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BV functions and metric measure spaces

Functions of bounded variation, or BV functions, are a more
general class than Sobolev functions, and are a natural class
in e.g. many minimization problems

Various properties of BV functions are well understood in
Euclidean spaces and also other settings such as weighted
Euclidean spaces, Heisenberg groups etc.

During the past decade, a theory of BV functions has been
developed on general metric measure spaces



Metric measure space

Setting: (X , d , µ) is a complete metric space with metric d
and measure µ.

µ is a Borel regular outer measure and also doubling, meaning
that for some constant cd ≥ 1 we have

0 < µ(B(x , 2r)) ≤ cdµ(B(x , r)) <∞

for all balls B(x , r) in X .

It follows that for every y ∈ B(x ,R) with r ≤ R, we have

µ(B(y , r))

µ(B(x ,R))
≥ C (cd)

( r

R

)Q
for Q = Q(cd) > 1.



Curves and upper gradients

A curve γ is a rectifiable, continuous mapping from a compact
interval [0, `γ ] into the space X , parametrized by arc-length.

Definition (Heinonen and Koskela, 1998)

A nonnegative Borel function g on X is an upper gradient of an
extended real-valued function u on X if for all curves γ,

|u(x)− u(y)| ≤
∫ `γ

0
g(γ(s)) ds,

where x and y are the end points of γ.



Poincaré inequality

Definition

The space X supports a (1, 1)-Poincaré inequality if there exist
constants cP > 0 and λ ≥ 1 such that for all locally integrable
functions u, all upper gradients g of u, and all balls B(x , r), we
have ∫

B(x ,r)
|u − uB(x ,r)| dµ ≤ cP r

∫
B(x ,λr)

g dµ.

Here

uB(x ,r) :=

∫
B(x ,r)

u dµ :=
1

µ(B(x , r))

∫
B(x ,r)

u dµ.



Functions of bounded variation

Let Ω ⊂ X be an open set.

Definition

The total variation of u ∈ L1
loc(Ω) is

‖Du‖(Ω)

:= inf

{
lim inf
i→∞

∫
Ω

gui dµ, Liploc(Ω) 3 ui → u in L1
loc(Ω)

}
,

where each gui is an upper gradient of ui .

We say that a function u ∈ L1(Ω) is in the class BV(Ω) if
‖Du‖(Ω) <∞.



The variation measure

For an arbitrary set A ⊂ X , we define

‖Du‖(A) := inf{‖Du‖(Ω), Ω open, A ⊂ Ω}.

If u ∈ BV(X ), ‖Du‖ is a Radon measure on X , called the
variation measure (Miranda 2003).

For a set E ⊂ X , the perimeter of E in Ω is

P(E ,Ω) := ‖DχE‖(Ω).

We also have a BV version of the (1, 1)-Poincaré inequality.



Coarea formula

For any u ∈ BV(Ω), we have

‖Du‖(Ω) =

∫ ∞
−∞

P({u > t},Ω) dt.

Take x ∈ X , r > 0, u := d(·, x), with upper gradient g ≡ 1.

By coarea formula

µ(B(x , 2r)) =

∫
B(x ,2r)

g dµ ≥ ‖Du‖(B(x , 2r))

=

∫ ∞
−∞

P({u > t},B(x , 2r)) dt =

∫ 2r

0
P(B(x , t),B(x , 2r)) dt

Thus ∃t ∈ (r , 2r) s.t.

P(B(x , t),B(x , 2r)) ≤ µ(B(x , 2r))

r
≤ cd

µ(B(x , r))

r



Codimension 1 Hausdorff measure

The codimension 1 Hausdorff measure is defined for A ⊂ X by

H(A) := lim
R→0
HR(A)

with

HR(A) := inf

{ ∞∑
i=1

µ(B(xi , ri ))

ri
, A ⊂

∞⋃
i=1

B(xi , ri ), ri ≤ R

}
.



Absolute continuity of P(E , ·) w.r.t. H
Suppose K ⊂ X is compact with H(K ) = 0.

For any ε > 0, there exist balls ∪ni=1B(xi , ri ) ⊃ K with

n∑
i=1

P(B(xi , ri ),X ) ≤ cd

n∑
i=1

µ(B(xi , ri ))

ri
≤ ε.

Thus for a set of finite perimeter E , if we define
Eε := E ∪

⋃n
i=1 B(xi , ri ), then

P(E ,K ) = P(E ,X )− P(E ,X \ K )

≤ lim inf
ε→0

P(Eε,X )− P(E ,X \ K )

= lim inf
ε→0

P(Eε,X \ K )− P(E ,X \ K )

≤ lim inf
ε→0

(
P(E ,X \ K ) +

n∑
i=1

P(B(xi , ri ),X )− P(E ,X \ K )

)
= 0.



Structure of sets of finite perimeter

For E ⊂ X , define the measure theoretic boundary ∂∗E as the set
of points x ∈ X where

lim sup
r→0

µ(B(x , r) ∩ E )

µ(B(x , r))
> 0 and lim sup

r→0

µ(B(x , r) \ E )

µ(B(x , r))
> 0.

Theorem (Ambrosio et al., 2003)

For a set of finite perimeter E ⊂ X , there are constants
C ≥ 1, γ ∈ (0, 1/2], only depending on doubling and Poincaré
constants, such that

1

C
H(∂∗E ∩ A) ≤ P(E ,A) ≤ CH(∂∗E ∩ A),

and for H-a.e. x ∈ ∂∗E ,

γ ≤ lim inf
r→0

µ(B(x , r) ∩ E )

µ(B(x , r))
≤ lim sup

r→0

µ(B(x , r) ∩ E )

µ(B(x , r))
≤ 1− γ.



