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Filtering
What are we doing here?

I In these lectures, we are going to look at the basic principles
of ‘stochastic filtering’.

I The key idea is that you have two processes, which are
correlated, and you use observations of one (which you can
see) to determine the behaviour of the other (which you can’t
see)

I Our aim is to give applicable theory, with numerical examples
(all implemented in the statistical environment R (available at
r-project.org))

I We will also give an example with data from high-frequency
trading.
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A basic problem
Bayesian estimation of the mean

I We begin with a simple Bayesian estimation problem, which
will lead nicely to filtering.

I We have a hierarchical model for some observations
Y1,Y2, ...,YT with unknown mean X .

I For simplicity, suppose X ∼ N(µ0, τ
2
0 ) and Yi |X ∼ N(X , σ2),

where the Yi are conditionally independent.

I We assume σ, τ0, µ0 are all known.

I Our aim is to estimate X from the observations of Y ’s.
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The joint density
Bayesian estimation of the mean

We write out the joint density of X and Y1, expand and complete
the square, to see that

f (x , y) ∝ exp
(
− (x − µ0)2

2τ2
0

− (y − x)2

2σ2

)

= exp

(
−

(
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2
0 +y/σ2

1/τ2
0 +1/σ2

)2
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0 +1/σ2
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2(σ2 + τ2
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Using Bayes’ theorem, we conclude that

X |Y1 ∼ N
(µ0/τ

2
0 + Y1/σ

2

1/τ2
0 + 1/σ2

,
1

1/τ2
0 + 1/σ2

)
=: N(µ1, τ

2
1 ).
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The correction equations
Bayesian estimation of the mean

I This gives us a way of ‘correcting’ our opinions of X given the
first observation
I We take a weighted average for the mean, and add the inverse

variances (‘precisions’).

I Of course, we can repeat this, to include the second
observation, then the third,..., and after some simplification
we find

X |(Y1, ...,Yt) ∼ N(µt , τ
2
t ),

where

µt =
µt−1/τ

2
t−1 + Yt/σ

2

1/τ2
t−1 + 1/σ2

, τ2
t =

1

1/τ2
t−1 + 1/σ2
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Simplification
Bayesian estimation of the mean

I This simplifies, in this setting, to

µt =
tσ2µ0 + τ2

0 Ȳt

tσ2 + τ2
0

, τ2
t =

1

1/τ2
0 + t/σ2

with Ȳt = 1
t

∑t
s=1 Ys .

I This simplification is special to this particular setting.

Example 1
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The correction dynamics
Bayesian estimation of the mean

I Let’s focus on the way the distribution changes.

I Whenever we get a new observation Yt , we correct our
estimate of X , by updating the conditional distribution with
the rule

(µt−1, τ
2
t−1)

Yt−→ (µt , τ
2
t )

Yt+1−→ (µt+1, τ
2
t+1).

I This is the basic idea of filtering: we have a hidden value X ,
and use our observations to update an estimate of X (in
particular, its conditional distribution).
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A simple filtering problem
Bayesian estimation of a changing mean

I Instead of X being constant, we will now assume that X is a
random process.

I In particular, we will take X0 ∼ N(µ0, τ
2
0 ) and

Xt |Xt−1 ∼ N(Xt−1, γ
2), Yt ∼ N(Xt , σ

2).

I Equivalently,

X0 = τ0W0, Xt = Xt−1 + γWt , Yt = Xt + σVt ,

where W ,V are standard white noise (i.e. Wt , Vt are
independent N(0, 1)).

I Here γ, σ, µ0 and τ0 are all known.

I We call X the signal process and Y the observation process.
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Dependence diagram
Bayesian estimation of a changing mean

The dependence diagram for our model is the following:

X0 X1 X2 · · · XT

Y1 Y2 · · · YT

Our conclusion depends on learning from the observations Y , but
also takes account of the fact that X is changing through time.
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Solving the filter
Bayesian estimation of a changing mean

I We want to find the distribution of Xt given Y1, ...,Yt .

I Write Ft = σ(Xs ,Ys ; s ≤ t) for the ‘full information filtration’
and Yt = σ(Ys ; s ≤ t) for the ‘observation filtration’.

