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A brief history of cryptography

Traditional cryptography — Secret key Julius Caesar 55BC (+3 mod 24)
via one-time pad to the present day (AES, TLS/SSL, 3G, 4G)

Modern cryptography — Public key Cliff Cocks 1972 (RSA) to the
present day (RSA, DH, TLS/SSL)

Post-modern cryptography — Quantum and post-quantum 2014 2006 on
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Traditional cryptography

Shared key (symmetric) cryptography achieves a number of objectives:

Privacy/confidentiality — only a holder of the common secret can read

Authentication — only a holder of the common secret can write

Integrity — only a holder of the common secret can change

Non-repudiation — only a holder of the common secret can write
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The paradox of traditional cryptography

Shared key cryptography depends on sharing the secret key securely.

So how do we send the secret without the secure channel in the first place?
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Computation
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Non-secret encryption
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Modern cryptography

Modern cryptography separates out these objectives

Privacy/confidentiality — secret trapdoor function

Authentication — proof of knowledge

Integrity — one-way function (message digest)

Non-repudiation — digital signature

Sharing — public key
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Hidden structure

Public-key (asymmetric) cryptography makes use of public data with hidden
structure, the private or secret key.
It is believed that the recovery of the private key from the public data is “hard”
and that this can be quantified.

Cocks/RSA encryption — public: N, private: N = pq;
Believed that decrypting is equivalent (RP) to factoring

Believed to take time exp
(

1.923(log N)
1
3 (log log N)

2
3

)
to factor

McEliece — public: code generator, private: cyclic or Goppa structure
Believed to be hard to decode without knowledge of structure
Believed to be hard to find stucture

Lattice-based — public: lattice description, private: “good” basis
Believed to be hard to decrypt without knowledge of structure
Believed to be hard to find stucture
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Other applications

Key exchange and transport

Authentication, proof of knowledge

Privacy-enhanced computation

Multi-party computation

. . .
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Quantum computing

Richard Feynman was one of the first to suggest the application of quantum
states to computation.
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Quantum computation

A quantum computer is composed of quantum registers (entangled bits) and
quantum circuits that process these bits.

A computation consists of preparing the states (feeding in the data) and
observing the result (reading out the answer). A quantum algorithm is a way
of arranging the computation so that the desired answer emerges with high
probability.
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Computability

The Analytical Engine has no
pretensions whatever to
originate anything. It can do
whatever we know how to
order it to perform.

Ada Lovelace
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Comparison

Quantum computation is not a new paradigm in computability — it does not
make it possible to compute anything that could not in principle also be
computed on a Turing machine.

It is however a new paradigm in complexity — it makes it possible to solve
certain kinds of problem in times significantly faster than classical computing.
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Quantum computation

Most current public key cryptosystems rely on the difficulty of two specific
problems:

Integer factorisation (Cocks/RSA,Rabin)

Discrete logarithm in a prime field (Williamson/DH,DSA), other finite
fields (XTR, CEILIDH) or an elliptic curve (ECC, Suite B, 25519)

Unfortunately, Shor’s Algorithm for a quantum computer is effective against
precisely these two classes of problems.
We also know that Grover’s Algorithm is effective for speeding up general
search problems.
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Post-quantum

We therefore need

To understand the effectiveness of probable models of quantum
computation against existing cryptosystems, especially those
implemented in standards or very widely used products

To generate new proposals for cryptosystems which are not vulnerable
to known attacks;

To develop a robust understanding of the effective classical and quantum
attacks on proposed systems and their parameters.
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Quadratic forms and bilinear forms

We start with a real vector space V of finite dimension n.
A bilinear form is a map b : V × V → R, linear in each argument separately.
It is symmetric if b(x , y) = b(y , x) and skew-symmetric (alternating) if
b(x , y) = −b(y , x).
A quadratic form is a map q : V → R, scaling as q(λx) = λ2q(x) and such
that the polarisation

bq(x , y) = 1
2 (q(x + y)− q(x)− q(y))

is bilinear. Conversely if b is a symmetric bilinear form then q(x) = b(x , x) is
a quadratic form with bq = b.
A quadratic form is positive semidefinite if q(x) ≥ 0 and definite if q(x) 6= 0
for x 6= 0.
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Bases and matrices

