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In the pipeline

@ Heat equation
@ W2 regularisation plus L2 fidelity variational deblurring
@ Rudin-Osher-Fatemi (ROF) variational denoising method
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Examples of noise
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Modelling noise

Additive noise
f=u-+n

@ fis the observed image
@ u is the original clean image

@ nis the noise, e.g. white Gaussian noise with mean 0 and

standard deviation ¢, i.e. for all x, y, the random variables n(x)
and n(y) are uncorrelated and all finite marginal distributions of n

are Gaussian with mean 0 and standard deviation ¢2
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Heat equation

Heat equation
W _ Ay = ax2+ax2' fort >0and x € QO C R?,

u(0, x) = f(x), for x € O,
plus boundary conditions.

In image analysis there are two common choices for Q:
Q@ O=[0,4a] x[0,b],i.e Qis the image domain, or
@ O = R?, in which case the image is first extended from
[0,a] x [0,b] to C:= [—a, a] x [—b, b] by mirror symmetry and
then to all of R? by periodicity.
In case 1 we can impose Dirichlet or Neumann boundary conditions. In
general, for the heat equation on IR? we need an a priori bound on the
growth rate of u for | x| — oo to ensure uniqueness, but in case 2
periodicity takes care of that. (| - | will denote Euclidean norm.)
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Solution on IR? [Aubert, Kornprobst]

Consider animage f € L' ([0, a] x [0, b]) and extend it to f : R? — R via
mirror symmetry and periodicity as described on the previous slide. Define

u(t,X) i= (G g % ) (x) = /]RQ G g (x — )F(y) dy,

where G, (x) := —27202 e IX?/(20%),

Then u is the unique function satisfying

U = Au, for (t,x) € (0,00) x R2,
||U—f||L1(C)—>0, ast — oo,
u(t,)) |c € L'(C), respecting the mirror symmetry-extension

structure of f,fort > 0
ue C®((0,T)xR?), forT >0.

and

@ for all t; > 0, there exists ¢ > 0 such that for all t > ¢,
supyege [U(t, X)| < ¢l foll 11 (0,4 < [0,6))> @D

@ if fy € L*([0, a] x [0, b]), then inf, 2 f(x) < u(t, x) < sup,ge f(x), for
all t > 0.
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Convolution with a Gaussian

Using the Fourier transform

we have

Flu(t,)](w) = FIG g * fl(w) = F[G 5] (w)F[f](w),
where »
FIG zl(w) = e 1"t

Solving the heat equation/convolving with a Gaussian acts as a low
pass filter: high frequencies (large ||w||) get suppressed, with the scale
at which this happens determined by t.
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Example: Gaussian filtering on Gaussian noise
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Example: Gaussian filtering on salt and pepper noise
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Example: Gaussian filtering on speckle noise
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Extensions and variations

o Different filters, e.g. Wiener filter (Chan, Shen, §4.3)
@ Nonlinear diffusion (Perona-Malik):

W = div (e(|Vul?)Vu), for(t,x) € (0,T) x Q,
Vu-v=0, for (t,x) € (0, T) x 90},
u(0, x) = f(x), forx € O,

where Q) C IR? is bounded and open, and ¢ : [0, c0) — (0, o) will
be a function designed to inhibit smoothing close to edges in the
image, while allowing smoothing away from edges.

@ Variational methods
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The heat equation as gradient flow
Let Q C RR? be open, bounded, and consider the functional
F: W'2(Q) — R defined by

_ 1 2

Let v € W'2(Q) and t € IR, to compute the L? gradient:

gF(u+z‘v)

2 2
~ dt2/ VU2 +2tVu- Vv + B|V[2

t=0 t=0

:/VU-VV:/ v(—Au)+/ vVu-v
QO QO Q)
= (—Au,v / vVu-v.

( )i2(q) 0 v

Hence the L? gradient flow, given some initial up, is
= Au, for (t,x) € (0,00) x Q,
Vu-v=0, for (¢, x) € (0,00) x 9,
u(0,x) = up(x), forx e Q.
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A first try at variational denoising

W12 regulariser and L? fidelity (Aubert, Kornprobst, §3.2)
Let A >0, f € L?(Q), and F : W'2(Q) — R, given by

Fu) ::/Q|Vu|2+%/0(f—u)2.

Minimise:
u* € argmin F(u).
uew2(Q)

o [ (f—u)?is a fidelity term

° |, |Vul|? is a regulariser. In the current set-up, it prevents us from
getting the unwanted solution u* = f. In some future cases it will
even be mathematically necessary to avoid ill-posed problems.
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Gradient flow and the role of A

Minimising F is equivalent to minimising %F. Taking the L2 gradient
flow of the latter:

W= A"TAu— (u—f), for(t x) € (0,00)xQ,
Vu-v, for (t,x) € (0,00) x 0Q),
u(0, x) = ug(x), for x € Q.

Letting s = t/A, we get

ou
38 =Au—A(u—f).

For A > 1 the diffusion process described by E;l; = Au is slower than

that described by aa’: = Au. We see that increasing A reduces
smoothing (at a fixed time t).
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Direct method in the calculus of variations
Welet ) = (0, a) x (0, b).
Existence of minimisers; Evans §8.2, Dacorogna §3

Let f € L?(Q) and A > 0, then there exists a minimiser of F over
wt2(Q).

@ Let {u,} € W'2(Q) be a minimising sequence, i.e.

Fluy, — m:= inf - F(u), asn— .
(n) uew2(Q) () e

@ Then there is a C > 0 such that, for all n, F(u,) < C.