I We can now repeat calculations similar to those we did before:

I From the dynamics, we have the prediction:

X0 ∼ N(µ0, τ
2
0 )⇒ X1 ∼ N(µ0, τ

2
0 + γ2)

I Writing τ 2
1|0 = τ 2

0 + γ2, Bayes’ rule gives the correction:

X1|Y1 ∼ N
(µ0/τ

2
1|0 + Y1/σ

2

1/τ 2
1|0 + 1/σ2

,
1

1/τ 2
1|0 + 1/σ2

)
=: N(µ1|1, τ

2
1|1).
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Solving the filter
Bayesian estimation of a changing mean

I In general, we write µt|t−1 for the mean of Xt given Yt−1 and
µt|t for the mean of Xt given Yt , similarly for the variances
τ2
t|t−1 and τ2

t|t .

I Our system can be described in two steps, prediction and
correction:

(µt−1|t−1, τ
2
t−1|t−1)

Prediction−→ (µt|t−1, τ
2
t|t−1)

Correction−→ (µt|t , τ
2
t|t),

where

µt|t−1 = µt−1|t−1,

µt|t =
µt−1|t−1/τ

2
t|t−1 + Yt/σ

2

1/τ2
t|t−1 + 1/σ2

,

τ2
t|t−1 = τ2

t−1|t−1 + γ2,

τ2
t|t =

1

1/τ2
t|t−1 + 1/σ2

.
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Solving the filter
Bayesian estimation of a changing mean

I By iterating these equations, we solve our filtering problem,
that is, we have a complete description of the distribution of
Xt given Yt for every t.

I These calculations are recursive, so including new observations
is simple (and fast!).

(µ1|0, τ
2
1|0) (µ2|1, τ

2
2|1) · · ·

(µ0|0, τ
2
0|0) (µ1|1, τ

2
1|1) (µ2|2, τ

2
2|2)

Y1 Y2
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Solving the filter
Bayesian estimation of a changing mean

Example 2

I These equations can be solved quickly, using only basic
methods.

I Updating only involves addition, multiplication and division.
I Division can be largely avoided by using precisions (τ−2)

instead of variances (τ 2).

I Observe that τ2
t|t converges quickly to a stationary value, the

limit is found by solving the equation

τ2 =
1

1/(τ2 + γ2) + 1/σ2
⇒ τ2 =

1

2

(
γ
√

4σ2 + γ2 − γ2
)
.
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The Kalman Filter
The general setup

I We have just solved a simple case of the famous Kalman
filtering problem.

I The general case has two differences: our processes are vector
valued and the relationship between X and Y is more general
(but still linear).

I These simple generalizations yield an extraordinarily powerful
technique.
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The Kalman Filter
The general setup

Consider the following model:

Xt = AXt−1 + Wt , Yt = CXt + Vt

with starting distribution X0 ∼ N(µ0|0,P0|0).
Here
I W ,V are white noise processes in Rk and Rd with respective

(nonnegative definite) variances Γ and Σ
I In other words, Wt ∼ N(0, Γ) and Vt ∼ N(0,Σ) for all t, all

values independent.

I A and Γ are k × k-matrices, C is d × k , Σ is d × d .

I We know A,C , Γ,Σ.
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The key equations
Conditioning normal distributions

The key fact we will need is that

if you have jointly (multivariate) normal random variables
Y ,Z, then Y |Z is also normal.

Furthermore

E [Y |Z ] = E [Y ] + cov(Y ,Z )var(Z )−1(Z − E [Z ])

var(Y |Z ) = var(Y )− cov(Y ,Z )var(Z )−1cov(Y ,Z )>

These facts can be proven using the densities, and justify
everything that follows.
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The Kalman Filter: Prediction
Step 1 of the filter

I We know that Xt |Yt = Xt |(Y1,Y2, ...,Yt) is normal (and
similarly Xt |Yt−1),

I Using the dynamics of X and Y , we can easily calculate the
prediction equations:

µt|t−1 = E [Xt |Yt−1] = E [AXt−1 + Wt |Yt−1]

= AE [Xt−1|Yt−1]

= Aµt−1|t−1

Pt|t−1 = var(Xt |Yt−1) = var(AXt−1 + Wt |Yt−1)

= Avar(Xt−1|Yt−1)A> + var(Wt |Yt−1)

= APt−1|t−1A
> + Γ
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The Kalman Filter: Kalman Gain
Step 2a of the filter

I The correction equations are made simpler if we first calculate
the ‘innovation’ process η and its variance S

I η tells us what ‘new’ information we learn from Yt

ηt = Yt − E [Yt |Yt−1] = Yt − Cµt|t−1,

St = var(ηt |Yt−1) = var(Yt |Yt−1) = CPt|t−1C
> + Σ.

