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Coming up

Variational non-blind deblurring
Variational blind deblurring
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Examples of blur

No blur Gaussian blur

Motion blur Atmospheric blur1
1Gilles, Osher, 2012
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Modelling blur
Chan, Shen §5.1

Linear blur (and additive noise)
f = K (u) + n

f is the observed image, u is the clean image, and n is the noise,
as before
K is a linear operator which models the effect of blur
Very commonly K will be a convolution operator, i.e.

(K (u))(x) = (k ∗ u)(x) =
∫

R2
k(x − y)u(y) dy ,

for some appropriate kernel function k (point spread function
(PSF)).
Convolution operators are the only linear, shift-invariant operators
(Oppenheim, Willsky, §2). K is shift-invariant if it commutes with
all shift operators Sa, where (Saf )(x) := f (x + a).
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More blur modelling

Want K (1) = 1. For convolution operators, this means∫
R2 k(x) dx = 1.

Typically, most physical blurs are best modelled by a lowpass
operator.
On a finite domain Ω we can still use convolution, but it will no
longer be shift-invariant (Chan, Shen §5.1, Schönlieb §3.3) :

I either introduce an extension operator E , such that Eu is defined on
all of R2 (or at least on a neighbourhood of Ω large enough to
accommodate the support of k ) and consider the new blurring
operator K ◦ E (while preserving K ◦ E(1) = 1),

I or restrict k(x − y) to Ω2 and normalise, to satisfy K (1) = 1:

k̃(x , y) =
k(x − y)∫

Ω k(x − z) dz
, (K (u))(x) :=

∫
Ω

k̃(x , y)u(y) dy .
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Ill-posed problem

If K : L2(Ω)→ L2(Ω) is a convolution operator, the inverse
problem is ill-posed, in the sense that solving f = Ku, can lead to
very different solutions u, for inputs f that are very (L2(Ω)) similar.
(Tikhonov, Arsenin, §1)
One way of proving that, is by noting first that K is a compact
operator (Conway §4) ...
... and second that the inverse of an injective, compact operator
between Hilbert spaces is not continuous (Bal §8.1).
For example, if k is a Gaussian, inverting K will correspond to
solving the backwards heat equation, as we saw in the previous
lecture!
This problem occurs in other settings as well, not just when K ’s
domain and codomain are L2(Ω).
When noise is present in f , this will be a problem!
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Non-blind and blind deblurring

In non-blind deblurring, the blurring operator K is assumed to be
known.
In (partially or completely) blind deblurring K is not known:

I Parametric deblurring: assume K belongs to a parametrised family
of operators.

I Blind deblurring: make only minimal mathematical assumptions on
K

I Data driven blind deblurring: learn the (approximate) K from
training data (which can be other images that are believed to have
the same blur, or known parts of the current image)
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Non-blind deblurring

Deblurring, Chan, Shen §5.4

Given f ∈ L2(Ω), K : L1(Ω)→ L2(Ω) a bounded, injective, linear
operator satisfying K (1) = 1, and λ > 0. Minimise

u∗ ∈ arg min
u∈BV (Ω))

F (u),

where
F (u) :=

∫
Ω
|∇u|+ λ

2

∫
Ω
(K (u)− f )2.

If K (u) := k ∗ u for some kernel k ∈ L2(Ω), then by Young’s inequality
for convolutions, K (u) ∈ L2(Ω) for all u ∈ L1(Ω).
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Existence and uniqueness

Chan, Shen §5.4.2
Let f ,K ,λ, and F be as on the previous slide. Then there is a unique
minimiser

u∗ := arg min
u∈BV (Ω))

F (u),

Uniqueness follows as in the denoising case (functional G in
Lecture 2), since the strict convexity of F is not affected by the
linear operator K .
The existence proof follows in almost the same way as in the
denoising case, we just need to work a bit harder to obtain strong
convergence in L1(Ω). ... TBC...
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Existence proof, continued

We obtain uniform bounds on
∫

Ω |∇un| and ‖K (un)‖L2(Ω) as
before.
The bound on

∫
Ω |∇un| combined with Poincaré’s inequality for

BV (Ω) functions (Guisti §1, Evans, Gariepy §5.6) gives a uniform
bound on ‖un − 1

|Ω|
∫

Ω un‖L1(Ω).

By linearity and K (1) = 1, we have
1
|Ω|
∫

Ω un = K (un)− K
(

un − 1
|Ω|
∫

Ω un

)
.

By continuity of K : L1(Ω)→ L2(Ω), the right hand side is L2(Ω)
bounded, thus also L1(Ω) bounded, hence so is 1

|Ω|
∫

Ω un. We
deduce that ‖un‖L1(Ω) is bounded and therefore so is ‖un‖BV (Ω).
The rest of the proof follows as before, because K is continuous.
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A Bayesian aside
The variational methods can also be interpreted in a Bayesian
maximum a posteriori (MAP) estimation way (Chan, Shen, §5.4.1):

Bayes’ formula: P(u|f ) = P(f |u)P(u)
P(f )

Taking logarithms, L(X ) := log(P(X )), gives

L(u|f ) = L(f |u) + L(u)− L(f ).

