Image Processing and related PDEs Lecture 2: Image denoising

Yves van Gennip

School of Mathematical Sciences, University of Nottingham

Minicourse on Image Processing and related PDEs University of Oxford 6 September, 2016

4 3 5 4 3 5

In the pipeline

- Heat equation
- W^{1,2} regularisation plus L² fidelity variational deblurring
- Rudin-Osher-Fatemi (ROF) variational denoising method

A B b 4 B b

A b

Examples of noise

No noise

Salt and Pepper noise

Gaussian noise

Speckle noise

Yves van Gennip (UoN)

Image denoising

Modelling noise

Additive noise

$$f = u + n$$

- f is the observed image
- *u* is the original clean image
- *n* is the noise, e.g. white Gaussian noise with mean 0 and standard deviation σ², i.e. for all *x*, *y*, the random variables *n*(*x*) and *n*(*y*) are uncorrelated and all finite marginal distributions of *n* are Gaussian with mean 0 and standard deviation σ²

A B b 4 B b

Heat equation

Heat equation

 $\begin{cases} \frac{\partial u}{\partial t} = \Delta u = \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2}, & \text{for } t > 0 \text{ and } x \in \Omega \subset \mathbb{R}^2, \\ u(0, x) = f(x), & \text{for } x \in \Omega, \\ \text{plus boundary conditions.} \end{cases}$

In image analysis there are two common choices for Ω :

• $\Omega = [0, a] \times [0, b]$, i.e Ω is the image domain, or

Q = R², in which case the image is first extended from [0, a] × [0, b] to C := [-a, a] × [-b, b] by mirror symmetry and then to all of R² by periodicity.

In case 1 we can impose Dirichlet or Neumann boundary conditions. In general, for the heat equation on \mathbb{R}^2 we need an a priori bound on the growth rate of *u* for $|x| \to \infty$ to ensure uniqueness, but in case 2 periodicity takes care of that. ($|\cdot|$ will denote Euclidean norm.)

BA 4 BA

Solution on \mathbb{R}^2 [Aubert, Kornprobst]

Consider an image $f_0 \in L^1([0, a] \times [0, b])$ and extend it to $f : \mathbb{R}^2 \to \mathbb{R}$ via mirror symmetry and periodicity as described on the previous slide. Define

$$u(t, x) := (G_{\sqrt{2t}} * f)(x) := \int_{\mathbb{R}^2} G_{\sqrt{2t}}(x - y) f(y) \, dy,$$

where $G_{\sigma}(x) := \frac{1}{2\pi\sigma^2} e^{-|x|^2/(2\sigma^2)}.$

Then *u* is the unique function satisfying

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u, & \text{for } (t, x) \in (0, \infty) \times \mathbb{R}^2, \\ \|u - f\|_{L^1(C)} \to 0, & \text{as } t \to \infty, \\ u(t, \cdot) \mid_C \in L^1(C), & \text{respecting the mirror symmetry-extension} \\ & \text{structure of } f, \text{ for } t > 0 \\ u \in C^{\infty}((0, T) \times \mathbb{R}^2), & \text{ for } T > 0. \end{cases}$$

and

- for all $t_1 > 0$, there exists c > 0 such that for all $t \ge t_1$, $\sup_{x \in \mathbb{R}^2} |u(t, x)| \le c ||f_0||_{L^1([0,a] \times [0,b])}$, and
- if $f_0 \in L^{\infty}([0, a] \times [0, b])$, then $\inf_{x \in \mathbb{R}^2} f(x) \le u(t, x) \le \sup_{x \in \mathbb{R}^2} f(x)$, for all t > 0.

Convolution with a Gaussian

Using the Fourier transform

$$F[f](w) := \int_{\mathbb{R}^2} f(x) e^{-iw \cdot x} \, dx,$$

we have

$$F[u(t,\cdot)](w) = F[G_{\sqrt{2t}} * f](w) = F[G_{\sqrt{2t}}](w)F[f](w),$$

where

$$\mathsf{F}[G_{\sqrt{2t}}](w) = e^{-|w|^2 t}.$$

Solving the heat equation/convolving with a Gaussian acts as a *low* pass filter. high frequencies (large ||w||) get suppressed, with the *scale* at which this happens determined by *t*.

