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Presentation of the equations
e Viscous, incompressible, homogeneous fluid, in R3

e Velocity u = (ut, u?, u®)(t, x), pressure p(t,x)

(Ns) {8tu+u~VUdi€Z;0Vp
with
3 , . 3 ' P 9
Au:;aju, d.vu:;ajw, aj:za—xj, Oei= 5

3 3
u-Vu= Zujaju = Zaj(tﬂu).
j=1 j=1

Remark : The pressure can be eliminated by projection onto
divergence-free vector fields : P = Id — VA~ div.

Cauchy data : u;—o = uo.
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Solving the equations

We want to find u(t, x) solution to (NS) in some sense (distributional,
classical...), such that u(0, x) = up(x).

Standard methods :
e Compactness methods :
- Find an a priori bound on the solution : ||u(t)||x < C(uo);

- Construct a sequence of approximate equations (NS), . which can be
solved by the Cauchy-Lipschitz theorem : this yields a sequence of
approximate solutions (up)nen, uniformly bounded in X;

- Use the uniform bound in X to construct weak limit points to the
sequence (Up)peN : Up — U;

- Use space-time compactness to prove that u solves (NS).
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Solving the equations

e Banach fixed point theorem :

- Write the equation in integral form :

u(t) = e"®u(0) + B(u, u)(t)

- Apply a fixed point theorem.
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Fundamental properties of (NS) (1)

e Conservation of the energy

Conservation of energy is due to the formal identity

1 t 1
SuCe)E + [ 17U e = 5ol
thanks to the structure of the nonlinear term :
(P(u- Vu)lu), =0.

So in particular u € L>(RT; L2) and Vu € L2(R¥; L2).
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Fundamental properties of (NS) (I1)

e Scale invariance

If u(t,x) is a solution of (NS) associated with the initial data up(x)
on [0, T] x R3, then for all A >0, a € R3

un(t, x) == Au(N2t, \(x — a))

is a solution associated with uy o(x) := Aug(A(x — a)) on [0, A2 T] x R3.
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Weak solutions

Using the conservation of energy, one can prove the following result.

Theorem [Leray, 1934]

Let up € L?(RY) be a divergence free vector field. There is a solution u
of (NS) satisfying for all t >0

t
(@l +2 [ 1u(e)]Es d’ < Janl.
0

Remarks :
» Proof by compactness.

» Search for conditions on the initial data to guarantee uniqueness (if
d =2, OK — due to scale invariance).
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Strong solutions

One does not use the structure of the equation, but rather its scale
invariance, by a fixed point method.

Solving (NS) is equivalent to solving
u=euy+B(u,u)
where e® is the heat semi-group on R? and B the bilinear form

B(u, u)(t) := — /Ot e AP div (u @ u)(t') dt’ .

The problem consists in finding an adapted Banach space X, such
that B is continuous from X x X to X.
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An existence and uniqueness result

Theorem

Let X be an adapted space. If up is such that ||t u| x is small enough,
then there is a unique solution to (NS) in X.

Remarks : e By scale invariance, the norm on X must satisfy
YAS0,Yx € RY,  AIF(2EA(x — 3))x ~ I Fllx

e This corresponds to small initial data or small time results.

Examples :
e Leray ‘34 : smallness measured by ||ugl|2||Vuo| 2 if d =3

o Fujita-Kato ‘64 with Hu0||Hg,1
o Kato ‘84 with [|upl| 0
o Cannone-Meyer-Planchon ‘94 with ||uol|,, where
luolls, = sup £20 5 e ug 1o
>0
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The optimal adapted space
209 ug | 1o .