Let (e) = (e1, . . . , en) be a basis for V with bilinear form b.
The Gram matrix for e is of b is the n × n matrix G = b(ei , ej ). If b is
symmetric, so is G.
If P is a change of basis matrix from (e) to (f ) then G transforms by
G 7→ P>GP: this is congruence.
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Sylvester’s Law of Inertia

Sylvester’s Law of Inertia. Every real vector space with a quadratic form has
a basis for which the Gram matrix is diagonal with only ±1 or 0 on the
diagonal: further, the number of +1, −1 and 0 is determined by the form.
Equivalently: any real symmetric matrix is congruent to exactly one matrix
with +1 then −1 then 0 on the diagonal.

The numbers of (+,−, 0) on the diagonal is the signature.
A positive semidefinite form has signature (r , 0, n − r): a positive definite
form has signature (n, 0, 0).

A Euclidean space is a space with a positive definite quadratic form: it has a
basis which makes it a conventional Euclidean inner product space (Rn, 〈, 〉).
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Gram–Schmidt process

This is a procedure for generating an orthogonal or orthonormal basis for a
real inner-product (Euclidean) space from a given (ordered) basis. At each
step we project onto the span of the previously obtained vectors.
Let v1, . . . , vn be a basis for the inner-product space (V , 〈, 〉). Define a basis
v ]1 , . . . iteratively by

v ]i = vi −
i−1∑
j=1

〈
vi , v ]j

〉
〈

v ]j , v
]
j

〉vi

The vectors (v ]1 , . . . , v
]
n ) form an orthogonal basis for (V , 〈, 〉) and can be

normalised by dividing by the scale factors
〈

v ]j , v
]
j

〉
.
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Gram–Schmidt and Cholesky

The change of basis matrix implied by the Gram–Schmidt process is
triangular, and yields an orthonormal basis, one for which the Gram matrix is
the identity.
This is the Cholesky decomposition: if G is symmetric definite then

G = U> · U

where U is an upper triangular matrix containing the Gram–Schmidt
coefficients.
Sylvester gave an intrinsic characterisation of positive definite symmetric
matrix: all principal minors are positive.
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Gram–Schmidt and QR

The Gram–Schmidt process also yields the QR decomposition for a square
matrix A. Assume A is non-singular, and view A as a change of basis matrix
on the Euclidean space. The new quadratic form has Gram matrix G = A>A
and this has a Cholesky decomposition

A>A = R>R

with R upper triangular. Write Q = AR−1. Then Q>Q = R−>A>AR−1 = I:
that is, Q is an orthogonal matrix.
We have

A = Q · R

where Q is a matrix with orthonormal columns and R is upper triangular:
indeed, the columns of Q are the orthonormal basis vectors resulting and the
nonzero entries in R are the Gram–Schmidt coefficients.
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Lattices

Geometric definition. A lattice is a discrete subgroup L of Euclidean space
(Rn, | · |) of maximal dimension / which spans the space over R.

Algebraic definition. A lattice is a finite rank free Z-module / Zn equipped with
a positive definite quadratic form q.

These definitions are equivalent.
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Equivalent definitions

Geometric⇒ Algebraic.
A discrete subgroup of Rn cannot have rank greater than n. Hence L has rank
n and Euclidean distance | · |2 induces a positive definite quadratic form on L.

Algebraic⇒ Geometric.
If L is free, it has a basis over Z which is then a basis for LR = L⊗ R over R.
The quadratic form extends to LR and induces a symmetric bilinear form on
LR by polarisation, with a matrix which is diagonalisable over R, giving an
embedding of L into (Rn, | · |).
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The Gram matrix

In either view of a lattice it has a basis e1, . . . , en and a symmetric bilinear
form B with B(x , x) = q(x) = |x |2.

The Gram matrix of B is the n × n matrix B(ei , ej ).
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Equivalent bases

Two bases of L, say (ei ) and (fj ) are related by a change of basis matrix P
which is integer and has an integer inverse, that is, P ∈ SLn(Z).