Maximising P(u|f ) is equivalent to maximising L(u|f ).
Since L(f ) is independent of u, we maximise L(f |u) + L(u).
If the noise is additive white Gaussian noise (mean 0, standard
variation σ), we use P(u|f ) = e−p(u), with
p(u) = 1

2σ2

∫
Ω(K (u)− f )2.

(We forget about normalisation constants, which will only give
additional additive constants in L(u|f ).)
For the prior we choose P(u) = e−q(u), with q(u) =

∫
Ω |∇u|.

Hence we minimise p(u) + q(u).
For other noise models, see e.g. Schönlieb §3.2.
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Examples

Show example(s) on Image Processing On Line:
http://www.ipol.im/
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Blind deblurring
Deblurring, Chan, Shen §5.5

Given f ∈ L2(Ω) and λ > 0, minimise

(u∗,K ) ∈ arg min
u∈BV (Ω))×K

G(u,K ),

where G(u,K ) :=
∫

Ω
|∇u|+ φ(K ) +

λ

2

∫
Ω
(K (u)− f )2.

K is the set of admissible blur operators. In its most general form
we could let it consist of all linear, bounded, injective operators
K : L1(Ω)→ L2(Ω) which satisfy K (1) = 1...
... but typically we want to restrict K further, either for
mathematical or modelling reasons, e.g.

I restrict K to be convolution operators with certain regularity (W 1,2

or BV ) imposed on the kernel, or
I restrict K to a particular class of operators (e.g. convolutions with

Gaussian kernels), with only a finite number of free parameters.
...TBC...
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Blind deblurring, continued

φ : K → R is a regulariser on the kernel. Its choice will again be
driven by a combination of mathematical and modelling concerns.
Typical choices are

φ(K ) =
∫

supp(k)
|∇k |2, or

∫
supp(k)

|∇k |,

where K is a convolution operator with kernel function k .
Chan, Shen §5.5 has an extensive discussion about various
existence and uniqueness results. Uniqueness does typically not
hold in full generality, as various simultaneous
rescalings/translations/phase shifts of u and K can leave the
energy unchanged.
Implementations usually apply an alternating minimisation
method, which iterates over minimisations of u and K ,
respectively, while keeping the other variable fixed.
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Using training data to estimate the PSF: noise +
Gaussian blur

(vG, Athavale, Gilles, Choksi, 2015)
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Using training data to estimate the PSF: noise +
motion blur

(vG, Athavale, Gilles, Choksi, 2015)

Yves van Gennip (UoN) Image denoising Oxford September 2016 16 / 18



Bibliography: image analysis specific references

T.F. Chan, J. Shen, Image Processing and Analysis, SIAM, 2005
Y. van Gennip, P. Athavale, J. Gilles, R. Choksi, A Regularization
Approach to Blind Deblurring and Denoising of QR Barcodes,
IEEE Transactions on Image Processing 24(9), 2015, 2864–2873
J. Gilles, S. Osher, Fried deconvolution, SPIE Defense, Security,
and Sensing. International Society for Optics and Photonics,
83550G, 2012
C.-B. Schönlieb, Image Processing — Variational and PDE
Methods, online lecture notes, 2013/14,
http://www.damtp.cam.ac.uk/user/cbs31/Teaching_
files/PDEImageLectureNotesLent2014.pdf

Yves van Gennip (UoN) Image denoising Oxford September 2016 17 / 18

http://www.damtp.cam.ac.uk/user/cbs31/Teaching_files/PDEImageLectureNotesLent2014.pdf
http://www.damtp.cam.ac.uk/user/cbs31/Teaching_files/PDEImageLectureNotesLent2014.pdf


Bibliography: general PDE and analysis references

A.V Oppenheim, A.S. Willsky, Signals & Systems, 2nd edition,
Prentice-Hall, 1997
A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems, John
Wiley & Sons, 1977
G. Bal, Lecture Notes, Introduction to Inverse Problems, online
lecture notes, 2004, http://www.columbia.edu/~gb2030/
COURSES/E6901/LectureNotesIP.pdf

L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of
Functions, CRC Press, 1992
E. Giusti, Minimal Surfaces and Functions of Bounded Variation,
Birkhäuser, 1984

Yves van Gennip (UoN) Image denoising Oxford September 2016 18 / 18

http://www.columbia.edu/~gb2030/COURSES/E6901/LectureNotesIP.pdf
http://www.columbia.edu/~gb2030/COURSES/E6901/LectureNotesIP.pdf