Recall
luollB, :=sup t
t>0

e Any Banach space of tempered distributions, scale and translation
invariant, is embedded in B, [Meyer ‘96]
e (NS) is ill-posed in B, [Bourgain-Pavlovic ‘08, Germain ‘08]

o (NS) is well-posed (for small enough data) in B, where
' 3
(/ (e uo)(t, y) dydt

P(x,R)

d

Rz

|uollz = l|uolle., + sup
i XERd
R>0

with P(x, R) := [0, R?] x B(x, R) [Koch-Tataru ‘01].
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Remarks (1)

In this context in general, only small data or small time theorems are
known. They hold (with the same proof) for the more general equation

Oru — Au = Q(u, u)

where Q(v, w) Z Qj x( ) and Qj «(D) are smooth

1<j,k<3
homogeneous Fourier multipliers of order 1.

However some of these equations are known to produce blow-up in

finite time [Montgomery-Smith ‘01], including for (large) data for which
Navier-Stokes does not [G-Paicu ‘09].
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Remarks (11)

There is a discrepancy between the energy (providing control of norms)
and the scaling (necessary to implement the fixed point).

If d =2, the energy space is scale invariant, the equation is said critical.

In dimension d > 3, there are d/2 — 1 derivatives between scaling and
energy : the equation is said supercritical.
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Properties of G

In the following we denote by G the space of initial data generating a
global smooth solution to the three-dimensional Navier-Stokes
equations.

We want to study geometrical properties of G.
We shall prove that G is

e open (strong topology) in B, [G-Iftimie-Planchon ‘03], BMO™*
[Auscher, Dubois, Tchamitchian ‘04]

e connected in Hz, B, [G-Iftimie-Planchon ‘03], BMO ™" [Auscher,
Dubois, Tchamitchian ‘04]

e unbounded in B, [Chemin-G ‘06,'09,'10, Chemin-G-Paicu ‘12,
Chemin-G-Zhang ‘12]

e open (weak topology) (under an anisotropy assumption)
[Bahouri-G ‘12, Bahouri-Chemin-G in progress].
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The set G is strongly open, and connected

Let us prove the following result.

Theorem [G-Iftimie-Planchon ‘03]
Let u € C(R*, H2(R?)) be a solution to (NS). Then

thoc ”u(t)HH%(]Rs) =0.
Moreover u is stable : there is € > 0 such that if |[uj;—o — vol| 1 <e

H2 (R3) —
then there is a unique global solution associated with vg.

Remarks.
e The same result holds in the more general framework of BMO~1
[Auscher, Dubois, Tchamitchian ‘04].

e The result shows that G is open in the strong topology. An immediate
corollary of the theorem is that G is connected.
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|dea of the proof of the result (large time behaviour)

An easy case : assume ug := uj;—g € L2 N Hz(R3). Then u satisfies the
energy inequality and in particular u € L*(R™; Hz (R3)) so there is to

such that ||u(t0)HH%(R3) < g and then that holds for all t > t; by small
data theory.

The general case : write up = vy + wy with wy small in H%(R3) and vy
in L2(R3).

Solve (NS) globally with the data wp, the solution w(t) remains small
in Hz(R3) for all times.

Prove that the solution of
Ov+P(—v-Vv+v-Vw+w-Vv)—Av =0

is bounded in the energy space and conclude as above.
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The set G is weakly open

We consider sequences converging in the sense of distributions to an
element of G.

Examples : the sequence ¢,(x) := 2"¢(2"x) converges weakly to zero.
If G were open for the weak topology then ¢ would belong to G by scale
invariance... The same goes for ¢,(x) 1= ¢(x — x,), |x,| = 0.