@ lIn particular/ |Vup|? < Cand
O

unll 2y < lun = Fll2q) + Il 2y < C+ [Ifll 2(00)-

@ Hence {up} is bounded in W'2(Q) and so thereis a u € W'2(Q)

such that u, — u* (weakly in W'2(Q)) as n — co.
... TBC...
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Existence proof, continued

@ Since V: W'2(Q) — L?(Q) is linear and bounded, Vu, — Vu*
(weakly in L2(Q))).

@ Since norms are weakly lower semicontinuous with respect to
their own induced natural topology (Brezis §l11.3), we have

/ VU2 < Iiminf/ IV un 2.
O n—oo O

@ By the Rellich-Kondrachov theorem (Adams §6) W'2(Q) is
compactly embedded into L2(Q)), thus u, — u* in the L2(Q)
metric.

@ Since u — |ju— fHLz(Q is continuous w.r.t. L2(Q) convergence,
we find

F(u*) <liminf F(up) = m.

n—oo

@ Therefore m = F(u*) and so u* is a minimiser of F over W12
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Uniqueness of the solution

Uniqueness of the miniser

Let f € L2(Q)) and A > 0, then the minimiser of F over W'2(Q) is
unique.

Uniqueness of the minimiser follows from strict convexity of F and
convexity of W'2(Q):

Assume uy and u, are two distinct minimisers of F over W'2(Q). Let
s € (0,1), then by strict convexity

F(SU1 =+ (1 — S)UQ) < SF(U1) =+ (1 — S)F(UQ) = F(U1),

since F(uy) = F(up). Since W'2(Q) is convex, we have
suy + (1 — s)up € W'2(Q)), which contradicts the fact that vy is a
minimiser of F over W'2(Q).
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Rudin-Osher-Fatemi

Total variation regulariser and L? fidelity (Rudin, Osher, Fatemi)
Let A >0, f € L?(Q), and F : BV(Q) — R, given by

G(u) ::/vaU|+%/0(f—u)2.

Minimise:

u* € argmin F(u).
ueBV(Q)

@ Total variation (TV):

/0 Vu| := sup{/Q udivg: g € CL(Q,R?), ¥x € O, [g(x)| < 1}.

@ Functions of bounded variation:

BV(Q) == {u € L'(Q) : [|lullav(q) = IIUll1(q) +/Q |Vul < eo}.
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Total variation of an indicator function

(Giusti §1) Let E C R? have a C? boundary and define

oo [1 TxEE
XE =0, itx ¢ E.

Let g € C(Q, R?) with, for all x € Q, |g(x)| < 1, then

di :/ di =/ ~§/ 2 _ 41 (A(ENQ)),
/QXE VI= Jea V9 a(EmQ)g Y A(ENQ) i (o )

where we used Cauchy-Schwarz with |g(x)| < 1 = |v(x)|. H' denotes
the 1-dimensional Hausdorff measure. Hence

/Q \Vxe| < H'(Q(ENQ)).
..TBC...
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Total variation of an indicator function, continued
Since E has C? boundary, we can extend the normal field on 9E to a
function N € C'(IR?,IR?) such that for all x € R?, [N(x)| < 1. Let

n € Cy(Q)) with, for all x € Q, |7(x)| < 1, then g := N is admissible
in the definition of TV. Hence

v >/ div (N :/ N :/
/Q| XE|_ QXE |v( ;7) a(mE)’7 v a(QmE)17

Taking the supremum over all such 7 gives

[ IVxel = #' @(ENQ)).

We conclude
[ IVxel = #'@(ENQ)).

In fact, this construction can be used to define the concept of perimeter
for general Borel sets E. It turns out that this concept coincides with
other concepts of perimeter, such as the 7' measures of the reduced
boundary and the essential boundary (Ambrosio, Fusco, Pallara §3.5).
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Lower semicontinuity and compactness

Lower semicontinuity of total variation

Let {u,} C BV(Q) be a sequence which converges to a function v in

Ll (Q). Then

/ |Vu| < Iiminf/ |Vun|.
@) n—oo O

Proof: Let g € C(Q, R?) with, for all x € Q, |g(x)| < 1, then
/udivg: lim / undivggliminf/ VU
O n—oo jO) n—oo O

Compactness (Evans, Gariepy §5.2)
BV(Q) is compactly embedded in L' (Q)).
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Existence and uniqueness of solutions

Existence of a unique minimiser; Chan, Shen §4.5.4, Schénlieb
§3.2

Let f € L2(Q) and A > 0, then there exists a unique minimiser of G
over BV(Q)).

The existence proof follows analogously to the one for our previous
functional F. The main difference is that the strong convergence of the
minimising sequence now is in L'(Q) (by the compactness on the
previous slide, using the uniform bounds on | |Vu,| and

[unllr ) < Cllunll2()), with only weak convergence in L2(Q))
(because of the uniform bound on || — up|| 2())- Combining the
L'(Q)) lower semicontinuity of TV with the weak-L2(Q2) lower
semicontinuity of the L2(Q)) norm then gives existence of a solution.
Since G is strictly convex and BV(Q) is convex, uniqueness of the
solution follows as before.
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Formal L2 gradient flow
Formally we compute, for u,v € W'1(Q), t > 0,

d Vv V(uttv)
9 [ vyt :/
dt/o' Wrml| = Jo V)]

t=0

——/ vdiv <VU>—|—/ v—vu v
o Vyl 00 |Vl

This leads to the formal gradient flow

W _ iy (Wu') Mu—f), for(t,x) € (0,T) xQ,
Vu-v=0 for (t,x) € (0, T) x 0Q),
u(0, x) = ug(x), for x € Q).

@ Convex analysis and subdifferentials needed for rigorous
computations.
@ Compare with Perona-Malik!

@ div (IVUI> gives the curvature of the level sets of u!
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Examples

Show example(s) on Image Processing On Line:
http://www.ipol.im/
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