth curves, although n  more irregular than mean strain 
20 



21 

 Strain field during test – forward transformation 



 strain profile vs. time 

- asymmetric response between loading and unloading phases 

Strain profile along AB: 
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 Recall difference with previous test 

[Delpueyo et al. 2012] Present  test 

A 

Martensite twin  

(two martensite  

variants) 

Single martensite 

variant  

A 

A x 

y 



 Strain field during test – reverse transformation 
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       4 Results 

 

 

4.1 Hysteresis and strain maps 

 

4.2 Strain clustering 

 

4.3 Intermittency 

 

4.4 Coordinated spatial activity, avalanching 
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 Strain clustering  - forward transformation 

- On loading material moves from “austenite well” to “martensite well” in strain space 
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       4 Results 

 

 

4.1 Hysteresis and strain maps 

 

4.2 Strain clustering 

 

4.3 Intermittency 

 

4.4 Coordinated spatial activity, avalanching 
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 Small strain increments  →  real signal or noise? 

(some technical info) 

- strain increments between two images have rather wide range  

- smaller increments are real or are noise?  (noise mainly from camera sensor) 

 

 

→  must impose suitable lower thresholds on strain measurements 

 

 
  Based on camera and grid features, recent theory leads to: 

 

 

- threshold on local strain increments Deij :  4 x 10-4 

 

- we consider same threshold on |De| = (Deyy + Dexx + 2Dexy)
1/2 

 

- threshold for the mean strain components: 1 x 10-6 

 

 

              Analysis derived from [Grédiac et al. Strain 2014, Sur et al., IEEE Sign Proc Lett 2014, Sur et al. Opt Las Eng 2015]  
 



    behavior of mean strain increments along plateaus: 

- probability densities P(Deyy) exhibit heavy tails over about 2 decades 

eyy 

-  bursty evolution is clearly observed (also non-stationarity) 
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So far, fairly smooth global behavior, but a closer look reveals bursty 

evolution under the smooth loading (expected, from AE results) 



 intermittency in  Deyy originates from intermittency from local  Deyy 

activity: check behavior of local strain increments on the sample 

time (h) 

- Localization of strain activity in space and time (loading): 

-  Strain increments detected at two given pixels (loading): 
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 P(Deyy) for all pixels during forward and reverse transformation 

loading 

unloading 

(Thresholded-below) pixel-level values of Deyy  throughout sample bounded above by 

transformation strain    truncated distributions span about one decade 
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       4 Results 

 

 

4.1 Hysteresis and strain maps 

 

4.2 Strain clustering 

 

4.3 Intermittency 

 

4.4 Coordinated spatial activity, avalanching 



Must also investigate the spatial organization of phase transformation 

 

  Strain avalanches 

 definition: suitable regions in Deij or in |De| = (Deyy + Dexx + 2Dexy)
1/2 maps 

define spatial events/avalanches –- given by connected subsets of sample 

whereon pixel activity in Deij or |De| exceeds a given threshold 

 

 Spatial events characterized by two quantities: 

 

- size S: total number of pixels in a given avalanche 

 

- magnitude M: integral of |De| over given avalanche 

 

(no durations) 
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So far, info on local strain activity.  
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How many events?  ≈ 14,000 avalanches detected along cycle 

Notice again non-stationarity of transformation progress 

forward transformation 
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 Avalanches during forward plateau     (|De| = (Deyy + Dexx + 2Dexy)
1/2) 
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 Avalanches during reverse plateau     (|De| = (Deyy + Dexx + 2Dexy)
1/2) 



 Can also locate transformation „epicenters‟ during test  

(pixels where |De| is max for each event) 

loading unloading 
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(Nasa) 



- Fairly linear trend of distributions P(M) and P(S) – indicates emergence of power-law behavior 

of strain avalanching during the phase transformation (almost 6 decades in M!) 

 

- Different power-law exponents: forward ≈ 1.5; reverse ≈ 2. Consistent with AE results  

[Rosinberg & Vives, 2012]  38 

Statistics for the resulting avalanche dynamics: 
Recall: AE  

power law 

Gutenberg-Richter So. Cal. 



- question: the number of „spots‟ increases as the threshold value is decreased  

 what is really an event?  

 

 
- both avalanche size S and magnitude M depend on threshold – but we observed  

that threshold value within reasonable bounds affects distributions P(M) and P(S) only slightly 
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5. Conclusions 

 Observation and characterization of elemental strain intermittency during 

martensitic transformation 

 Designed a mechanical device based on gravity to apply a monotonic and 

very slowly growing stress-controlled load with minimal boundary constraints on 

SMA sample 

 Avalanches exhibit a fairly clean power-law behavior as in AE („criticality‟?) 
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Current work: 

 

 

 

 

 coupling full-field measurements and AE  

analysis to study both acoustic and strain avalanches  

(together with Clermont and Barcelona groups) 

 

 

 

 

 

 

 

 

 Modelling: materials with complex energy landscapes,  

 Ericksen-inspired, GL(2, Z) invariance (with Paris and Aberdeen groups) 

‘GARBO TALKS!’ 
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Also: study in more detail finer effects  in the data (e.g. non-stationarity and forward vs. 

reverse asymmetry) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asymmetry in 
forward vs reverse 

transformation 
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More information and videos: 
 
X. Balandraud, N. Barrera, P. Biscari, M. Grédiac, G. Zanzotto,  

Strain intermittency in shape memory alloys,  

Physical Review B 91, 174111, 2015 


