

¹ **Clermont University** Clermont-Fd, FRANCE

² **Politecnico di Milano** Milano, ITALY

³ Universita' di Padova Padova, ITALY

Strain intermittency in shape memory alloys

N. Barrera^{1,2}, X. Balandraud¹, M. Grédiac¹, P. Biscari², G. Zanzotto³

Outline

- 1. Background
- 2. Experimental setup
- 3. Comparison with earlier tests
- 4. Results
- 5. Conclusions

1. Background

- 2. Experimental setup
- 3. Comparison with earlier tests
- 4. Results
- 5. Conclusions

1. Background

• SMA crystals exhibit microstructures at many scales during reversible martensitic phase transformation

• How do the microstructures evolve with the loading?

the phase transformation is in general not a continuous process – space and time intermittency can be observed under both thermal and mechanical driving

- Jerky dynamics through avalanches, shown for instance by acoustic emission studies

- in typical cases, avalanches follow statistical distributions with heavy tails, often power laws \rightarrow absence of characteristic scale

[Carrillo et al., Phys Rev Lett 98, Vives et al. Phys Rev B 09, Planes et al., J All Comp 11, Harrison & Salje 2014]

• Some recent work on evolution of spatial features of phase transformation:

AE analysis with 2 transducers to localize transformation events → imaging of (1-d) dynamics of temperaturedriven martensitic transformation over SMA CuZnAI sample

[Vives et al, Phys Rev B 11]

monitoring AE with 4 transducers + optical analysis

→ Localization of AE sources during martensitic transformation across sample + relation to microstructural changes

[R. Niemann, et al. PRB 2014]

→ lack of systematic sample-wide strain data about intermittent progress of phase transformation

Aims of present study:

- strain field measurement made using the grid method, suitable for investigation of strain bursts
- loading device:

- capable of imposing a constant and small stress rate to the specimen (obtain monotonic loading)

- with minimal imposition of BC: crystal capable to freely adjust orientation in relation to loading to get the 'least complex' microstructures, developed in the absence of effects such as friction, plastification

 \rightarrow try to investigate transformation strain intermittency occurring in the crystal in its most elementary and basic form

1. Background

- 2. Experimental setup
- 3. Comparison with earlier tests
- 4. Results
- 5. Conclusions

2. Experimental setup

- Specimen
 - Cu Al_{11.4} Be_{0.5} (wt.%)
 - single crystal
 - martensite start $Ms = 2^{\circ}C \rightarrow$ austenitic at ambient temperature
 - superelastic behavior at ambient temperature
 - austenite: cubic (DO3 structure) martensite: monoclinic (M18R structure)

martensite compatible with austenite (no need of martensite twinning for phase coexistence) [James & Hane, Acta Mat 00]

• Loading apparatus

mechanical device based on gravity – water-filled tank hung to specimen and system of electronic pumps controls a constant very low water flow

Earlier dead loading tests on SMA (acoustic emission):

Advantages - loading conditions not achievable with conventional testing machines (no feedback loop)

- very small load increments
- perfectly monotonic stress-controlled loading
- ball joints, minimal boundary conditions

Rates in present test

- Step 1: preload (up to 60 liters) \rightarrow elastic regime, no phase transition
- Step 2: loading rate of 1.055 MPa/h (\approx 17 N/h \approx 5 mN/s) up to 57.29 MPa (lasted about 22 h)
- Step 3: unloading rate of -0.915 MPa/h (\approx -16 N/h \approx -4.4 mN/s) down to 35.95 MPa (lasted about 23 h)

test duration: ≈ 45 h

Specific attention to maintain constant ambient temperature over test duration

Measuring strain with the grid method

- Square grid transferred onto specimen, encoded with 5 pixels/period
- Sensicam QE camera featuring 12-bit/1040×1376 pixel sensor and 105 mm Sigma lens

→ Method gives \approx 600,000 strain gauges bonded onto sample

[Piro et al, Exp Tech 2004, Badulescu, et al, Exp Mech, 2009, Badulescu et al, Meas Sci and Tech, 2009]