A B F A B F

Example: Gaussian filtering on Gaussian noise

 $\sigma = 0.5$

 $\sigma = 1.0$

$$\sigma = 0.75$$

 $\sigma = 1.5$

・ロト ・ 四ト ・ ヨト ・ ヨト

Example: Gaussian filtering on salt and pepper noise

 $\sigma = 0.5$

 $\sigma = 1.0$

$$\sigma = 0.75$$

 $\sigma = 1.5$

・ロト ・ 四ト ・ ヨト ・ ヨト

Yves van Gennip (UoN)

Example: Gaussian filtering on speckle noise

 $\sigma = 0.5$

 $\sigma = 1.0$

$$\sigma = 0.75$$

 $\sigma = 1.5$

・ロト ・四ト ・ヨト ・ヨト

Extensions and variations

- Different filters, e.g. Wiener filter (Chan, Shen, §4.3)
- Nonlinear diffusion (Perona-Malik):

$$\begin{cases} \frac{\partial u}{\partial t} = \operatorname{div} \left(c(|\nabla u|^2) \nabla u \right), & \text{for } (t, x) \in (0, T) \times \Omega, \\ \nabla u \cdot v = 0, & \text{for } (t, x) \in (0, T) \times \partial \Omega, \\ u(0, x) = f(x), & \text{for } x \in \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^2$ is bounded and open, and $c : [0, \infty) \to (0, \infty)$ will be a function designed to inhibit smoothing close to edges in the image, while allowing smoothing away from edges.

Variational methods

< 回 > < 回 > < 回 >

The heat equation as gradient flow $Let O \subset \mathbb{R}^2$ be open bounded, and consider the

Let $\Omega \subset \mathbb{R}^2$ be open, bounded, and consider the functional $F: W^{1,2}(\Omega) \to \mathbb{R}$ defined by

$$F(u):=\frac{1}{2}\int_{\Omega}|\nabla u|^{2}.$$

Let $v \in W^{1,2}(\Omega)$ and $t \in \mathbb{R}$, to compute the L^2 gradient:

$$\frac{d}{dt}F(u+tv)\Big|_{t=0} = \frac{d}{dt}\frac{1}{2}\int_{\Omega}|\nabla u|^{2} + 2t\nabla u \cdot \nabla v + t^{2}|\nabla v|^{2}\Big|_{t=0}$$
$$= \int_{\Omega}\nabla u \cdot \nabla v = \int_{\Omega}v(-\Delta u) + \int_{\partial\Omega}v \nabla u \cdot v$$
$$= \langle -\Delta u, v \rangle_{L^{2}(\Omega)} + \int_{\partial\Omega}v \nabla u \cdot v.$$

Hence the L^2 gradient flow, given some initial u_0 , is

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u, & \text{for } (t, x) \in (0, \infty) \times \Omega, \\ \nabla u \cdot v = 0, & \text{for } (t, x) \in (0, \infty) \times \partial \Omega, \\ u(0, x) = u_0(x), & \text{for } x \in \Omega. \end{cases}$$

Yves van Gennip (UoN)

A first try at variational denoising

 $W^{1,2}$ regulariser and L^2 fidelity (Aubert, Kornprobst, §3.2) Let $\lambda > 0, f \in L^2(\Omega)$, and $F : W^{1,2}(\Omega) \to \mathbb{R}$, given by

$$F(u) := \int_{\Omega} |\nabla u|^2 + \frac{\lambda}{2} \int_{\Omega} (f-u)^2.$$

Minimise:

 $u^* \in \operatorname*{arg\,min}_{u \in W^{1,2}(\Omega)} F(u).$

- $\int_{\Omega} (f-u)^2$ is a fidelity term
- $\int_{\Omega} |\nabla u|^2$ is a *regulariser*. In the current set-up, it prevents us from getting the unwanted solution $u^* = f$. In some future cases it will even be mathematically necessary to avoid ill-posed problems.