I Using S , we can calculate the ‘Kalman gain’ process, which
allows us to optimally incorporate new information,

Kt = Pt|t−1C
>S−1

t = (S−1
t CPt|t−1)>
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The Kalman Filter: Prediction
Step 2b of the filter

Finally, it is easy to calculate the correction equations:

µt|t = µt|t−1 + Ktηt ,

Pt|t = (I − KtC )Pt|t−1.

Given these equations, we are ready to calculate!

Example 3
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The Kalman Filter: Forecasting
Easy with Matrices!

I Using our equations, it is easy to see how to calculate the
forecasted values E [Xt |Ys ] for s < t.

I By direct recursion:

µt|s = E [Xt |Ys ] = At−sµs|s .

I Furthermore, the conditional variance Pt|s = var(Xt |Ys)
satisfies

Pt+1|s = APt|sA
> + Γ

which is easy to calculate recursively.
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The Kalman Filter: Smoothing
Harder, but useful!

I Calculating the ‘smoother’, that is, µt|N = E [Xt |YN ] for
t < N is also possible.

I First write Jt = Pt|tA
>P−1

t+1|t . Then, using our basic

properties of normal distributions (and plenty of algebra),

µt|N = µt|t + Jt(µt+1|N − µt+1|t),

Pt|N = Pt|t + Jt(Pt+1|N − Pt+1|t)J
>
t ,

I These can be calculated backwards, starting at time N.

I In effect, you first do a single forward pass through the
observations from 0→ N calculating the filter, then
backwards from N → 0 to calculate the smoother.

Example 3 (ctd)
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The Kalman Filter: Smoothing
One-step correlations

I We shall see that, when trying to fit a filter in practice, it will
also be useful to know the values of

Pt−1,t|N := E [(Xt − µt|N)(Xt−1 − µt−1|N)>|YN ].

I Fortunately, there is a formula:

PN−1,N|N = (I − KNC )APN−1|N−1,

Pt−1,t|N = Pt|tJ
>
t−1 + Jt(Pt,t+1|N − APt|t)J

>
t−1.

I The derivation is even more algebra than before.

I It can also be calculated using a single sweep back through
the data.

Exercise: prove these formulae!
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Example: An ARMA(1,1) process
A common time series model

To see how rich a theory this gives, consider an ARMA(1,1)
process, where

xt = φxt−1 + θzt−1 + zt

for constants φ, θ and white noise z .

I We only observe xt .

I It’s difficult to calculate E [xt |xt−1, xt−2, ...], which is usually
needed when fitting these models.

I This does not look like the models we’ve considered...

until
we write it as a ‘state space’ model.
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Example: An ARMA(1,1) process
Surprisingly a Kalman Filter model!

We can write

Xt =

[
xt
θzt

]
=

[
φ 1
0 0

] [
xt−1

θzt−1

]
+

[
1
θ

]
zt =

[
φ 1
0 0

]
Xt−1 + Wt

and
Yt = xt =

[
1 0

]
Xt−1.

I Hence we can apply the Kalman filter to X , and so efficiently
calculate[

1 0
]
µt|t−1 =

[
1 0

]
E [Xt |Yt−1] = E [xt |xt−1, xt−2, ...].

I In our earlier notation, we have Σ = 0, A,C as indicated and

Γ =

[
1 θ
θ θ2

]
.
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Hidden Markov Models
Another simple filter

I The equations we’ve seen have been fairly ‘nice’.

I The filters can be solved in closed form, recursively, and are
finite dimensional.

I This is because we have assumed throughout that all our
random variables are Gaussian, and all the relationships
between them are linear.

I Without this assumption, as we will see in continuous time,
we are in a much more difficult situation.

I One other case where a nice set of equations can be obtained
is when X is a finite-state Markov chain.
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Hidden Markov Models
A general setup

I Suppose X is a finite-state Markov chain. We write X as a
process Xt = AXt−1 + Mt where X takes values in the basis
vectors in Rd , and M is a martingale difference process (so
E [Mt |Ft−1] = 0).

