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The theorems of A.P. Morse (1939) and A. Sard (1942)

Nn and Mm (second countable) smooth manifolds with
n > m

f : Nn → Mm Ck map

The critical set Cf = {x ∈ Nn : rankDf(x) < m}

If k ≥ n−m+ 1, then Hm(f(Cf )) = 0.

H. Whitney (1935): False if k = n−m.
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The theorems of A.Ya. Dubovitskĭı (1966) and
H. Federer (1966)

Nn and Mm (second countable) smooth manifolds

f : Nn → Mm Ck map

The d–critical set Cd
f = {x ∈ Nn : rankDf(x) < d},

where d ∈ {1, . . . , n}

Then Hβ(f(Cd
f )) = 0, when β ≥ d− 1 + n−d+1

k .

⇒ If n > m = d, then Hβ(f(Cm
f )) = 0, when

β ≥ m− 1 + n−m+1
k .

Result is sharp on Ck scale
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Improvements to Hölder spaces

Nn and Mm (second countable) smooth manifolds

f : Nn → Mm Ck,α
loc map

The d–critical set Cd
f = {x ∈ Nn : rankDf(x) < d},

where d ∈ {1, . . . , n}

Then Hβ(f(Cd
f )) = 0, when β ≥ d− 1 + n−d+1

k+α .

Result is sharp on Ck,α
loc scale

Y. Yomdin (1983), A. Norton (1986), S.M. Bates (1993),
C.G.T. De A. Moreira (2001), . . .
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An example

If f : R2 → R is C1,1
loc, then H1(f(Cf )) = 0.

False when f is only C1,α
loc for α < 1.

Central Cantor sets: Cλ for 0 < λ < 1/2

remove from [0, 1] the central open interval I1,1 of
proportion 1− 2λ

remove from two remaining intervals the central open
intervals I2,1 and I2,2 of proportion 1− 2λ, and repeat . . .

Cλ =

∞∩
i=1

2i−1∩
j=1

[0, 1] \ Ii,j
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An example

Let ϕ : R → [0, 1] be C∞ and

ϕ(t) =

{
0 t ≤ 0
1 t ≥ 1.

Let 1
4 < λ < 1

2 .

Let Iλij = (a, b) ⊂ [0, 1] and I
1
4
ij = (c, d) ⊂ [0, 1] be

corresponding removed intervals in construction of Cλ and
C1

4
, respectively.

Put
g(t) = c+ (d− c)ϕ

(
t−a
b−a

)
, t ∈ (a, b),

and g(t) = 0 for t ≤ 0, g(t) = 1 for t ≥ 1.

Extend g by continuity to Cλ; hereby g : R → R is
continuous and g(Cλ) = C1

4
.
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An example

g ∈ C1,α for α = ln 4/ ln(1/λ)− 1

ln 4/ ln(1/λ)− 1 ↗ 1 as λ ↗ 1/2

g′(t) = 0 for t ∈ Cλ (since ϕ′(0) = ϕ′(1) = 0)

Put f(x, y) = g(x) + 2g(y), (x, y) ∈ R2.

⇒ f is C1,α, Cf ⊃ Cλ × Cλ so

f(Cf ) ⊇ f(Cλ × Cλ) = g(Cλ) + 2g(Cλ)

= C1
4
+ 2C1

4
= [0, 3]

Other constructions, incl. H. Whitney (1935), R. Kaufman
(1979), E.L. Grinberg (1985), T. Körner (1988), G. Comte
(1996), . . .
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Summary

Let m < n be natural numbers.

Morse–Sard holds for maps f : Rn → Rm of class Cn−m,α
loc iff

α = 1.

Cn−m,1
loc = Wn−m+1,∞

loc (precise representatives)
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Extension to Sobolev functions

L. De Pascale (2001): If f ∈ Wk,p
loc (R

n,Rm) and
k ≥ n−m+ 1, p > n, then Hm(f(Cf )) = 0.

Note that Wk,p
loc (R

n,Rm) ⊂ C1(Rn,Rm) when
k ≥ n−m+ 1, p > n.

E.M. Landis (1951), B. Bojarski, P. Hajlasz and P. Strzelecki
(2005), D. Pavlica and L. Zaj́ıček (2006), A. Figalli (2008),
D. Bucur, A. Giacomini and P. Trebeschi (2008), R. Van der
Putten (2012), G. Alberti, S. Bianchini and G. Crippa (2013),
P. Hajlasz (2014), G. Alberti, M. Csörnyei, E. D’Aniello and
B. Kirchheim, . . .
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The critical set when the function is not differentiable

The precise representative: of f ∈ Lloc(Rn) is

f(x) := lim sup
r↘0

1

Hn(Br(x))

∫
Br(x)

f(y) dy (1)

Then f : Rn → [−∞,∞] Borel and (1) is a limit in R for Hn

almost all x.

Sobolev functions: f ∈ Wk,p
loc (R

n). Then

f is continuous when p > 1 & kp > n or when p = 1 &
k = n

(1) exists as a limit in R at Ht almost all x for each
t > n− kp when p > 1 & kp < n (and for Hn−k almost all
x when p = 1 & n > k)
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The critical set when the function is not differentiable

Let f ∈ Wn,1(Rn). Then

f ∈ C0(Rn)

there exists a Borel set E ⊂ Rn with H1(E) = 0 such that
f is Fréchet differentiable at all x ∈ Rn \E with differential

Df(x) = lim
r↘0

(Df)x,r.