Gradient flow and the role of λ

Minimising *F* is equivalent to minimising $\frac{1}{\lambda}F$. Taking the L^2 gradient flow of the latter:

$$\begin{cases} \frac{\partial u}{\partial t} = \lambda^{-1} \Delta u - (u - f), & \text{for } (t, x) \in (0, \infty) \times \Omega, \\ \nabla u \cdot \nu, & \text{for } (t, x) \in (0, \infty) \times \partial \Omega, \\ u(0, x) = u_0(x), & \text{for } x \in \Omega. \end{cases}$$

Letting $s = t/\lambda$, we get

$$\frac{\partial u}{\partial s} = \Delta u - \lambda (u - f).$$

For $\lambda > 1$ the diffusion process described by $\frac{\partial u}{\partial s} = \Delta u$ is slower than that described by $\frac{\partial u}{\partial t} = \Delta u$. We see that increasing λ reduces smoothing (at a fixed time *t*).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Direct method in the calculus of variations We let $\Omega = (0, a) \times (0, b)$.

Existence of minimisers; Evans §8.2, Dacorogna §3

Let $f \in L^2(\Omega)$ and $\lambda > 0$, then there exists a minimiser of F over $W^{1,2}(\Omega)$.

• Let $\{u_n\} \subset W^{1,2}(\Omega)$ be a minimising sequence, i.e.

$$F(u_n) \to m := \inf_{u \in W^{1,2}(\Omega)} F(u), \quad \text{ as } n \to \infty.$$

- Then there is a C > 0 such that, for all $n, F(u_n) \leq C$.
- In particular $\int_{\Omega} |\nabla u_n|^2 \le C$ and $\|u_n\|_{L^2(\Omega)} \le \|u_n f\|_{L^2(\Omega)} + \|f\|_{L^2(\Omega)} \le C + \|f\|_{L^2(\Omega)}.$
- Hence $\{u_n\}$ is bounded in $W^{1,2}(\Omega)$ and so there is a $u \in W^{1,2}(\Omega)$ such that $u_n \rightharpoonup u^*$ (weakly in $W^{1,2}(\Omega)$) as $n \rightarrow \infty$ TBC...

Existence proof, continued

- Since ∇ : W^{1,2}(Ω) → L²(Ω) is linear and bounded, ∇u_n → ∇u^{*} (weakly in L²(Ω)).
- Since norms are weakly lower semicontinuous with respect to their own induced natural topology (Brezis §III.3), we have

$$\int_{\Omega} |\nabla u^*|^2 \leq \liminf_{n\to\infty} \int_{\Omega} |\nabla u_n|^2.$$

- By the Rellich-Kondrachov theorem (Adams §6) W^{1,2}(Ω) is compactly embedded into L²(Ω), thus u_n → u^{*} in the L²(Ω) metric.
- Since u → ||u − f||²_{L²(Ω)} is continuous w.r.t. L²(Ω) convergence, we find

$$F(u^*) \leq \liminf_{n\to\infty} F(u_n) = m.$$

• Therefore $m = F(u^*)$ and so u^* is a minimiser of F over $W^{1,2}$.

-

A B A A B A

Uniqueness of the solution

Uniqueness of the miniser

Let $f \in L^2(\Omega)$ and $\lambda > 0$, then the minimiser of F over $W^{1,2}(\Omega)$ is unique.

Uniqueness of the minimiser follows from strict convexity of *F* and convexity of $W^{1,2}(\Omega)$: Assume u_1 and u_2 are two distinct minimisers of *F* over $W^{1,2}(\Omega)$. Let

 $s \in (0, 1)$, then by strict convexity

$$F(su_1 + (1 - s)u_2) < sF(u_1) + (1 - s)F(u_2) = F(u_1),$$

since $F(u_1) = F(u_2)$. Since $W^{1,2}(\Omega)$ is convex, we have $su_1 + (1 - s)u_2 \in W^{1,2}(\Omega)$, which contradicts the fact that u_1 is a minimiser of F over $W^{1,2}(\Omega)$.

