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1. Introduction
Background
In the United States, approximately one in eleven people are affected by kidney stones. Stone
disease is a great burden on national health resources with the financial cost in the USA
estimated to exceed five billion dollars by 2030. Even once the disease is treated, the risk of
recurrence is around 40% after 5 years, and 75% after 20 years. These are just some factors that
motivate the need for efficient and effective treatment of kidney stones.

Kidney stones are an accumulation of hard material within the kidneys, caused by high
levels of certain minerals within the urine. Stones vary in size, and while smaller stones can
usually pass naturally, larger ones typically require treatment. One approach which is quickly
becoming the preferred method for treating kidney stones is ureteroscopy. This procedure
involves passing a flexible medical instrument, known as a ureteroscope, through the urethra,
bladder, and ureter, until it reaches the kidney, as shown in Figure 1.

Kidney stones vary in
size, and while
smaller stones can
usually pass naturally,
larger ones typically
require treatment.
One approach for
treating kidney stones
is ureteroscopy.

Figure 1 – Diagram of the urinary system, showing a ureteroscope (with hanging saline bag)
inserted through the urethra, bladder, and ureter, to reach the kidney (highlighted in yellow).

The ureteroscope is hollow along its length, creating a working channel through which
irrigation fluid can pass into the body, as shown in Figure 2. Once the ureteroscope is
inserted into the patient, working tools such as wires, baskets, and laser fibres are used to
access and remove the kidney stones. Modern scopes are also fitted with a light source and a
camera at the tip, allowing urologists to visualise the renal system and locate the stones.

Ureteroscopy requires constant fluid irrigation to ensure a clear field of view for the camera,
which can become obscured by stone dust during laser treatment. The fluid irrigation also
keeps the urinary tract dilated, which provides better visualisation and scopemaneuverability
during the procedure. Traditionally, this constant irrigation is provided by hanging a bag of
saline solution above the level of the scope to create a pressure gradient to drive the flow.
The irrigation fluid flows from the bag into the scope, through the working channel, and out
directly into the urinary system. Recent developments in the field of ureteroscopy involve
using an electronic pump to control the flow of fluid, rather than relying on the pressure
gradient from an elevated saline bag. This allows the flow to be completely regulated during
the entire procedure, with the ability to respond actively to changes in pressure. The use of
these pumps means that unsteady flows are possible, which may provide additional benefits
during ureteroscopy.

Our interest is in the effect of having an unsteady flow on ureteroscope fluid irrigation. We
focus on oscillatory flows, motivated by the type of motion that electronic pumps can produce,
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Figure 2 –Cross section of the tip of the ureteroscope showing the position of the light source and
camera, as well as the working channel through which the irrigation fluid flows, with a working
tool inserted.

andwill usemathematical modelling in combinationwith experimental approaches to explore
the effect of oscillating flows.

2. Time dependent annular pipe flow: theory and
experiment

The flow is driven by
an oscillatory
pressure drop,
causing it the oscillate
in time.

We develop a mathematical model for the flow inside of a ureteroscope containing a working
tool. We assume that the flow is driven by a pressure difference, where the upstream pressure
oscillates in time, and the downstream pressure is taken to be atmospheric. The fluid flows
through an annulus, created by a working tool contained within the working channel of the
ureteroscope. We assume theworking tool sits in the centre of theworking channel. Wemodel
the annular region as two concentric cylinders where fluid flows between the inner and outer
cylinder. We define R1 as the radius of the inner cylinder, R2 as the radius of the outer cylinder,
p1 as the pressure at the inlet of the channel, p2 as the atmospheric pressure at the outlet of the
channel, and Ls as the length of both cylinders, as shown in Figure 3. We assume the pressure
p1 oscillates in time, and can be decomposed into a constant part and an oscillatory part. To
ensure there is no backflow, p1 is always greater than p2. The fluid is assumed to have the
same properties as water, since this closely resembles the weak saline solution used during
ureteroscopy. Therefore, we assume a viscous, incompressible, Newtonian fluid of density ρ
and dynamic viscosity µ.