I The matrix A> is the familiar transition matrix of the Markov
chain.

I We just need to calculate the probability X takes values in
each state, or equivalently, the vector µt|t = E [Xt |Yt ] ∈ Rd

(as P(Xt = ei |Yt) = E [e>i Xt |Yt ] = e>i µt|t
I We assume that Yt |Ft ∼ c(y ;Xt)m(dy), where c is some

density function and m is some measure (no normality is
needed).
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The Filter
Still easy to calculate

I We can directly calculate the prediction equation:

µt|t−1 = E [Xt |Yt−1] = E [AXt−1 + Mt |Yt−1] = Aµt−1|t−1.

I To calculate the correction equation, we use Bayes’ theorem:

P(Xt = ei |Yt ,Yt−1) =
c(Yt ; ei )P(Xt = ei |Yt−1)∑
j c(Yt ; ej)P(Xt = ej |Yt−1)

∝ c(Yt ; ei )P(Xt = ei |Yt−1)
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Forecasting and Smoothing
Simple algorithms

I Again, forecasting is easy: µt|s = At−sµs|s for s < t.

I Smoothing can be done with a backward pass, by looking at a
‘dual’ variable ν satisfying the equation (for N > t)

νt|N ∝ A>C (Yt+1)νt+1|N , νN|N = 1,

and then calculating µt|N ∝ µt|tνt|N , where the product is
taken component by component.

I There are closed form equations for other quantities also (for
example, estimating occupation times, the number of
transitions, functions of X and Y , ... see Elliott, Aggoun and
Moore, Hidden Markov Models, Springer 1995)

Example 4
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Continuous time
Much more technically difficult

I So now we move gear a little technically, as we want to see
what happens in continuous time.

I This is particuarly useful as a model when observations occur
in very high frequency, as it allows us to find good
approximations to our problem.

I On the other hand, it becomes more difficult to find and solve
the filtering equations.
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The reference probability method
A nice version of Bayes’ theorem

I The approach we shall take is called the ‘reference probability
method’.

I It depends on the following result, which will serve as “Bayes’
theorem” in this context.

Theorem
Suppose we have a probability measure Q ∼ P. Write the
Radon–Nikodym density Z = dQ/dP, and suppose we have a
filtration {Ft}t≥0. Then for any t ≥ 0 and any random variable ξ,
we know that

EQ [ξ|Ft ] =
EP [Zξ|Ft ]

EP [Z |Ft ]
.
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A continuous model
Common basic time series model

I We assume as before that we have processes X and Y , on an
interval [0,T ].

I These satisfy the SDEs

dXt = f (t,Xt)dt + κ(t,Xt)dBt

dYt = c(t,Xt)dt + dWt

where f , κ, c are known (Lipschitz continuous) functions, and
B and W are Brownian motions.

I We assume X and Y are scalar and B and W are independent
for simplicity.
I These assumptions can be relaxed, but the notation becomes

more difficult.
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Feynman–Kac
Connecting SDEs and PDEs

I From the Feynman–Kac theorem/Ito’s lemma, we know that
for any smooth bounded function φ,

φ(Xt) = φ(X0) +

∫
[0,t]
Lφ(Xu)du + martingale

where L is the infinitesimal generator of X , that is,

Lφ =
∂φ

∂x
f (t, x) +

1

2
· ∂

2φ

∂x2
κ(t, x)2.

I We expect L to be part of the solution to our filtering
problem.
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Changing measure
Making Bayes’ theorem work for us

I We define a probability Q by dQ
dP = ZT , where

Zt = E
(
−
∫

c(s,Xs)dWs

)
t

= exp
(
−
∫ t

0

c(s,Xs)dWs−
1

2

∫ t

0

c(s,Xs)2dt
)
.

I We write Λ = 1/Z , and using Ito’s lemma we can see that
dΛt = Λtc(t,Xs)dYs .

I Using Girsanov’s theorem, this change of measure has the
effect of changing the drift in Y , so under Q we have the
dynamics

dXt = f (t,Xt)dt + κ(t,Xt)dBt , dYt = dWQ
t

where B and WQ are independent Q-Brownian motions.

