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In the pipeline

Heat equation
W 1,2 regularisation plus L2 fidelity variational deblurring
Rudin-Osher-Fatemi (ROF) variational denoising method
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Examples of noise

No noise Gaussian noise

Salt and Pepper noise Speckle noise
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Modelling noise

Additive noise
f = u + n

f is the observed image
u is the original clean image
n is the noise, e.g. white Gaussian noise with mean 0 and
standard deviation σ2, i.e. for all x , y , the random variables n(x)
and n(y) are uncorrelated and all finite marginal distributions of n
are Gaussian with mean 0 and standard deviation σ2
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Heat equation

Heat equation
∂u
∂t = ∆u = ∂2u

∂x2
1
+ ∂2u

∂x2
2
, for t > 0 and x ∈ Ω ⊂ R2,

u(0, x) = f (x), for x ∈ Ω,

plus boundary conditions.

In image analysis there are two common choices for Ω:
1 Ω = [0,a]× [0,b], i.e Ω is the image domain, or
2 Ω = R2, in which case the image is first extended from

[0,a]× [0,b] to C := [−a,a]× [−b,b] by mirror symmetry and
then to all of R2 by periodicity.

In case 1 we can impose Dirichlet or Neumann boundary conditions. In
general, for the heat equation on R2 we need an a priori bound on the
growth rate of u for |x | → ∞ to ensure uniqueness, but in case 2
periodicity takes care of that. (| · | will denote Euclidean norm.)
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Solution on R2 [Aubert, Kornprobst]
Consider an image f0 ∈ L1([0,a]× [0,b]) and extend it to f : R2 → R via
mirror symmetry and periodicity as described on the previous slide. Define

u(t , x) := (G√2t ∗ f )(x) :=
∫

R2
G√2t (x − y)f (y) dy ,

where Gσ(x) :=
1

2πσ2 e−|x |
2/(2σ2).

Then u is the unique function satisfying

∂u
∂t = ∆u, for (t , x) ∈ (0,∞)×R2,

‖u − f‖L1(C) → 0, as t → ∞,

u(t , ·) |C ∈ L1(C), respecting the mirror symmetry-extension
structure of f , for t > 0

u ∈ C∞((0,T )×R2), for T > 0.

and

for all t1 > 0, there exists c > 0 such that for all t ≥ t1,
supx∈R2 |u(t , x)| ≤ c‖f0‖L1([0,a]×[0,b]), and

if f0 ∈ L∞([0,a]× [0,b]), then infx∈R2 f (x) ≤ u(t , x) ≤ supx∈R2 f (x), for
all t > 0.

Yves van Gennip (UoN) Image denoising Oxford September 2016 6 / 26



Convolution with a Gaussian

Using the Fourier transform

F [f ](w) :=
∫

R2
f (x)e−iw ·x dx ,

we have

F [u(t , ·)](w) = F [G√2t ∗ f ](w) = F [G√2t ](w)F [f ](w),

where
F [G√2t ](w) = e−|w |

2t .

Solving the heat equation/convolving with a Gaussian acts as a low
pass filter: high frequencies (large ‖w‖) get suppressed, with the scale
at which this happens determined by t .
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Example: Gaussian filtering on Gaussian noise

σ = 0.5 σ = 0.75

σ = 1.0 σ = 1.5
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Example: Gaussian filtering on salt and pepper noise

σ = 0.5 σ = 0.75

σ = 1.0 σ = 1.5
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Example: Gaussian filtering on speckle noise

σ = 0.5 σ = 0.75

σ = 1.0 σ = 1.5
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Extensions and variations

Different filters, e.g. Wiener filter (Chan, Shen, §4.3)
Nonlinear diffusion (Perona-Malik):

∂u
∂t = div

(
c(|∇u|2)∇u

)
, for (t , x) ∈ (0,T )×Ω,

∇u · ν = 0, for (t , x) ∈ (0,T )× ∂Ω,

u(0, x) = f (x), for x ∈ Ω,

where Ω ⊂ R2 is bounded and open, and c : [0,∞)→ (0,∞) will
be a function designed to inhibit smoothing close to edges in the
image, while allowing smoothing away from edges.
Variational methods
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The heat equation as gradient flow
Let Ω ⊂ R2 be open, bounded, and consider the functional
F : W 1,2(Ω)→ R defined by

F (u) :=
1
2

∫
Ω
|∇u|2.

Let v ∈ W 1,2(Ω) and t ∈ R, to compute the L2 gradient:

d
dt

F (u + tv)
∣∣∣∣
t=0

=
d
dt

1
2

∫
Ω
|∇u|2 + 2t∇u · ∇v + t2|∇v |2

∣∣∣∣
t=0

=
∫

Ω
∇u · ∇v =

∫
Ω

v (−∆u) +
∫

∂Ω
v ∇u · ν

= 〈−∆u, v〉L2(Ω) +
∫

∂Ω
v ∇u · ν.