Figure 3 – Flow through two concentric cylinders model sketch.
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Using the Navier-Stokes equations, which describe continuity and balance of momentum for
a viscous fluid, as our starting point, we neglect inertia and external forces to obtain a reduced
model, which has an explicit solution. This allows us to analyse how the velocity profile and
flux differ as the frequency of oscillations changes. In Figure 4, we show the flow profile over
half a period and we find that the maximum velocity of the flow is in the centre of the channel
for all time.

An explicit solution to
the mathematical
model is found,
allowing us to analyse
how the flow differs as
the frequency of
oscillations changes.
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(d) t � π

Figure 4 – Axial flow velocity, w, for half a period

We explore how the model depends on the frequency of the oscillations ω. In Figure 5a we
plot the flow velocity w for different values of α, where α measures the important of the
pulsatile flow frequency compared with viscous effects. We see that, as we increase α, which
corresponds to increasing the frequency of the oscillations, the flow profile changes from a
parabolic profile to a relatively flat or plug-like one.

In Figure 5bwe show how the total flux of fluid varies with frequency of the oscillations ω. We
see that, as the frequency increases, the oscillatory part of the flux decreases and the constant
part starts to dominate. This suggest that oscillatory flows with relatively large frequencies
will have similar flow rates to constant flows. We want to explore the accuracy of these ideas,
and so now we seek to justify our mathematical model experimentally.

The mathematical
model is verified by
carrying out
experiments on the
same flows.
Comparison between
the model and
experiments allows us
to understand the
limitations of the
model.

We complement the mathematical study by also carrying out some experiments. Our set up
is shown in Figure 6. The fluid is initially contained within a reservoir, where it is drawn
out using an electric peristaltic pump. The fluid passes through a flow meter which records
pressure readings upstream of the scope. The fluid enters the ureteroscope and travels down
the length of the working channel, before exiting the scope tip into a container placed upon
a mass balance, which records the mass of the fluid downstream of the scope. A working
tool is placed within the working channel of the ureteroscope during the experiment, creating
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Figure 5 – (a) Flow profile w for increasing α, (b) Comparison of the constant (Qc) and oscillatory
(Qo) parts of the flux as the oscillations increase.

an annulus for the fluid to pass through. The fluid used during the experiments is water
as this closely resembles the weak saline solution used in practice. The ureteroscope is held
horizontally, allowing us to neglect the effects of gravity on the fluid.

Figure 6 – Experimental set-up, with the path the flow takes from left to right indicated in yellow.

Analysis of data and comparison with mathematical model
Datawas collected for six separate runsof the experimentwhere theworking channel contained
a working tool. Data collecting began when the pump was turned on. The pressures within
the set-up were given time to increase until the initial transience had decayed away.

Using the experimental data we determine how the upstream scope pressure changes in time.
For each sample, we first interpolate the collected data, to give a curve that represents the
change in pressure over time. In order to allow comparison with the mathematical model,
we seek to divide this curve into its frequency components. This is achieved by performing
a fast Fourier transform (FFT) on the interpolated data. Once this is done, it is used in our
mathematical model to predict what the total mass is over the same time period as the data.
The prediction from the mathematical model is compared with the experimental data for each
sample. The results of this analysis are shown in Figure 7 for all six samples, with each pair
of data (dotted line) and corresponding mathematical model prediction (solid line) being the
same colour. The lines are almost completely linear, highlighting the minimal impact that the
oscillations have on the total mass over time. The primary result shown by the analysis is that
the mathematical model under-predicts the data for all six samples by an average of 30%.

The model
consistently under
predicts the data.

3. Improving the mathematical model
To find an explanation for the discrepancy between the mathematical model and experiments,
we revisit the assumptions made in our theory which may be physically inaccurate.
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Figure 7 – Total mass of six data sample compared against the corresponding model prediction.

Additional tubing
One explanation for the errormay be that themathematicalmodel assumes the pressure values
are at the beginning of the scope. However, the flow meter which records the pressure has a
length of additional tubing before it reaches the beginning of the scope. This suggests that the
assumption made in the model is not representative of our experiments. After extending the
mathematical model to account for the additional tubing, the model predicts a small decrease
in pressure from the flowmeter to the scope, with the constant part decreasing by 0.007% and
the oscillatory part decreasing by 0.171%. This suggests that the additional tubing did not
have a significant influence on our experimental results.