- images of the grid captured during entire loading process give the three in-plane strain components and the local rotation about the z-axis, one value per pixel
- one grid image every 8 s, ≈2.2 kPa or ≈0.038 N increase between consecutive images; also ≈10-min break every 100 min for data recording and filling reservoirs
- \rightarrow in total \approx 20,000 images obtained along loading/unloading path

1. Context

- 2. Experimental set up
- 3. Comparison with earlier tests
- 4. Results
- 5. Conclusions

3. Comparison with earlier tests

• stress-strain curve under different loading conditions (same specimen)

- ambient \approx 27 °C
- plateau duration \approx 6 hours
- stress-controlled

- ambient \approx 22 °C
- plateau duration \approx 30 min
- strain-controlled

- ambient \approx 22 °C
- plateau duration \approx 1 min
- strain-controlled during loading stress-controlled during unloading

rather small and quite smooth hysteresis loop

• The strain fields under different loading conditions

1. Context

- 2. Experimental set up
- 3. Comparison with earlier tests
- 4. Results
- 5. Conclusions

Tracking the A↔M transformation and its intermittency under the loading

4 Results

- 4.1 Hysteresis and strain maps
- 4.2 Strain clustering
- 4.3 Intermittency
- 4.4 Coordinated spatial activity, avalanching

4 Results

4.1 Hysteresis and strain maps

- 4.2 Strain clustering
- 4.3 Intermittency
- 4.4 Coordinated spatial activity, avalanching

- Transformation through nucleation and front propagation
- Evolution of martensitic band-like formations (angles compatible with theory)

0.01

 \checkmark

19

70 60 Stress (MPa) 10 00 0.01 0.02 b.03 0.04 0.05 0.06 0.07 0.08 0.09 Strain ε_{yy} 0.1 0.09 0.08 0.07 0.08 0.05 0.04 0.03 0.02

Simple microstructures
Different strain distributions
between loading and unloading

- martensitic volume fraction v = % sample surface where ε_{vv} >0.05 (~50% of max of ε_{vv} during tests)

- hysteresis in the evolution of v vs. σ_{yy}
- at these scales fairly smooth curves, although ν more irregular than mean strain

• Strain field during test – forward transformation

• strain profile vs. time

Strain profile along AB:

- asymmetric response between loading and unloading phases

• Recall difference with previous test

• Strain field during test – reverse transformation

24

4 Results

4.1 Hysteresis and strain maps

4.2 Strain clustering

4.3 Intermittency

4.4 Coordinated spatial activity, avalanching

• Strain clustering - forward transformation

- On loading material moves from "austenite well" to "martensite well" in strain space

4 Results

- 4.1 Hysteresis and strain maps
- 4.2 Strain clustering

4.3 Intermittency

4.4 Coordinated spatial activity, avalanching

- Small strain increments → real signal or noise? (some technical info)
- strain increments between two images have rather wide range
- smaller increments are real or are noise? (noise mainly from camera sensor)

 \rightarrow must impose suitable lower thresholds on strain measurements

Based on camera and grid features, recent theory leads to:

- threshold on local strain increments $\Delta\epsilon_{ii}:~4 \ x \ 10^{\text{-4}}$
- we consider same threshold on $|\Delta \varepsilon| = (\Delta \varepsilon_{yy} + \Delta \varepsilon_{xx} + 2\Delta \varepsilon_{xy})^{1/2}$
- threshold for the mean strain components: 1 x 10⁻⁶

Analysis derived from [Grédiac et al. Strain 2014, Sur et al., IEEE Sign Proc Lett 2014, Sur et al. Opt Las Eng 2015]

So far, fairly smooth global behavior, but a closer look **reveals bursty** evolution under the smooth loading (expected, from AE results)

 \rightarrow behavior of mean strain increments along plateaus:

- bursty evolution is clearly observed (also non-stationarity)
- probability densities $P(\Delta \overline{\epsilon}_{vv})$ exhibit heavy tails over about 2 decades

• intermittency in $\Delta \overline{\epsilon}_{yy}$ originates from intermittency from local $\Delta \epsilon_{yy}$ activity: check behavior of local strain increments on the sample

- Localization of strain activity in space and time (loading):

- Strain increments detected at two given pixels (loading):

• $P(\Delta \varepsilon_{yy})$ for all pixels during forward and reverse transformation

(Thresholded-below) pixel-level values of $\Delta \epsilon_{yy}$ throughout sample bounded above by transformation strain \rightarrow truncated distributions span about one decade

4 Results

- 4.1 Hysteresis and strain maps
- 4.2 Strain clustering
- 4.3 Intermittency
- 4.4 Coordinated spatial activity, avalanching

So far, info on local strain activity.