Hence the L2 gradient flow, given some initial u0, is
∂u
∂t = ∆u, for (t , x) ∈ (0,∞)×Ω,

∇u · ν = 0, for (t , x) ∈ (0,∞)× ∂Ω,

u(0, x) = u0(x), for x ∈ Ω.
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A first try at variational denoising

W 1,2 regulariser and L2 fidelity (Aubert, Kornprobst, §3.2)

Let λ > 0, f ∈ L2(Ω), and F : W 1,2(Ω)→ R, given by

F (u) :=
∫

Ω
|∇u|2 + λ

2

∫
Ω
(f − u)2.

Minimise:
u∗ ∈ arg min

u∈W 1,2(Ω)

F (u).

∫
Ω(f − u)2 is a fidelity term∫
Ω |∇u|2 is a regulariser. In the current set-up, it prevents us from

getting the unwanted solution u∗ = f . In some future cases it will
even be mathematically necessary to avoid ill-posed problems.
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Gradient flow and the role of λ

Minimising F is equivalent to minimising 1
λ F . Taking the L2 gradient

flow of the latter:
∂u
∂t = λ−1∆u − (u − f ), for (t , x) ∈ (0,∞)×Ω,

∇u · ν, for (t , x) ∈ (0,∞)× ∂Ω,

u(0, x) = u0(x), for x ∈ Ω.

Letting s = t/λ, we get

∂u
∂s

= ∆u − λ(u − f ).

For λ > 1 the diffusion process described by
∂u
∂s

= ∆u is slower than

that described by
∂u
∂t

= ∆u. We see that increasing λ reduces
smoothing (at a fixed time t).
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Direct method in the calculus of variations
We let Ω = (0,a)× (0,b).

Existence of minimisers; Evans §8.2, Dacorogna §3

Let f ∈ L2(Ω) and λ > 0, then there exists a minimiser of F over
W 1,2(Ω).

Let {un} ⊂ W 1,2(Ω) be a minimising sequence, i.e.

F (un)→ m := inf
u∈W 1,2(Ω)

F (u), as n→ ∞.

Then there is a C > 0 such that, for all n, F (un) ≤ C.

In particular
∫

Ω
|∇un|2 ≤ C and

‖un‖L2(Ω) ≤ ‖un − f‖L2(Ω) + ‖f‖L2(Ω) ≤ C + ‖f‖L2(Ω).

Hence {un} is bounded in W 1,2(Ω) and so there is a u ∈ W 1,2(Ω)
such that un ⇀ u∗ (weakly in W 1,2(Ω)) as n→ ∞.
... TBC...
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Existence proof, continued

Since ∇ : W 1,2(Ω)→ L2(Ω) is linear and bounded, ∇un ⇀ ∇u∗

(weakly in L2(Ω)).
Since norms are weakly lower semicontinuous with respect to
their own induced natural topology (Brezis §III.3), we have∫

Ω
|∇u∗|2 ≤ lim inf

n→∞

∫
Ω
|∇un|2.

By the Rellich-Kondrachov theorem (Adams §6) W 1,2(Ω) is
compactly embedded into L2(Ω), thus un → u∗ in the L2(Ω)
metric.
Since u 7→ ‖u − f‖2

L2(Ω)
is continuous w.r.t. L2(Ω) convergence,

we find
F (u∗) ≤ lim inf

n→∞
F (un) = m.

Therefore m = F (u∗) and so u∗ is a minimiser of F over W 1,2.
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Uniqueness of the solution

Uniqueness of the miniser

Let f ∈ L2(Ω) and λ > 0, then the minimiser of F over W 1,2(Ω) is
unique.

Uniqueness of the minimiser follows from strict convexity of F and
convexity of W 1,2(Ω):
Assume u1 and u2 are two distinct minimisers of F over W 1,2(Ω). Let
s ∈ (0,1), then by strict convexity

F (su1 + (1− s)u2) < sF (u1) + (1− s)F (u2) = F (u1),

since F (u1) = F (u2). Since W 1,2(Ω) is convex, we have
su1 + (1− s)u2 ∈ W 1,2(Ω), which contradicts the fact that u1 is a
minimiser of F over W 1,2(Ω).
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Rudin-Osher-Fatemi
Total variation regulariser and L2 fidelity (Rudin, Osher, Fatemi)

Let λ > 0, f ∈ L2(Ω), and F : BV (Ω)→ R, given by

G(u) :=
∫

Ω
|∇u|+ λ

2

∫
Ω
(f − u)2.

Minimise:
u∗ ∈ arg min

u∈BV (Ω)

F (u).