Rudin-Osher-Fatemi

Total variation regulariser and L^2 fidelity (Rudin, Osher, Fatemi) Let $\lambda > 0$, $f \in L^2(\Omega)$, and $F : BV(\Omega) \to \mathbb{R}$, given by

$$G(u) := \int_{\Omega} |\nabla u| + \frac{\lambda}{2} \int_{\Omega} (f-u)^2.$$

Minimise:

 $u^* \in \operatorname*{arg\,min}_{u \in BV(\Omega)} F(u).$

• Total variation (TV):

$$\int_{\Omega} |\nabla u| := \sup\{\int_{\Omega} u \operatorname{div} g : g \in C^{1}_{c}(\Omega, \mathbb{R}^{2}), \forall x \in \Omega, |g(x)| \leq 1\}.$$

• Functions of bounded variation:

$$BV(\Omega) := \{ u \in L^{1}(\Omega) : \|u\|_{BV(\Omega)} := \|u\|_{L^{1}(\Omega)} + \int_{\Omega} |\nabla u| < \infty \}.$$

< 回 > < 三 > < 三 >

Total variation of an indicator function

(Giusti §1) Let $E \subset \mathbb{R}^2$ have a C^2 boundary and define

$$\chi_{E}(x) := \begin{cases} 1, & \text{if } x \in E, \\ 0, & \text{if } x \notin E. \end{cases}$$

Let $g \in \mathcal{C}^1_c(\Omega, \mathbb{R}^2)$ with, for all $x \in \Omega$, $|g(x)| \leq 1$, then

$$\int_{\Omega} \chi_{E} \operatorname{div} g = \int_{E \cap \Omega} \operatorname{div} g = \int_{\partial(E \cap \Omega)} g \cdot \nu \leq \int_{\partial(E \cap \Omega)} |\nu|^{2} = \mathcal{H}^{1}(\partial(E \cap \Omega)),$$

where we used Cauchy-Schwarz with $|g(x)| \le 1 = |\nu(x)|$. \mathcal{H}^1 denotes the 1-dimensional Hausdorff measure. Hence

$$\int_{\Omega} |\nabla \chi_{\boldsymbol{E}}| \leq \mathcal{H}^{1}(\partial(\boldsymbol{E} \cap \Omega)).$$

...TBC...

< 🗇 > < 🖻 > < 🖻 >

Total variation of an indicator function, continued

Since *E* has C^2 boundary, we can extend the normal field on ∂E to a function $N \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ such that for all $x \in \mathbb{R}^2$, $|N(x)| \leq 1$. Let $\eta \in C_0^{\infty}(\Omega)$ with, for all $x \in \Omega$, $|\eta(x)| \leq 1$, then $g := N\eta$ is admissible in the definition of TV. Hence

$$\int_{\Omega} |\nabla \chi_{E}| \geq \int_{\Omega} \chi_{E} \operatorname{div} \left(N\eta \right) = \int_{\partial(\Omega \cap E)} \eta N \cdot \nu = \int_{\partial(\Omega \cap E)} \eta.$$

Taking the supremum over all such η gives

$$\int_{\Omega} |\nabla \chi_{\boldsymbol{E}}| \geq \mathcal{H}^{1}(\partial(\boldsymbol{E} \cap \Omega)).$$

We conclude

$$\int_{\Omega} |\nabla \chi_{\boldsymbol{E}}| = \mathcal{H}^1(\partial(\boldsymbol{E} \cap \Omega)).$$

In fact, this construction can be used to *define* the concept of perimeter for general Borel sets *E*. It turns out that this concept coincides with other concepts of perimeter, such as the \mathcal{H}^1 measures of the reduced boundary and the essential boundary (Ambrosio, Fusco, Pallara §3.5),

Yves van Gennip (UoN)

Lower semicontinuity and compactness

Lower semicontinuity of total variation Let $\{u_n\} \subset BV(\Omega)$ be a sequence which converges to a function *u* in $L^1_{loc}(\Omega)$. Then

$$\int_{\Omega} |\nabla u| \leq \liminf_{n\to\infty} \int_{\Omega} |\nabla u_n|.$$