Define A’,Z and Af Littlewood-Paley frequency truncation operators :

F(DRF)(E):= (27 (&1, L)) F(F)(€)
F(A7)(E):= w(27& ) F(F)(€)

where ¢ € C2°(3,1), so that = Z AJf = f. Notice that

Jj

=[]
>

1AROF [l ~ 24| AR F o -

1

Then consider the norm |[|f||5: := (Z2”k ‘7||A"A"f|\L1 R3 ) .
J,k

Remark : scale invariance of (NS).
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The set G is weakly open

Definition

Let 0 < g < oo be given. We say that a sequence (f,)nen, bounded

in B}I, is anisotropically oscillating if the following property holds : for
all sequences (k,, jn) € ZN x ZN,

lim sup 2Jn+ko
n— o0

AN flln=C>0 = lim |j— kn| = o0.
IS n—oo

Example : the sequence
@n(x) = 2om®(2anxl7 2(mX2, 2[—?nx3) " ;é /3

is anisotropically oscillating : horizontal frequencies ~ 2%" and vertical
frequencies ~ 28" so

limsup 2" |AR AY gl =C >0 = ky~an, j,~ Bn.

n— 00
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The set G is weakly open

Theorem [Bahouri-G ‘12, Bahouri-Chemin-G in progress]

Let g €]0, 1] be given and let (ug n)nen be a sequence of divergence free
vector fields bounded in Bé, converging towards ug € Bcll in the sense of
distributions, with ug € G. If ug — (uo,n)nen is anisotropically oscillating,
then up to extracting a subsequence, ug , € G for all n € N.

Remarks.
e One can essentially consider any bounded sequence except for
sequences of the type described above and their superpositions.

e The theorem may be generalized by adding two more sequences
to (uo,n)nen, Where in each additional sequence the “privileged” direction
is not x3 but x; or x».

e The same result holds for data not in G, on some life span [0, T] for
T<T"
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The rest of the talk is devoted to a sketch of the proof of this result.

@ Write down an “anisotropic profile decomposition” of the
sequence of initial data. This allows to replace the sequence, up to
an arbitrarily small remainder term, by a finite (large) sum of profiles
of the type

(2,2 hnx3)
DY VD W

An

h, — 0.
@® Propagate globally in time by (NS) each individual profile of the
decomposition.

© Prove that the construction of the previous step does provide, after
superposition of all the global solutions, an approximate solution
to the Navier-Stokes equations.

Before carrying out that program we shall discuss an example of the
type above.
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A (typical) example (1)

Consider the divergence-free initial data

1 X1 X2 hnX3
®o.n(x) = )\—(CD}),d)S,O)(— = ),

he = 0.
NN A —0

Up to rescaling by A, it is equivalent to study

CT)gm(x) = <1>g(xh, h,,X3) , o xp o= (x1, %), <Dg = (¢é,¢%).
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A (typical) example (1)

Recall
5g7n(x) = CI)g(xh, h,,X3) , o xp = (xa, %), Cbg = (Cb(l,,d)%).

To prove there is a unique global solution to (NS) associated with 687,,
for n large enough [Chemin-G ‘10], we start by solving globally the two
dimensional equations with data ®(x, y3) for each y;. We denote the
solution by ®"(t, x4, y3).

Then we check that (®",0)(t, xs, h,x3) is a global approximate solution
to (NS) with data ®g ,, so by rescaling, a global approximate solution
associated with ®g , is

&, (t.x) = —(oF,0)(5 2

An IV A VDY
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Another (typical) example

In the previous example

1 X1 Xo hpx
cbO,n(X) = 7(¢(]ja¢gao)(71772a 3)a
A An A A

h, — 0,
we had &, — 0 if A, — 0 or co and ®f ,(x) = ®f(x4,0) if X, =1 .
Consider now the divergence-free initial data
Uo.n = o + (®h, 0) (x1, %2, hnx3)
with up € G. We assume that ug , — g so (®§,0)(xs,0) = 0.

We know there is a global solution to (NS) associated with
(98,0)(x1, X2, hnx3), denoted ®,(t, x), and we call u the global solution
associated with ug. We want to prove that v+ &, is a global,
approximate solution to (NS).
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Another (typical) example

Since (®f,0)(xn,0) =0, then ®,(t, x5, 0) ~ 0 so up to a small error, the
support in x3 of ®, is ~ h-1 — co.

Approximating u by a compactly supported vector field we find that the
supports of u and ®,, are asymptotically disjoint, so the two vector fields

do not interact.