Must also investigate the spatial organization of phase transformation

\rightarrow Strain avalanches

• definition: suitable regions in $\Delta \epsilon_{ij}$ or in $|\Delta \epsilon| = (\Delta \epsilon_{yy} + \Delta \epsilon_{xx} + 2\Delta \epsilon_{xy})^{1/2}$ maps define spatial events/avalanches — given by connected subsets of sample whereon pixel activity in $\Delta \epsilon_{ij}$ or $|\Delta \epsilon|$ exceeds a given threshold

- Spatial events characterized by two quantities:
- size S: total number of pixels in a given avalanche
- <u>magnitude</u> \mathcal{M} : integral of $|\Delta \varepsilon|$ over given avalanche

(no durations)

How many events? ≈ 14,000 avalanches detected along cycle

Notice again non-stationarity of transformation progress

• Avalanches during forward plateau $(|\Delta \varepsilon| = (\Delta \varepsilon_{yy} + \Delta \varepsilon_{xx} + 2\Delta \varepsilon_{xy})^{1/2})$

• Avalanches during reverse plateau $(|\Delta \varepsilon| = (\Delta \varepsilon_{yy} + \Delta \varepsilon_{xx} + 2\Delta \varepsilon_{xy})^{1/2})$

• Can also locate transformation 'epicenters' during test (pixels where $|\Delta \epsilon|$ is max for each event)

Statistics for the resulting avalanche dynamics:

- Fairly linear trend of distributions $P(\mathcal{M})$ and $P(\mathcal{S})$ – indicates emergence of power-law behavior of strain avalanching during the phase transformation (almost 6 decades in \mathcal{M} !)

- Different power-law exponents: forward ≈ 1.5; reverse ≈ 2. Consistent with AE results [Rosinberg & Vives, 2012]

$||\Delta\epsilon||\eta = 1.5 \times 10\bar{\eta}^{4} = 2 \times 10\bar{\eta}^{4} = 2.5 \times 10\bar{\eta}^{4} = 3 \times 10\bar{\eta}^{4} = 3.5 \times 10\bar{\eta}^{4} = 4 \times 10^{-4}$

- question: the number of 'spots' increases as the threshold value is decreased \rightarrow what is really an event?

- both avalanche size *S* and magnitude \mathcal{M} depend on threshold – but we observed that threshold value within reasonable bounds affects distributions $P(\mathcal{M})$ and P(S) only slightly

1. Context

- 2. Experimental set up
- 3. Comparison with classic tests
- 4. Results
- 5. Conclusions

5. Conclusions

- Designed a mechanical device based on gravity to apply a monotonic and very slowly growing stress-controlled load with minimal boundary constraints on SMA sample
- Observation and characterization of elemental strain intermittency during martensitic transformation
- Avalanches exhibit a fairly clean power-law behavior as in AE ('criticality'?)

Current work:

 coupling full-field measurements and AE analysis to study both acoustic and strain avalanches (together with Clermont and Barcelona groups)

'GARBO TALKS!'

• Modelling: materials with complex energy landscapes, Ericksen-inspired, GL(2, Z) invariance (with Paris and Aberdeen groups)

Also: study in more detail finer effects in the data (e.g. non-stationarity and forward vs. reverse asymmetry)

Asymmetry in forward vs reverse transformation

More information and videos:

X. Balandraud, N. Barrera, P. Biscari, M. Grédiac, G. Zanzotto, *Strain intermittency in shape memory alloys*, **Physical Review B 91**, 174111, 2015