Proof: Let $g \in C_c^1(\Omega, \mathbb{R}^2)$ with, for all $x \in \Omega$, $|g(x)| \le 1$, then

$$\int_{\Omega} u \operatorname{div} g = \lim_{n \to \infty} \int_{\Omega} u_n \operatorname{div} g \leq \liminf_{n \to \infty} \int_{\Omega} |\nabla u_n|.$$

Compactness (Evans, Gariepy §5.2) $BV(\Omega)$ is compactly embedded in $L^1(\Omega)$.

3

Existence and uniqueness of solutions

Existence of a unique minimiser; Chan, Shen §4.5.4, Schönlieb §3.2

Let $f \in L^2(\Omega)$ and $\lambda > 0$, then there exists a unique minimiser of G over $BV(\Omega)$.

The existence proof follows analogously to the one for our previous functional F. The main difference is that the strong convergence of the minimising sequence now is in $L^{1}(\Omega)$ (by the compactness on the previous slide, using the uniform bounds on $\int_{\Omega} |\nabla u_n|$ and $\|u_n\|_{L^1(\Omega)} \leq C \|u_n\|_{L^2(\Omega)}$), with only weak convergence in $L^2(\Omega)$ (because of the uniform bound on $||f - u_n||_{L^2(\Omega)}$). Combining the $L^{1}(\Omega)$ lower semicontinuity of TV with the weak- $L^{2}(\Omega)$ lower semicontinuity of the $L^2(\Omega)$ norm then gives existence of a solution. Since G is strictly convex and $BV(\Omega)$ is convex, uniqueness of the solution follows as before

Formal L^2 gradient flow

Formally we compute, for $u, v \in W^{1,1}(\Omega), t > 0$,

$$\frac{d}{dt} \int_{\Omega} |\nabla(u+tv)| \bigg|_{t=0} = \int_{\Omega} \frac{\nabla v \cdot \nabla(u+tv)}{|\nabla(u+tv)|} \bigg|_{t=0}$$
$$= -\int_{\Omega} v \operatorname{div} \left(\frac{\nabla u}{|\nabla u|}\right) + \int_{\partial \Omega} v \frac{\nabla u}{|\nabla u|} \cdot v.$$

This leads to the formal gradient flow

$$\begin{cases} \frac{\partial u}{\partial t} = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) - \lambda(u - f), & \text{for } (t, x) \in (0, T) \times \Omega, \\ \nabla u \cdot v = 0 & \text{for } (t, x) \in (0, T) \times \partial\Omega, \\ u(0, x) = u_0(x), & \text{for } x \in \Omega. \end{cases}$$

- Convex analysis and subdifferentials needed for rigorous computations.
- Compare with Perona-Malik!

• div
$$\left(\frac{\nabla u}{|\nabla u|}\right)$$
 gives the curvature of the level sets of $u!$

Show example(s) on Image Processing On Line: http://www.ipol.im/

э

(a) < (a) < (b) < (b)

Bibliography: image analysis specific references

- G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing — Partial Differential Equations and the Calculus of Variations, Springer, 2006
- 2 T.F. Chan, J. Shen, *Image Processing and Analysis*, SIAM, 2005
- L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 1992, 259–268
- C.-B. Schönlieb, Image Processing Variational and PDE Methods, online lecture notes, 2013/14, http://www.damtp.cam.ac.uk/user/cbs31/Teaching_ files/PDEImageLectureNotesLent2014.pdf

3

Bibliography: general PDE and analysis references

- R.A. Adams, J.J.F. Fournier, Sobolev Spaces, 2nd edition, Elsevier, 2008
- L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, 2006
- I. Brezis, Analyse Fonctionnelle Théorie et applications, Dunod, 2005
- B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, 2008
- **1** L.C. Evans, *Partial Differential Equations*, AMS, 2002
- L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992
- E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984
- S. John, Partial Differential Equations, 4th ed., Springer, 1982