The Gram matrices are related by Ge = P>Gf P.
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The fundamental parallelepiped

Euclidean space is covered by translates of the fundamental parallelepiped
for a basis (ei )

De =

{∑
i

xiei : 0 ≤ xi < 1

}

The shape of D depends on the choice of basis for L. The volume of D does
not:

vol D = | det(e)|

which is √ det G where G is the Gram matrix.
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The ellipsoid

The ellipsoid attached to a basis (ei ) is defined as the subset of Rn for which

Ee =
{

x ∈ Rn : x>Gx ≤ 1
}

The shape of E depends on the choice of basis for L.
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Choice of basis

Reduction means choosing a “good” basis, or a “good” shape of D
preferably in an effective and efficient way.

A canonical or standard basis would be a specific choice of basis, one for
each lattice, which would be unique and possible to compute effectively and
efficiently.
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Introduction and warning

Many of the ideas in lattices can be seen in the two-dimensional case. There
is a very beautiful theory, rich in applications.

Beware! The high dimensional situation is often quite different.
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Complex embedding

The two-dimensional Euclidean plane can be interpreted as the complex
number Argand diagram.
A lattice described by two complex numbers z1, z2 can be described up to
rotation and scaling (multiplication by z1) by the single complex number
τ = z2/z1.
By choice of orientation we may assume that =τ > 0. So lattice bases in two
dimensions are encoded by points in the upper half-plane H.
The basis transformations in SL2(Z) act on H by Möbius transformations(

a b
c d

)
: z 7→ az + b

cz + d
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The modular triangle

The action of SL2(Z) on H has a fundamental domain (the “modular triangle”)
defined as

∆ = {z ∈ H : |<z| ≤ 1
2 , |z| ≥ 1}

The operations
T± : z 7→ z ± 1

and
S : z 7→ −1

z
correspond to elements of SL2(Z) and successive applications of S,T±
transform any element of H to an element of ∆.
Note that ∆ is closed, and S,T± identity its edges, so that apart from the
boundary cases, every element of H is transformed into just one element of
H.
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Reduction

We define a lattice basis (z1, z2) to be reduced if the corresponding τ = z2/z1

is in ∆.

Every lattice has just one reduced basis (with certain exceptions)

The reduced basis (1, τ) has the largest angle between basis vectors

The reduced basis (1, τ) has the most nearly equal length basis vectors

There is a fundamental domain for SL2(Z)

There is an efficient algorithm for computing the reduced basis
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Quadratic forms

The positive definite quadratic forms q on L can be expressed as
ax2 + bxy + cy2 with a, b, c real, a > 0 and b2 − 4ac < 0.
Reduction gives a form with a ≤ c and |b| ≤ a. This can be taken as a
definition of reduction.
The root of the associated quadratic lies in the fundamental domain.
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Higher dimensions
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Minkowski reduction

Let L be a lattice with quadratic form q. Minkowski reduction produces a
basis (e) for L by taking e1 to be the non-zero element with smallest q-value,
and then extending by taking ej+1 to be the vector with smallest q-value that
extends e1, . . . , ej as a lattice basis.

A Minkowski-reduced basis may be characterised by the property that if the
coordinates x1, . . . , xn of an element x = x1e1 + · · ·+ xnen satisfy
hcf {xk , . . . , xn} = 1 then f (x) ≥ f (ek ).

In general a lattice has a unique Minkowski-reduced basis up to sign
changes; Minkowski reduction defines a fundamental domain for SLn(Z), and
this is defined by finitely many algebraic constraints.
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Gram–Schmidt and reduction

NB: Gram–Schmidt is not a lattice procedure.

At each step we project onto the span of the previously obtained vectors.
Let v1, . . . , vn be a basis for the inner-product space (V , 〈, 〉). Define a basis
v ]1 , . . . iteratively by

v ]i = vi −
i−1∑
j=1

µijvi

where

µij =

〈
vi , v ]j

〉
〈

v ]j , v
]
j

〉
We want to find a basis for L for which —

The diagonal terms rii are balanced, decrease as slowly as possible

The off-diagonal terms are size-reduced, |µij | ≤ 1
2
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Korkin–Zolotarev reduction

Let L be a lattice in Rn. Let Sj be 〈e1, . . . , ej〉 and Pj the orthogonal projection
of L onto S⊥j . Choose ej+1 to have the shortest projection to Pj . The basis is
Korkin–Zolotarev reduced if in addition it is size-reduced, |µij | ≤ 1

