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What'’s brewing?

@ Mumford-Shah variational segmentation
@ Chan-Vese variational segmentation
@ Graph based variational segmentation
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Mumford-Shah functional
We will consider Q C IR? to be open and bounded.

Mumford, Shah, 1989, Chan, Shen §7.4, Aubert, Kornprobst
§4.2

Let f € L?(Q) and &, B > 0. Then we minimise
(u*,T*) e argmin F(u,T),
(ur)

where

F(u,T) = oc?-[1(1“)+,13/0\r|Vu|2+/Q\r(u— 2.

@ Admissible u € W'2(Q\T) N L®(Q)
@ Admissible I' C Q closed, with H'1(Q) < oo
@ Existence proof problem! The function A +— ' (9A) is not lower

semicontinuous w.r.t. any compact topology (Aubert, Kornprobst
§4.2.2).
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Mumford-Shah reformulated

Reformulation, De Giorgi, Carriero, Leaci, 1989
o= 1 g — f
G(u) = aH (S“Hﬁ/o\s IVl +/ (u

where S, is the jump set of u.

e If u e BV(Q)), then Du, the distributional derivative of u, can be
decomposed into the sum of an absolutely continuous (w.r.t. the
Lebesgue measure) part and a singular part.

@ The latter in turn can be decomposed into the sum of a part with
support on the jump set of u and a remainder part, which is called
the Cantor part.

@ There exist a nonconstant BV function which is continuous and
has zero distributional derivative almost everywhere and only has
a Cantor part: the Cantor-Vitali function (Ambrosio, Fusco, Pallara
Examples 1.67, 3.34).
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Special functions of bounded variation

@ Even worse, the class of BV (Q)) functions with zero absolutely
continuous part is dense in L2(Q)) (Ambrosio, 1998).

e If {v},is a sequence of such functions L2(Q)-converging to f,
then for all n,

0< inf G(u) < G(vn) :/Q(v,,—f)z.

ueBV(Q)

Letting n — oo, we find inf,cpy () G(u) = 0, hence G has no
minimiser in general.

@ Therefore we restrict G to special functions of bounded variation.
A function uis in SBV(Q) if it is in BV (Q) and its distributional
derivative has no Cantor part.

@ To be precise: G: SBV(Q)NL®(Q) - R

@ SBV has the right kind of compactness properties and #' is lower
semicontinuous w.r.t. to the right topology to make an existence
proof work (details in Ambrosio, Fusco, Pallara §4, Aubert,
Kornprobst §4.2).
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Back to the original functional

@ Finally we connect back to the original Mumford-Shah functional
F.

o If u* is a minimiser of G over SBV(Q), then it can be shown that
(u*, Q2N Sy+) is a minimiser of F, over
(W2(Q\T)NL®(Q)] x {T C Q:T closed and H'(Q) < oo},
@ Details in De Giorgi, Carriero, Leaci, 1989, Aubert, Kornprobst
§4.2.
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Limit for g — oo

Formally', if we send B — oo in Mumford-Shah, we are left with
minimising

Goo(UT) := a1 ( +/ u—f)7?
over a restricted admissible set, which requires that the distributional

derivative of uis zero on O\ T.
If we (uniquely, up to labelling) decompose O\ T = U Q; into

]
connected components, then for every i, u|n, must be constant. In fact

1
= — f
o= 157

is the optimal choice for the constants.
The Chan-Vese method (Chan, Vese, 2001) builds on this idea.

"There are ways of making this precise.
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Chan-Vese method

Chan, Vese, 2001

H(cy, 6, T) i= aH1(F)+v]A|+A1/A|C1 —f]2+/\2/A|02—f|2,

where A is the region inside the closed curve I'.
Minimisation is over constants c¢q, ¢; € IR and closed curves I that are
the boundary of open, bounded sets A C IR?.

@ Minimisers exist (Chan, Vese, 2001, gives some references).