I X and Y are independent under Q!
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Unnormalized expectations
Expanding with Ito

I We will now try to calculate the unnormalized expectations,
which we write:

σt(φ) := EQ [Λtφ(Xt)|Yt ].

I “Bayes’ theorem” tells us that EP [φ(Xt)|Ft ] = σt(φ)/σt(1).
I Now, we can write out Λsφ(Xs) using Ito’s lemma. This gives

d(Λφ(X ))t = Λt
∂φ

∂x
dXt +

1

2
Λt
∂2φ

∂x2
κ(t,Xt)

2dt + Λtφ(Xt)c(t,Xt)dYt

= ΛtLφ(Xt)dt + Λt
∂φ

∂x
κ(t,Xt)dBt + Λtφ(Xt)c(t,Xt)dYt
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Unnormalized expectations
Using independence

I Taking an expectation, as (X ,B) and Y are Q-independent,
we have the ‘Zakai equation’

σt(φ) = EQ [Λtφ(Xt)|Yt ]

= σ0(φ) +

∫ t

0

EQ [ΛsLφ(Xs)|Yt ]ds +

∫ t

0

EQ [Λsφ(Xs)c(s,Xs)|Yt ]dYs

= σ0(φ) +

∫ t

0

EQ [ΛsLφ(Xs)|Ys ]ds +

∫ t

0

EQ [Λsφ(Xs)c(s,Xs)|Ys ]dYs

= σ0(φ) +

∫ t

0

σs(Lφ)ds +

∫ t

0

σs(φc)dYs

I This is a simple equation apart from one thing: the term
σs(φc) cannot be calculated recursively in terms of σs(φ).
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Normalized expectations
Simplifying with Ito

I Rearranging and applying Ito’s lemma, we can obtain an
equation for the normalized expectations

πs(φ) := σs(φ)/σs(1) = E [φ(Xs)|Ys ],

the ‘Fujisaki–Kallianpur–Kunita’ equation

πt(φ) = π0(φ)+

∫
[0,t]

πs(Lφ)du+

∫
[0,t]

(
πs(φc)−πs(φ)πs(c)

)
dVs .

I Here dVs = dYs − πs(c)ds is the (differential of the)
‘innovations process’ (and is a Y-Brownian motion under P).
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The Density equation
Finding an SPDE

I Let’s assume X has a smooth density given Yt , so
σt(φ) =

∫
R φ(x)q(t, x)dx . Then we see that∫

R
φ(x)q(t, x)dx =

∫
R
φ(x)q(0, x)dx +

∫ t

0

∫
R
Lφ(x)q(s, x)dxds

+

∫ t

0

∫
R
φ(x)c(s, x)q(s, x)dx dYs

I By integration by parts, if L∗ is the adjoint of L

L∗q =
∂(qf )

∂x
+

1

2
· ∂

2(qκ)

∂x2
,

we calculate∫
R
φ(x)q(t, x)dx =

∫
R
φ(x)

(
q(0, x)+

∫ t

0

L∗q(s, x)ds+

∫ t

0

c(s, x)q(s, x)dYs

)
dx
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The Density equation
Finding an SPDE

I This should hold for every smooth and bounded φ, so we have
the linear SPDE

q(t, x) = q(0, x) +

∫ t

0
L∗q(s, x)ds +

∫ t

0
c(s, x)q(s, x)dYs

We can then calculate the density of Xt |Yt as

p(t, x) =
q(t, x)∫

R q(t, x ′)dx ′
.

I One can also get a nonlinear SPDE for the normalized density.

I Solving SPDEs is hard, so this equation is not frequently
solved in practice in this general form – instead it suggests
good approximations, or allows special cases to be derived.
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The Kalman–Bucy filter
The Continuous-time Gaussian model

I Let’s see the continuous-time Gaussian case.

I Here we assume c(t,Xt) = cXt , f (t,Xt) = aXt and
κ(t,Xt) = b. Then we have the dynamics

dXt = aXtdt + b dBt , dYt = cXtdt + dWt

I Here a, b, c are known.

I With Ỹ = Y /c and f = 1/c , this is the same as the model
for observations dỸt = Xtdt + f dWt .

I We know that these equations define a Gaussian process (i.e.
all marginals are jointly normal), so it’s enough to calculate
the mean and variance.
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The Kalman–Bucy filter
Simplifying...