Working tool position
We now explore what happens when we relax the assumption that the working tool is
concentric with the working channel. We assume the working tool and working channel are
still parallel to one another, but the working tool has been displaced laterally in the channel.
We aim to find how the total flux changes as the position of the working tool varies.

We consider a toy model in which the flow is steady (since in the experiments we see the
oscillations have minimal impact on the total mass). In our toy model, we prescribe channel
flow between two parallel plates, in which a working tool is present, which decouples the flow
into two distinct regions. We define the region above the working tool as the upper region and
the region below the working tool as the lower region. The centre of working tool is allowed to
be at any position within the channel. We assume that the liquid is a viscous, incompressible,
Newtonian fluid of density ρ and dynamic viscosity µ.

We find that the flux is
maximum when the
working tool is
pressed up against
either channel wall.
This suggests the
assumption of a
concentric working
tool may be what is
causing the model to
under predict the
data.

Applying classical results of Poiseuille flow yields an analytical solution in both regions. We
are interested in how the total flux varies as the working tool changes position. The total
flux for different values of κ, the position of the working tool for the length of the channel, is
shown in Figure 8. We see that the flux is minimum when the working tool is sitting in the
centre of the channel, and that it is maximum when the working tool is pressed against either
channel wall. The maximum flux is roughly four times larger than the minimum, suggesting
the position of the tool has a large influence on the total flux.

We conclude that our earlier discrepancy between theory and experiment may be due to the
assumption that the working tool is concentric in the working channel. The result in Figure 8
suggests that the working tool may be sitting only slightly offset from the centre of the channel.

5



0.045 0.05 0.055 0.06 0.065 0.07 0.075

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Q
to

ta
l

Figure 8 – Total flux of fluid for varying working tool centre position κ.

4. Discussion, conclusions & recommendations
We have established a mathematical model for unsteady flows in a ureteroscope, and solved
this model analytically. To validate the mathematical model, we have carried out experiments,
analysed thedata collected, andmade comparisonswith thepredictions from themathematical
model. We found a discrepancy between the model and experimental data, which motivated
us to explore possible explanations for this error. We reviewed the experimental set-up, and
adjusted ourmodel to account for additional tubing, but concluded that thiswas not the source
of the error. We then postulated that our assumption of the working tool being concentric with
the working channel may in practice be inaccurate, and presented a model to explore what
happens when the tool changes position within the channel. We found that this assumption
is likely to be the cause of the discrepancies between experiments and model.

A next logical step for this work would be to return to the first model presented and remove
the assumption that the working tool is concentric in the working channel, creating a three
dimensional model for unsteady flows with an offset tool.

Thinking of the wider applications of unsteady flows during ureteroscopy, it would be
interesting to explore what effect these flows have outside of the working channel of the
scope, for example, when the irrigation fluid is exiting the tip of the scope into the kidney.
Within the kidney, the stone dust created from laser treatment can often become stagnant and
obscure the view of the camera, and so it is possible that unsteady flows may counteract this.

5. Potential impact
Our work serves as the initial modelling steps towards developing a generic framework for
describing unsteady flow in ureteroscopes. Such a model provides insights into the effects
unsteady flows have during ureteroscopy, allowing for optimisation of the procedure.

Niraj Rauniyar, Principal development Engineer - R&D at Boston Scientific said: “Harry‘s work
on understanding system level modelling for fluid flow with laminar flow and well as impact/effect
of pulsation is likely be very impactful to the company, and we are excited about the results. His
research will aim at modelling unsteady flow through a ureteroscope in order to determine the role of
time dependent flows. His system level research will not only compare unsteady flow to steady flow
results but also try to understand how we can harness the oscillations. His follow-on research project,
in essence, will be a system level view and will aggregate several other projects (Intracavity pressure
impact, tissue compliance model with flow, flow patterns with various flow and annulus shape) that are
happening across Oxford University sponsored by us. Based on all the work that is happening across
multiple projects within oxford, he will also understand effects on flow characteristics (such as with
inter-renal pressure, flux, deformability etc.)”
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