Total variation (TV):∫
Ω
|∇u| := sup{

∫
Ω

u div g : g ∈ C1
c (Ω,R2), ∀x ∈ Ω, |g(x)| ≤ 1}.

Functions of bounded variation:

BV (Ω) := {u ∈ L1(Ω) : ‖u‖BV (Ω) := ‖u‖L1(Ω) +
∫

Ω
|∇u| < ∞}.
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Total variation of an indicator function

(Giusti §1) Let E ⊂ R2 have a C2 boundary and define

χE (x) :=

{
1, if x ∈ E ,

0, if x /∈ E .

Let g ∈ C1
c (Ω,R2) with, for all x ∈ Ω, |g(x)| ≤ 1, then∫

Ω
χEdiv g =

∫
E∩Ω

div g =
∫

∂(E∩Ω)
g · ν ≤

∫
∂(E∩Ω)

|ν|2 = H1(∂(E ∩Ω)),

where we used Cauchy-Schwarz with |g(x)| ≤ 1 = |ν(x)|. H1 denotes
the 1-dimensional Hausdorff measure. Hence∫

Ω
|∇χE | ≤ H1(∂(E ∩Ω)).

...TBC...
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Total variation of an indicator function, continued
Since E has C2 boundary, we can extend the normal field on ∂E to a
function N ∈ C1(R2,R2) such that for all x ∈ R2, |N(x)| ≤ 1. Let
η ∈ C∞

0 (Ω) with, for all x ∈ Ω, |η(x)| ≤ 1, then g := Nη is admissible
in the definition of TV. Hence∫

Ω
|∇χE | ≥

∫
Ω

χEdiv (Nη) =
∫

∂(Ω∩E)
ηN · ν =

∫
∂(Ω∩E)

η.

Taking the supremum over all such η gives∫
Ω
|∇χE | ≥ H1(∂(E ∩Ω)).

We conclude ∫
Ω
|∇χE | = H1(∂(E ∩Ω)).

In fact, this construction can be used to define the concept of perimeter
for general Borel sets E . It turns out that this concept coincides with
other concepts of perimeter, such as the H1 measures of the reduced
boundary and the essential boundary (Ambrosio, Fusco, Pallara §3.5).
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Lower semicontinuity and compactness

Lower semicontinuity of total variation
Let {un} ⊂ BV (Ω) be a sequence which converges to a function u in
L1

loc(Ω). Then ∫
Ω
|∇u| ≤ lim inf

n→∞

∫
Ω
|∇un|.

Proof: Let g ∈ C1
c (Ω,R2) with, for all x ∈ Ω, |g(x)| ≤ 1, then∫

Ω
u div g = lim

n→∞

∫
Ω

un div g ≤ lim inf
n→∞

∫
Ω
|∇un|.

Compactness (Evans, Gariepy §5.2)

BV (Ω) is compactly embedded in L1(Ω).
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Existence and uniqueness of solutions

Existence of a unique minimiser; Chan, Shen §4.5.4, Schönlieb
§3.2
Let f ∈ L2(Ω) and λ > 0, then there exists a unique minimiser of G
over BV (Ω).

The existence proof follows analogously to the one for our previous
functional F . The main difference is that the strong convergence of the
minimising sequence now is in L1(Ω) (by the compactness on the
previous slide, using the uniform bounds on

∫
Ω |∇un| and

‖un‖L1(Ω) ≤ C‖un‖L2(Ω)), with only weak convergence in L2(Ω)
(because of the uniform bound on ‖f − un‖L2(Ω)). Combining the
L1(Ω) lower semicontinuity of TV with the weak-L2(Ω) lower
semicontinuity of the L2(Ω) norm then gives existence of a solution.
Since G is strictly convex and BV (Ω) is convex, uniqueness of the
solution follows as before.
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Formal L2 gradient flow
Formally we compute, for u, v ∈ W 1,1(Ω), t > 0,

d
dt

∫
Ω
|∇(u + tv)|

∣∣∣∣
t=0

=
∫

Ω

∇v · ∇(u + tv)
|∇(u + tv)|

∣∣∣∣
t=0

= −
∫

Ω
v div

(
∇u
|∇u|

)
+
∫

∂Ω
v
∇u
|∇u| · ν.

This leads to the formal gradient flow
∂u
∂t = div

(
∇u
|∇u|

)
− λ(u − f ), for (t , x) ∈ (0,T )×Ω,

∇u · ν = 0 for (t , x) ∈ (0,T )× ∂Ω,

u(0, x) = u0(x), for x ∈ Ω.

Convex analysis and subdifferentials needed for rigorous
computations.
Compare with Perona-Malik!

div
(
∇u
|∇u|

)
gives the curvature of the level sets of u!
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Examples

Show example(s) on Image Processing On Line:
http://www.ipol.im/
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