Approximate limits of BV functions

For u ∈ BV(X ), define the approximate lower and upper
limits of u as

u∧(x) := sup

{
t ∈ R : lim

r→0

µ({u < t} ∩ B(x , r))

µ(B(x , r))
= 0

}
,

u∨(x) := inf

{
t ∈ R : lim

r→0

µ({u > t} ∩ B(x , r))

µ(B(x , r))
= 0

}
.

Define the jump set Su as the set where u∧(x) < u∨(x).

Theorem (Kinnunen et al., 2013)

For u ∈ BV(X ) and H-a.e. x ∈ X \ Su, we have

lim
r→0

∫
B(x ,r)

|u − u∨(x)|Q/(Q−1) dµ = 0.



Behavior in jump set
In the Euclidean setting, for H-a.e. x ∈ Su we have

lim
r→0

∫
B(x ,r)∩H+

ν (x)
|u − u∨(x)|n/(n−1) dLn = 0

and

lim
r→0

∫
B(x ,r)∩H−

ν (x)
|u − u∧(x)|n/(n−1) dLn = 0

for half-spaces H−ν (x), H+
ν (x) with normal ν ∈ Sn−1.

Theorem (L., 2014)

For u ∈ BV(X ) and H-a.e. x ∈ Su, there exist
tl , tu ∈ (u∧(x), u∨(x)) such that

lim
r→0

∫
B(x ,r)∩{u>tu}

|u − u∨(x)|Q/(Q−1) dµ = 0

and

lim
r→0

∫
B(x ,r)∩{u<tl}

|u − u∧(x)|Q/(Q−1) dµ = 0.



Proof I

Denote Et := {u > t}, t ∈ R. By the coarea formula, there
exists a countable dense set T ⊂ R such that for every t ∈ T ,
P(Et ,X ) <∞.

Define N as the set of points x ∈ X where for some t ∈ T , we
have x ∈ ∂∗Et but the condition

γ ≤ lim inf
r→0

µ(B(x , r) ∩ Et)

µ(B(x , r))
≤ lim sup

r→0

µ(B(x , r) ∩ Et)

µ(B(x , r))
≤ 1− γ

fails.

Define similarly Ñ as the set where for some s, t ∈ T ,
x ∈ ∂∗(Es \ Et) but the above condition fails for Es \ Et .

Then H(N ∪ Ñ) = 0.



Proof II

Now take x ∈ Su \ (N ∪ Ñ) and consider a sequence of
numbers t1 < t2 < . . . ∈ (u∧(x), u∨(x)) ∩ T . Note that
x ∈ ∂∗Eti for all i = 1, 2, . . ..

Assume that

lim sup
r→0

µ(B(x , r) ∩ Eti \ Eti+1)

µ(B(x , r))
> 0

for all i = 1, 2, . . ..

But then x ∈ ∂∗(Eti \ Eti+1) for all i , and since x /∈ Ñ, we
have in fact

lim inf
r→0

µ(B(x , r) ∩ Eti \ Eti+1)

µ(B(x , r))
≥ γ



Proof III

Thus there exists tu ∈ (u∧(x), u∨(x)) such that

lim sup
r→0

µ(B(x , r) ∩ Etu \ Et)

µ(B(x , r))
= 0

for all t ∈ (tu, u
∨(x)).

Hence for any ε > 0, the level sets
{u∨(x)− ε < u < u∨(x) + ε} have density 1 in Etu at x .

Technical calculations involving the Sobolev-Poincaré
inequality and the coarea formula then give the result.



Proof IV

lim sup
r→0

∫
B(x ,r)∩{u>tu}

|u − u∨(x)|Q/(Q−1) dµ

≤ lim sup
r→0

1

µ(B(x , r) ∩ Etu)

∫
B(x ,r)∩{u>M}

|u − u∨(x)|Q/(Q−1) dµ+ . . .

≤ lim sup
r→0

1

µ(B(x , r) ∩ Etu)

∫
B(x ,r)

(u −M)
Q/(Q−1)
+ dµ+ . . .

≤ C lim sup
r→0

(
r
‖D(u −M)+‖(B(x , r))

µ(B(x , r))

)Q/(Q−1)

+ . . .

By the BV coarea formula, ‖D(u −M)+‖ converges to zero as
M →∞.



The locality condition

In Rn, Alberti’s rank one theorem states that for
u = (u1, u2) ∈ [BV(Rn)]2,

dDu1

d |Du|
(x) ‖ dDu2

d |Du|
(x)

for |Du|s -a.e. x ∈ Rn.

We say that the space X satisfies a locality condition if given
any sets of finite perimeter E1 ⊂ E2 ⊂ X , we have for H-a.e.
x ∈ ∂∗E1 ∩ ∂∗E2 that

lim
r→0

µ(B(x , r) ∩ E2 \ E1)

µ(B(x , r))
= 0.

If this condition holds, then in the above theorem we can
choose tl , tu freely from the interval (u∧(x), u∨(x)).



The locality condition II

Take the space

X := {(x , y) ∈ R2 : x = 0 or y = 0},

equipped with metric inherited from R2 and the 1-dimensional
Hausdorff measure.

Then the locality condition does not hold for E1 := {x > 0}
and E2 := {x > 0} ∪ {y > 0}.
Similarly we see that we cannot always pick tl , tu freely from
the interval (u∧(x), u∨(x)).

If we assume the locality condition, what kind of analogue of
Alberti’s rank one theorem could we prove in the metric
setting?