2 .
In general a lattice has a unique Minkowski-reduced basis up to sign
changes; similarly for KZ-reduced bases.
These definitions of reduction are related to the successive minima described
above. If e is KZ-reduced then

4
i + 3

λi ≤ |ei | ≤
i + 3

4
λi
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Application to algebraic number theory

An algebraic number field K is a finite degree extension of the rational field Q.
The trace form 〈x , y〉 7→ trK/Q(xy) is a symmetric bilinear form on K .
The additive embedding a : K ↪→ Rr ⊕ Cs ≈ Rn where n = r + 2s.
The multiplicative or logarithmic embedding ` : K ∗ ↪→ Rr ⊕ Cs.
The ring of integers O is a Z-lattice with the trace form as a symmetric
bilinear form: the additive embedding a is a realisation of this, and the
covolume of a(O) is the discriminant of O.
The ideals of O inherit a lattice structure. An ideal lattice is any lattice
isometric to an ideal in a number ring.
A principal ideal (α) = αO. In general not all ideals are principal.
The norm of an ideal a is the index [O : a]. The covolume
vol a = [O : a]2 · volO.
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Sketch of the finiteness of the class number

Two ideals a, b of O are equivalent if there are elements α, β ∈ O such that
(α)a = (β)b.
We claim that there are finitely many equivalence classes of ideals: indeed
each class contains an ideal of norm
The principal step is that any ideal a contains an element of norm at most

n!

nn

(
4
π

)s

N(a)|∆|1/2

Incidentally, this implies that |∆| > 1 for all number fields other than Q.
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Convex bodies

A region B in Rn is convex if x , y ∈ B implies tx + (1− t)y ∈ B for all t ∈ [0, 1],
that is, B contains the entre line segment between any two of its points.
The closure of a convex body is convex, and it is often covenient to assume
that convex bodies are closed.
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Theorems of Blichfeld and Minkowski

Theorem. Let B be a convex body of volume V in Rn and L a lattice of
covolume < V . Then B contains distinct points x , y with x − y ∈ L.
Idea of proof. Fix a fundamental parallelepiped Π for L and tile Rn with its
translates. This tiling divides B into regions Bn = B ∩ (n + Π) for n ∈ L. The
translates Bn − n have total volume V greater than that of Π so cannot fit
without overlap.

Theorem. Let B be a convex body in Rn of volume V which is symmetric
about 0. Let L be a lattice of covolume < 2−nV . Then L contains a point of B
other than 0.
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Successive minima

Let L be embedded in Rn and let Bλ = λB1 denote the ball of radius λ. The
successive minima of L are the numbers

λi = inf{λ ∈ R : L ∩ Bλ has i independent points }

so that λ1 is the length of the shortest vector in L. Clearly λ1 ≤ λ2 ≤ · · · ≤ λn.
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Minkowski’s second theorem

Let L be a lattice of covolume D in Rn. Then

λ1 ≤
√

nD1/n

This follows from the trivial estimate that vol B1 > (2/
√

n)n since B1 contains
a cube of side 2/sqrtn.
Indeed

λ1 · · ·λn ≤ nn/2D

Any good estimate for the volume of the unit ball, vol B1 will do here.
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Successive minima

In the opposite direction, we have

λ1 ≥
〈

x]1 , x
]
1

〉
where the x] are the (unnormalised) Gram–Schmidt vectors.

Crown copyright. This information is exempt from disclosure under the Freedom of Information Act 2000 and may be subject
to exemption under other UK information legislation. Refer disclosure requests to GCHQ on 01242 221491 ext 30306 or email
infoleg@gchq.gsi.gov.uk



Stuff Cryptography Quadratic forms Lattices Lattices in two dimension Lattice crypt Applications Conclusion

Lattice problems

SVP. Shortest vector problem.
Find a vector of length λ1 in L.

CVP. Closest vector problem.
Given a point of Rn, find the closest element of L.
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Problem and solution variants

Decision. Decide whether or not the required answer exists.

Promise. Find the required answer given that it exists.

Optimise. Find the “merit” of the desired answer.