The critical set: Cf := {x ∈ Rn \ E : Df(x) = 0}

Jan Kristensen



The generalized Luzin property

Theorem I (Bourgain, Korobkov & K, 2010, 2012)
Let f ∈ Wn,1(Rn). Then

∀ε > 0 ∃δ > 0 ∀A ⊂ Rn : H1
∞(A) < δ ⇒ H1(f(A)) < ε.

Remarks:

H1(f(E)) = 0 when E = {x : f not diff. at x}.
Theorem I also holds for f ∈ BV n(Rn).
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Morse–Sard for Sobolev functions

Theorem II (Bourgain, Korobkov & K, 2010, 2012)
Let f ∈ Wn,1(Rn). Denote

E = {x : f not diff. at x}

and
Cf := {x ∈ Rn \E : Df(x) = 0}.

Then H1(f(Cf )) = 0.

Remark: Theorem II also holds for f ∈ BV n(Rn). When n = 2
we used another definition of the critical set.
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Typical level sets for Sobolev functions

Theorem III (Bourgain, Korobkov & K, 2010, 2012)
Let f ∈ Wn,1(Rn). For H1 almost all y ∈ R the level set f−1{y}
is a compact (n− 1)–dimensional C1 submanifold in Rn.

Remark: f need not be C1, but is only differentiable H1

almost everywhere.
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Sobolev–Lorentz functions

Lorentz space: f ∈ Lp,1(Rn) if

∥f∥p,1 =
∫ ∞

0
Hn

(
{x ∈ Rn : |f(x)| > t}

) 1
p

dt < ∞.

f ∈ Wk,p,1(Rn) if f ∈ Wk,p(Rn) and |Dkf | ∈ Lp,1.

Proposition:
Let f ∈ Wk,p,1(Rn) where k ∈ {2, . . . , n− 1} and p = n

k . Then
• f ∈ C0(Rn)
• There exists a Borel set E ⊂ Rn such that Ht(E) = 0 for
t > n

k , f is (Fréchet–)differentiable at each x ∈ Rn \ E with
differential Df(x) and x is an Ln–Lebesgue point of the weak
derivative Df .
Remark: k = 1, t = p = n due to Stein (1970),
k = n, t = p = 1 due to Dorronsoro (1989)
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Results for Sobolev–Lorentz mappings

Let k, d ∈ {2, . . . , n} and f ∈ Wk,n
k
,1(Rn,Rm). Put

E = {x : f not diff. at x, or x not Ln Lebesgue point of Df}

and
Cd
f = {x ∈ Rn \ E : rankDf(x) < d}.

Theorem (Korobkov & K, 2013)

For t > n
k : ∀ε > 0∃δ > 0, Ht

∞(A) < δ ⇒ Ht(f(A)) < ε

Hβ(f(Cd
f )) = 0 where β ≥ d− 1 + n−d+1

k

Corollary (Korobkov & K, 2013)

Hm(f(Cm
f )) = 0 when k = n−m+ 1.
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Typical level sets for Sobolev-Lorentz maps

Theorem (Korobkov & K, 2013)
Let 2 ≤ m ≤ n, k = n−m+ 1, and f ∈ Wk,n

k
,1(Rn,Rm).

Then for Hm almost all y ∈ Rm the level set f−1{y} is a
compact C1 (n−m)–dimensional submanifold of Rn

Notes.
(1) n

n−m+1 < m iff m < n (⇒ Hm(f(E)) = 0)
(2) Hm(f(Cf )) = 0
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Comments on proof for Theorem III

Luzin–type theorem: (BKK 2012)
Let f ∈ Wn,1(Rn). Then ∀ε > 0 ∃ open U ⊂ Rn with
H1

∞(U) < ε and g ∈ C1(Rn) so

f = g and Dg = Df on Rn \ U.

Fix ε > 0. By Theorems I & II, H1(f(E ∪Cf ) = 0 so ∃ open set
V1 ⊃ f(E ∪ Cf ) with H1(V1) < ε/2. For given δ > 0 by Luzin ∃
U , g so H1

∞(U) < δ and

f = g and Dg = Df on Rn \ U.

Theorem I allows to take δ so H1(f(U)) < ε/2. Take open set
V2 ⊃ f(U) with H1(V2) < ε/2. Put V = V1 ∪ V2 and record:

f(E) ⊂ V, f |f−1(R\V ) = g|f−1(R\V )

Df |f−1(R\V ) = Dg|f−1(R\V ) H1(V ) < ε.
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Comments on proof for Theorem III

Fix y ∈ f(Rn) \ V , y ̸= 0.
Then

(i) f−1{y} compact ( ⇐ f ∈ C0(Rn))

(ii) f−1{y} ⊆ g−1{y}
(iii) Df = Dg ̸= 0 on f−1{y}
(iv) f diff. at each x ∈ f−1{y} with differential Df(x) and Df

has Lebesgue point at x

Claim: ∀x0 ∈ f−1{y} ∃r > 0 so
f−1{y} ∩Br(x0) = g−1{y} ∩Br(x0)
(⇒ conclusion)
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Comments on proof for Theorem III

Suppose not.
Then ∃x0 ∈ f−1{y} and xj ∈ g−1{y} \ f−1{y} with xj → x0.
Put

Ix =

{
x+

Dg(x0)

|Dg(x0)|
t : |t| < r

}
.

Since g|Ix strictly monotone:

Ix ∩ g−1{y} = {x} ∀x ∈ g−1{y} ∩Br(x0)

when r > 0 sufficiently small. By (ii) we get for large j:

Ixj ∩ f−1{y} = ∅

So either f > y or f < y on Ixj . WLOG f > y on Ixj , so by
cont. f ≥ y = f(x0) on Ix0 . But f diff. at x0 so Df(x0) = 0
contradicting (iii) and (iv).
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