I Write X̂t = EP [Xt |Yt ].
I First observe that everything here is Gaussian, and X̂ − X is

uncorrelated with Ys for all s < t.

I In particular, this implies they are independent, and

E [(Xt − X̂t)
2|Yt ] = E [(Xt − X̂t)

2] =: Pt

is deterministic.

I Also, E [(Xt − X̂t)
3|Yt ] = 0.
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The Kalman–Bucy filter
Applying the FKK equation

I Taking φ(x) = x so X̂t = πt(φ), we know Lφ ≡ 0, so

X̂t = X̂0 +

∫ t

0
aX̂sds + c

∫ t

0

(
πs(X 2

s )− X̂ 2
s

)
dVs

= X̂0 +

∫ t

0
aX̂sds + c

∫ t

0
PsdVs .

I Notice this is in terms of the innovations process V .
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The Kalman–Bucy filter
Applying the FKK equation

I Taking φ(x) = x2,

πt(X
2) = π0(X 2) +

∫
[0,t]

(2aπs(X 2) + b2)du

+ c

∫
[0,t]

(πs(X 3)− X̂uπu(X 2))dV .

X̂ 2
t = X̂ 2

0 +

∫ t

0
2a(X̂s)2ds + 2c

∫ t

0
X̂sPsdVs .

I Taking a difference and simplifying, we obtain a Riccatti
equation for the variance P

Pt = πt(X
2)− X̂ 2

t = P0 +

∫ t

0
(2aPs + b2 − c2P2

s )du.
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The Kalman–Bucy filter
The filter

I Together, we have an SDE for the mean

X̂t = X̂0 +

∫ t

0
aX̂sds + c

∫ t

0
PsdVs .

and a (deterministic) Riccatti equation for the variance

Pt = P0 +

∫ t

0
(2aPs + b2 − c2P2

s )du.

I This pair of equations is called the ‘Kalman–Bucy filter’.

I It can then be approximated using the usual methods for
SDEs/ODEs (eg Euler methods)

I It is possible to obtain a Kalman–Bucy smoother as well.

Example 5
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The Wonham filter
Continuous Markov Chains

I Just as in discrete time, there is a continuous time equation
for the filter based on a (continuous time) Markov chain.

I Here we have the dynamics

dXt = AXtdt + dMt

dYt = c>Xtdt + dWt

where A> is the Q-matrix of the Markov chain, M is a
martingale and c is a vector.
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The Wonham filter
Continuous Markov Chains

I As X is written using only basis vectors in RN , any function of
X can be written Φ(X ) = φ>X for some vector φ ∈ RN .

I While X is not of the form we considered earlier, we can still
find the generator of X is LΦ = A>φ, and the adjoint of L is
simply L∗v = Av .

I We can calculate (from the Zakai equation) the unnormalized
probability vector for the state of X

E [Xt |Yt ] ∝ qt = q0 +

∫ t

0
Aqudu +

∫ t

0
diag(c)qudYu.

I This equation is just an N-dimensional linear SDE. Equations
for the smoother are also known.
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Calibrating a filter
Trying to make things useable.

I What we have seen so far deals with the problem of how to
take our observations Y and obtain the behaviour of X .

I However, we have assumed throughout that we know the
probability model, that is, all the other parameters are fixed.

I The question of how to estimate those parameters is what we
consider next.

I This problem has a wide range of approaches, depending on
the details involved.

I We shall focus on a simple case, using the EM algorithm
(discussed in Elliott, van Der Hoek and Malcolm (2005),
based on Shumway and Stoffer (1982)).
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Calibrating a filter
A setup

I We focus on the following simple scalar version of the discrete
time Kalman filter:

Xt+1 = a + bXt + cWt+1

Yt = Xt + f Vt .

I If we could observe X and Y directly, then we could calculate
a, b, c and f easily using regression.

I If we cannot observe X , then we need to use a more advanced
method.
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Calibrating a filter
The equations

I Our filtering equations simplify to

µt+1|t = a + bµt|t , Pt+1|t = b2Pt|t + c2

Kt+1 =
Pt+1|t

Pt+1|t + f 2

µt+1|t+1 = µt+1|t + Kt+1(yt+1 − µt+1|t)

Pt+1|t+1 = (1− Kt+1)Pt+1|t = f 2Kt+1

I The smoothing equations are (with Jt = bPt|t/Pt+1|t)

µt|N = µt|t + Jt
(
µt+1|N − (a + bµt|t)

)
Pt|N = Pt|t + J2

t

(
Pt+1|N − Pt+1|t

)
Pt−1,t|N = Jt−1Pt|t + JtJt−1

(
Pt,t+1|N − bPt|t

)
PN−1,N|N = b(1− KN)PN−1|N−1
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Calibrating a filter
The EM algorithm

I So, how to estimate the parameters?