Approximate. Find an approximation to the desired answer with “merit”
within a factor of 1− ε
Randomised. Find the desired answer with a probability at least 1− ε.
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Random lattices

We need to understand what we mean by a “typical” or “random” lattice.
A basis for a lattice in Rn is an invertible matrix. Scaling we may take an
element of SLn(R). But different bases generate the same lattice, so we
consider SLn(Z)\ SLn(R).
There is a natural Haar measure on SLn(R) and hence on this quotient giving
it finite volume.
For example, there is a probabilistic analogue of Minkowski’s theorem: of C is
convex, the probability that a random lattice of covolume 1 intersects C only
in 0 is� 1

vol(C)
.
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Ajtai random lattices

Note. There is an other definition of random lattice.

Consider lattices which are sublattices of Zn ↪→ Rn.

An Ajtai random lattice is a q-ary lattice (contains qZn) defined by random
linear equations (parity checks) modulo q.

Ajtai showed that finding very short vectors in a random instance of such
lattices is as hard as the problem for lattices in generality.
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LLL reduction

The Lenstra–Lenstra–Lovasz basis reduction method uses a definition of
reduction and gives an algorithm to achieve it which is provably efficient.
Firstly we define an LLL-reduced lattice basis ei with parameter m. Let the e]

be the Gram-Schmidt vectors corresponding to the e and write

µi,j =

〈
ei , e]j

〉
〈

e]j , e
]
j

〉
for i > j . We require

The µi,j <
1
2 ;

‖e]i+1‖
2 ≥ (m − 1

4 )‖e]i ‖
2 .

The LLL algorithm transforms any lattice basis into an LLL-reduced basis.
The paramter m lies between 1

4 and 1. A common choice is m = 3
4 .
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The LLL algorithm

The algorithm applies alternate reduction and swap steps to a lattice basis
(e) until it satisfies the LLL condition.
G. Perform Gram–Schmidt to compute the GS basis (e]) and the µi,j .
R. Reduction step. For i = 2, . . . n For j = 1, . . . , i − 1, replace ei by

ei −


〈

ei , e]j
〉

〈
e]j , e

]
j

〉
 ej

where d·c denotes nearest integer.
S. Swap step. Find the first i such that

m‖e]i ‖
2 > ‖µi+1,ie]i + e]i+1‖

2

If such an i is found, exchange ei and ei+1 and return to G.
If no such i is found, then the basis is LLL-reduced, and stop.
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Properties of LLL reduction

Let (e) be an LLL-reduced basis. Then

‖e1‖ ≤
(

2√
4m − 1

)n−1

λ1

That is, the first basis vector is not far off being the shortest vector.
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Properties of the LLL algorithm

Theorem. The LLL algorithm always terminates.
In particular, an LLL-reduced basis always exists.

Theorem. The number of iterations of the algorithm is bounded by a
polynomial in the number of bits required to define the lattice.
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Lattice-based cryptography

Some significant proposals

NTRU

SOLILOQUY

LWE: learning with errors
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NTRU

A cryptosystem working in the ring R = Fq[x ]/〈xn − 1〉 where q is a small
prime. (Other polynomial families have been proposed.) There is an auxiliary
small prime p.
The secret key consists of a pair of polynomials f , g with small coefficients
(0,±1); the public key h is the quotient g/f in R. There is an auxiliary
decryption key fp = f−1 in Fp[X ].
Encrypt m: z = r · h + ((m + π) mod p) ∈ R, where r is random and π is
padding/check.
Decrypt z: a = f · z ∈ R; t = fp · a mod p. Stripping out padding, t yields m.
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Lattice attacks on NTRU

Lattice attack on f . Form a lattice of dimension 2n with generators rows of

L =

(
αI H
0 qI

)
where H has rows h,Xh,X 2h, . . . ,X n−1h all taken modq.
This is the lattice of polynomial pairs (u, v) such that gu ≡ αfv mod q So the
vector (αf , g) is in L. Note that there are “spurious” keys f ′ in this lattice will
also decrypt (some) messages.

Lattice attack on m. A similar lattice containing (αm, r).
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SOLILOQUY background

Let n be a prime and ζ a primitive n-th root of unity.

Let K = Q(ζ) be the n-th cyclotomic field and O = Z[ζ] its ring of integers.
Elements of O are monic polynomials of the form α =

∑n
i=1 aiζ

i .

For prime p ≡ 1 mod n the principal ideal pO decomposes into a product of
prime ideals pO =

∏n
i=1 Pi .