@ A reformulation in terms of level sets (Osher, Setian, 1988) is
useful. This allows us to minimise over functions u, instead of
sets, such thatI' = {x € O : u(x) = 0}.
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Examples

Show example(s) on Image Processing On Line:
http://www.ipol.im/
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Graph based image segmentation

(Olive Oil by Tétine) (Calatroni, vG, Schénlieb, Rowland, Flenner, 2016)
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Variational model for phase separation
Continuum Ginzburg-Landau functional
Let W(x) = x?(x — 1)? and & > 0. Minimise

u* € argmin GL(u) +
uew12(Q)

where : 2/ |Vul? + /W(u)

The ... indicate that, in order to avoid trivial minimisers, we need to add extra
terms to the functional (e.g. a fidelity term) or add extra constraints to the set
of admissible functions (e.g. a mass constraint).

Double well potential W:

v
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New setting: graphs

Data points (pixels) are represented by nodes in an undirected graph
G = (V, E). Similarity is encoded in edge weights wj;. ‘Object’ and
‘background’ are distinguished by node labels u; : V — R.

For simplicity, cluster into two groups: {u =0} and {u = 1}.
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Phase separation on graphs

Ginzburg-Landau functional + fidelity to a priori known labels
min %Zi,j w,-,-(u,- — Uj)2 =k %Z, W(U,’) =F %Z, /\j(U,’ — (Uknown)i)z

u:V—>R

1= 1 J/inknown
"7 1 0 otherwise

Gradient flow: Allen-Cahn equation + fidelity

1
up = — Zw,-j(u,- = Uj) = EW,(UI) = A,‘(U,' =
J

(Uknown) i)

= —(Au); — %W’(Ui) — Ai(Uj — (Uknown)i)

(method from Bertozzi, Flenner, 2012)
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Ginzburg-Landau segmentation

@ Vertices: the pixels

@ Edge weight:
wj = e I%%1*/7 where T is a
scale parameter and

@ Xx; is the feature vector of pixel i

@ Constraint: fidelity to data in
original image

(Calatroni, vG, Schénlieb, Rowland, Flenner, 2016)
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Translate PDEs to graphs

V: Functions on the nodes u,v: V — R
&: Functions on the edges ¢, ¢ : E =+ R
Build (choose!) a differential structure on the graph (r is a parameter):
@ Node degree d; =} ; wj;
® (uv)y=Y,;auyv
° (p.9)c = 3 Lijwijgj
e Gradient: (Vu); = {(Uj_ u) i
0 else
e Divergence: (divg); = d " ¥; wjgj
@ Laplacian: (Au); = (divVu); = d7" ¥ wj(ui — u))

r = 0: unnormalized Laplacian; r = 1: random walk Laplacian;
symmetric normalized Laplacian: not in this framework
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Dirichlet energy, total variation

e Dirichlet energy: 3| Vul|2 = § ¥y wji(u; — uj)?
The Laplacian is the 15t variation of the Dirichlet energy.

@ (Anisotropic) total variation:
TVa(u) = max{(dive, u)y : max;; |¢;| <1} = %Z/jwijlui _—

@ ...is the graph cut objective functional, if u = x g (indicator function
of node set S).
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I'-convergence and its relevance to minimisation

If GL; ER GLy and a compactness property holds, then:
If u; minimizes GL, and u, — up, then ug minimizes GL,

Definitions:

I'-limit of sequence of functionals
A sequence {F,} I'-converges to Fy as n — oo if, for all u € Dom(F)
Q vVu,—u lim inf Fn(un) > F(u) and

Q Ju, — ulimsup Fp(un) < F(u).
n—oo

Compactness property
Compactness: Fn(un) < C = {up} has a convergent subsequence.

v
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I'-convergence on graphs

For a fixed general graph with edge weights w;; independent of ¢

u
o+ Lo 3, (B

+00 otherwise.

uj|, itu = xgforsome S,

(vG, Bertozzi, 2012)
This is analogous to a famous result in the continuum setting (Modica,
Mortola, 1977, Modica 1987, Modica 1987):

GL(u) fQ |Vu|, if u= xg for some set S of finite perimeter,
+o00, otherwise.
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