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Talk outline: 

1. What are the ω-transitions and how they differ 
from (thermoelastic) martensitic transitions
2. Basic thermodynamics and principles
3. Modelling: concepts and tools
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β-Ti ALLOYS
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     Hf-based alloys

Ti-Nb

Ti-V 
      Ti-Mo 
         Ti-Fe

         Ti-Cr-Sn 
Ti-Mo-Zr-Al
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1. What are the ω-transitions and how they differ 
from (thermoelastic) martensitic transitions

 ω-transitions:

● the cooling route is reversible, athermal
● the heating route is irreversible, isothermal

β

ω
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2. Basic thermodynamics and principles

thermoelastic martensites

ω-transforming materials
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M

β
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ω-transforming materials
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β

ω

quenched heterogeneous
distribution of β-stabilizers

at the low temperature, 
the diffusion is not activated
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and coalesce 
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2. Basic thermodynamics and principles

what happens under stress?

β

ω

the stress-induced ω-lamellas
run across the concentration
heterogeneities  

such laminate is chosen that it
optimally relaxes the external forces
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3. Modelling: concepts and tools

high temperature behavior – isothermal ω – precipitation

the aspect ratio and preferred orientation of the particles
can be controlled by external prestress, but the model
does not predict lamination



  

 

3. Modelling: concepts and tools

stress-induced behavior  – compatibility?

stress-assisted compatibility

...the role of diffusion is unclear

the stress-induced ω-lamellas
does not seem to be internally
twinned  

however,

λ
2
 = 0.984

FelF − GelG = a⊗n

σβ 
ij nj = σω 

ij nj



  

 

3. Modelling: concepts and tools

stress-induced behavior  – compatibility?

the concentration of β-stabilizers
inside of the ω-lamellas is energetically
very expensive.

Under increased temperature,
they should move out and stabilize
the laminate.



  

 

3. Modelling: concepts and tools

stress-induced behavior  –  diffusive SME?

β
β ββ β

βω ω ω

stress

heating 
under 
stress

releasing 
stress  

& cooling overheating



  

 

Conclusions

● there are no real conclusions – the understanding
at the continuum level is still an open question

● understanding the interplay between the displacive
nature of the transition and the diffusion is essential
for construction of reliable models

● modelling so far: phase field simulations, not capturing
the lamination phenomena

● take-home message: ω-related phenomena are rather
unexplored by the martensites/continuum community. 
More advertising needed!
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