That ends the proof in this model case.
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Profile decompositions

e Introduced by Gérard ('96), to describe the lack of compactness in
H5(RY) < LP(RY), extended to other Sobolev and Besov spaces by
Jaffard ('99), Koch (‘11), and to more general situations by Bahouri,
Cohen and Koch (‘11).

See also Brézis-Coron (‘85), Métivier-Schochet (‘98), Tintarev et al.
(07).

o Applications to nonlinear PDEs : among others by Merle and
Vega ('98), Bahouri and Gérard ('99), Keraani (‘01), G (‘'01),
Bégout and Vargas (‘07), Kenig and Merle (‘08), Kenig and Koch
(‘10), G, Koch and Planchon (‘12)...
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Anisotropic profile decomposition
: = LX) A dltx) = La( L, X
Define Ay, é(x) := Tn¢(7n)’ M, (%) = ¢( - An)'
Ay A

We say that AL L A2 if lim (— +

In the following we use the notation [f].(x) := f(x1, X2, £x3).

Theorem [Bahouri-G ‘12, Chemin-Bahouri-G]
Let (un)n>0 be bounded in B},, g < 1. Then, up to an extraction,

Up,n = Up + [(V,?’h + how", WS’3)]
L

+ 3 A (" + B W)+ on
j=1

ho

with (#,)neny — 0 as n — oo, and (M,);>1 are mutually orthogonal, going
to zero or infinity as n — co.

v
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Anisotropic profile decomposition

Moreover (v" 0) and w? are smooth, divergence free vector fields, and
satisfy the following bounds :

> (v s + Iwe3lls) < C,
jeN
||V,9’h('70)||3;1(R2) + ||W2’3("0)HB;)1(R2) —0.

Finally p% is a “remainder”, in a sense that for some scale-invariant
space X' containing Bi,

limsup ||ptllx =0, L—oco.
n—oo
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Time evolution of the decomposition

e Define ®9.0 := g + [(vO" + Mwh, wl3)],, and for j > 1,
L0 = Ay (V)" + Hywhh, W{;V3)}hi. Then as in the model example, for n
large enough, ®/;° generates a unique, global solution ®/(t) which can be
written for j >1 o

>, = A)\f'n%

with <T>fn satisfying "good" bounds.
e The remainder term p, can easily be evolved by the Navier-Stokes flow

since it is arbitrarily small in scale-invariant spaces. We call R, the
associate solution.
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Approximate solution

Define .
Wy 1= u,,—( Z ¢J,,+Rn)7

0<j<L
and prove that w,, exists globally.
Indeed w, solves a perturbed (NS) equation of the type

Oewp + Wy, - VW, + G, - Vw, +w, - VG, — Aw, = —H, — Vp,

with div w, = 0 and initial data w;;—o = 0.

So we need to prove that G, satisfies uniform bounds in some adequate
space YV and that H, is small in some other adequate space )’ .
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The forcing term
It is enough to prove that for all j # k,

||m sup ||Kna){1 (% K’/{‘;a')m|Ll(R+,Bfi) = 0 .

n— o0 )\Jn
Assume that M, /\K goes to zero as n goes to infinity. Then
ey ~ o~
HAKJ;‘D? ® Agﬁq)nHLl(RﬁBf:i) = ”/\I;\{,q)jn”Ll(R*;Bf:})
An gk
X ||Ag\‘;¢n||Lw(R+ny:i)

and we use the fact that

I _ o )
k
IR @lloeszy S X and IO lm ity S 55
So .
k
H/\;fnq)Jn ® /\Kﬁq)”HLl(RﬂBf’i) < *Z
’ n

which proves the result.
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Extensions

e Add geometry (here spectral localization is about a plane).
e Use more deeply the structure of divergence free vector fields.

e What about the blow-up behaviour (if such solutions exist) ? cf. for
instance [Sverak-Rusin ‘12].
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