I Simply regressing the smoothed values of X gives bias, as we
expect X will be ‘rougher’ than the smoothed values.

I The likelihood function is hard to compute, as it depends on
X and Y

I If we assumed we could calculate the expectation, then we
could instead try to maximize the expected log-likelihood
E [`(a, b, c, f ; {Xt ,Yt}t≤T )|YT ]

I We can then iterate (calculate parameters) ↔ (calculate filter
estimates) until convergence. This is the
“Expectation-Maximization algorithm”, as we iterate between
(Maximum likelihood step) ↔ (Expectation step).
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Calibrating a filter
The maximum estimates

I The maximization step can be solved! (all sums from 1 to N):

b̂ =
E [
∑

(Xt−1 − 1
N

∑
Xt−1)(Xt − 1

N

∑
Xt−1)|YN ]

E [
∑

(Xt − X̄ )2|YN ]

=

∑
Pt−1,t|N +

∑
µt|Nµt−1|N − 1

N

∑
µt|N

∑
µt−1|N∑

Pt|N +
∑
µ2
t|N −

1
N (
∑
µt|N)2

â =
1

N

∑
µt|N − b̂

1

N

∑
µt−1|N

ĉ =
1

N
E
[∑

(Xt − â− b̂Xt−1)2
∣∣∣YN]

=
1

N

∑(
Pt|N + µ2

t|N + â2 − 2âµt|N + 2âb̂µt−1|N

+ b̂2(Pt−1|N + µ2
t−1|N)− 2b̂Pt−1,t|N − 2b̂µt|Nµt−1|N)

)
f̂ =

1

N

∑(
(Yt − µt|N)2 + Pt|N

)
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The Kalman–Bucy filter
Simplifying...

I We start off with approximate estimates of a, b, c, f

I We iterate the EM algorithm to improve these estimates

I Convergence may be slow (or get stuck) given bad starting
points.

I Given a large amount of data, it may be worth starting with
only a small subsample, then increasing the amount of data
used as you go.

Example 6
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Pairs trading
A simple application

I We will look at using these methods to creat a basic pairs
trading system, using a toy setup, with real data.

I We will build this using one-second mid-prices for Microsoft
(MSFT) and Intel Corp. (INTC), on individual days in the
week beginning 3 November 2014.

I Thanks to Álvaro Cartea and Sebastian Jaimungal for data.
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Pairs trading
A model

I We will model this using the method in previous section, as
suggested by Elliott, van der Hoek and Malcolm (2005).

I We fit the filter using Y = log(INTC/MSFT) using the
Kalman–EM method described above.

I We will then create a trading signal depending on the value of
Yt − µt|t .

I If our model is reasonable, we expect this value will revert
quickly to zero, which suggests a profitable trade, either long
INTC and short MSFT (if Y < µt|t) or vice versa.

I Effectively, we expect prices to oscillate around a short-term
mean
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Pairs trading
A model

I We choose to trade only when the difference is sufficiently
large, in such a way that we have a position 1% of the time.

I We reevaluate our position every second, and only
invest/short at most $1 in each stock.

I We ignore all transaction costs, microstructure issues, trading
constraints, etc.

Example 7
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Pairs trading
A model

I This suggests that these methods can be used to build
profitable trading strategies.

I Of course, we would need to incorporate further effects into
our model of profits before implementing this in practice, as in
the real world we can only buy at the ask and sell at the bid,
which will likely eliminate most of our observed gains.

I Filtering is fast, which is important in this setting.
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Conclusion
What have we done

I We have looked at the problem of filtering in a variety of
contexts.
I Discrete/Continuous time
I Gaussian/Finite state (or general with an SPDE solution)

I We have seen how you can implement these filters, and how
to estimate the coefficients in a simple setting

I The EM algorithm can be used more widely

I We have seen a toy application of these methods to financial
data
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