The prime ideals Pi are conjugates with norm p. They have a simple
two-element representation P = pO + (ζ − ci )O where the ci are n-th roots
of unity modulo p.

We will be interested in the value c ≡ 2(p−1)/n mod p and its prime ideal
P ≡ pO + (ζ − c)O.
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SOLILOQUY

SOLIOQUY is a lattice-based cryptosystem developed by CESG around
2006 with a compact public key.
The private key is a small ring element

α =
n∑

i=1

aiζ
i .

such that the norm p = Nα is prime and c 6≡ 1 mod p.
The corresponding public key is p.
Encrypt m:

m =
n−1∑
i=0

eiζ
i 7→ z =

n−1∑
i=0

eic i mod p

Decrypt z:
m = z − dzα−1c · α

provided that m satisfied dmα−1c = 0
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SOLILOQUY surprise

There is an essentially quantum attack on SOLILOQUY.
There is a quantum algorithm to recover the private key.
CESG abandoned the development of SOLILOQUY in 2013 and do not
recommend it for any practical applications.
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Learning with errors

LWE is a public key-cryptosystem which recovers a secret vector m from a
ciphertext which consists of a sequence of approximate modular linear
equations f ·m ∼ r mod q.
Secret key: matrix S; public key: matrix A and P = AS + E where E is a
random small “error” matrix.
Encrypt: to encrypt m in base t , choose random small garble a and send
z = (A>a,P>a + d(q/t)mc).
Note that z = (A>a,E>x + S>A>x) where x = dmq/tc).
Decrypt: given z = (z1, z2), let d = z2 − S>z1: we have d = E> + dmq/tc.
Since E is chosen from a small error distribution, m is recovered by rounding
(t/q)d to integer values.
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Ring-LWE

As LWE but replace the matrices A and P = AS + E by elements of a
suitable ring R = Z[x ]/〈f 〉.
The lattice problems are now replaced by their ideal lattice analogues.
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Applications of lattice reduction

Modular knapsack

Modular equations

Factorisation
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Modular knapsack

A proposed cryptosystem which is vulnerable to lattice reduction.
A knapsack problem is of the form: Given a set of positive integers wi , find a
subset summing to a given target T .
The greedy algorithm is: choose the largest unused weight wi ≤ T and
iterate on T − wi . It works when the wi increase rapidly (consider wi = 2i ).
The Merkle–Hellman modular knapsack cryptosystem takes integers wi as a
public key. A message is encrypted as z =

∑
i∈m wi . Decryption is solving

the knapsack.
The hidden structure is an x and N so that the x · wi form a rapidly increasing
sequence taken modulo N.
This is vulnerable to a lattice reduction attack.
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Modular knapsack lattice attack

Consider the rows 
w2 w3 . . . wn

⌈
a1/n

1

⌋
w1 0 . . . 0 0
0 w1 . . . 0 0

. . . 0
0 0 . . . −w1 0C


A short enough vector in this lattice, say (k2, . . . , kn, k1) yields a rational
approximation say U/M to k1/w1 for which M and the si = wiU − k1M form a
superincreasing modular weight system.
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Modular equations

Consider a polynomial equation f (x) ≡ 0 mod N. Solving such problems in
general implies factoring N: consider the equation x2 ≡ 1 mod N.
The Coppersmith – Howgrave-Graham method solves such problems when it
is known that there is a solution x mod N for which x is small: x � N1/d

where d is the degree of f .
Consider the lattice of all polynomial equations of bounded degree modulo N
which have x as a root: such equations form a lattice with generators
f , xf , x2f , . . ..
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Modular equations lattice



f0 f1 . . . fd 0 . . . 0
0 f0 . . . fd−1 fd . . . 0

...
0 0 . . . . . . fd

N 0 . . . . . . 0
0 N . . . . . . 0

. . .
0 0 . . . . . . N


A short vector in this lattice is a polynomial p which has x as a root modulo N
but with p(x) small enough that p(x) is actually zero.
The solution x of p(x) = 0 can then be obtained by standard numerical
techniques.
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Partial factorisation

Given N = pq and knowledge of sufficiently many high-order bits of p and of
q, it is possible to recover the full values.
We use a two-variable polynomial of the form (P + x)(Q + y) = N where
P,Q are the known parts of the unknown factors p, q of N.
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Any questions?

Any questions?

Any answers?
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