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o Interaction: please ask questions
during my falks; interruptions are
welcome.

o Slides will be available online.

o If you really want to understand an
algorithm, it is helpful to implement if,
using sage or NTL.
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22248 The Ubiquity of Lattices
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o In mathematics

o Algebraic number theory, Algebraic
geometry, Sphere packings, etc.

o Fields medals: G. Margulis (1978), E.
Lindenstrauss and S. Smirnov (2010), M.
Bhargava (2014).

o Applications in computer science, statistical
physics, etc.



Motivation
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Motivation
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o Many people want convincing security
estimates for lattice-based
cryptosystems (and other post-quantum
cryposystems).

o Use numerical challenges as a sanity
check of the state-of-the-art.



NTRU Challenges (2015-)
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Darmstadt Lattice Challenge (2008 )
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o Method used in
largest records:
Enumeration with BKZ.



Darmstadt SVP Challenge (2010 )
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o Method used in
largest records?



The SVP Challenges
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p N Comparison with RSA Records
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o The largest SVP-computation is for dim
150 (Jan. 2017): 340,000 core-days = 2°°
clock cycles.

o This is only half RSA-768 = 730,000
core-days = 2% clock cycles.



Goal
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o Understand the main ideas and
underlying the best lattice algorithms
In practice.

o Understand their limitations.



Trends
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o Imbalance: much more publications on the
design of lattice-based cryptographic
schemes than lattice algorithms.

o The literature on lattice algorithms can be
confusing:

o Provable # heuristic
o Worst-case analysis # typical behaviour

o Sometimes, incorrect statements



Summary
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o Mathematical background

o Enumeration
o Cylinder pruning
o Discrete pruning

o Algorithms from Hermites constant
o LLL and Hermites inequality

o Block-wise algorithms and Mordells inequality

o Mordells proof of Minkowskis inequality

o Security Estimates



Overview
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o The biggest distinction among lattice
algorithms is space:

o Poly-space algorithms

o Exp-space algorithms



Mathematical
Background



What 1s a Lattice?
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o A lattice is a discrete subgroup of R", or the
set L(by,...,bd) of all linear combinations 2Zxib

where xi€Z, and the bs are linearly
independent.
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= Inte ger Lattices

oA (Full rank) m’reger la’r’rlce IS any subgroup
L of (Z",4) s.t. Z"/L is finite.

O

o A lattice is infinite, but lattice crypto

implicitly uses the finite abelian group Z"/L:
It works modulo the lattice L.



[ attice Invariants
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o The dim is the dim of span(L).

o The (co-)volume is the volume of any basis
parallelepiped: can be computed in poly-

time. Ex: vol(Z")=1.




The Gaussian Heuristic
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o The volume measures the density of
lattice points.

o For "nice” full-rank lattices L, and "nice”
measurable sets C of R™

Card(LN () =~ —

vol(C')
vol(L)




The n-dimensional volume of a Euclidean ball of radius R in n-dimensional Euclidean space is:




Short Lattice Vectors

IR
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o Th: Any d-dim lattice L has

exponentially many vectors of norm <
0, (ﬂ) vol(L)Y/4

o Th: In a random d-dim lattice L, all
non-zero vectors have norm 2

0 (\/E) vol(L)Y/d




:
& Hermite’s Constant (1850)
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o This is the “worst-case” for short
lattice vectors.

o Hermite showed the existence of this
constant:

2 A1 (L)
Vd = maxp o e

o Here, A (L) is the minimal norm of a
non-zero lattice vector.



Facts on Hermite’s Constant &
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o Hermites constant is asymptotically linear:
Q(n) < ya < O(n)

o The exact value of the constant is only
known up to dim 8, and in dim 24 [2004].

dim n 2 3 5 6 7 8 24

4
Yn 2/\@21/3 \/581/5(64/&1/6641/7 2 4

approx | 1.16 [ 126 | 1.41 [ 1.52 [ 1.67 | 1.81 2 4




:’* J Mathematical Goals
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o Classical setting: the worst case.

o Find the exact value of Hermites
constant.

o New trends: the average case.

o Properties of random lattices, developing
results from the 50s.

o Properties of random lattice points



Overview of Lattice

Algorithms



Lattice Al gorlthms
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o Input = intfeger matrix, whose rows span
the lattice. Parameters:

o Size of basis coefficients
o Lattice dimension

o Asymptotically:
odim increases

o coeff-size polynomial in dim.



Hard Lattice Problems
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o Since 1996, lattices are very frendy in classical
and quantum complexity theory.

o Depending on the dimension d: approx. factor

o NP-hardness O(1) /
o non NP-hardness (NPnco-NP) \/&

o worst-case/average-case reduction dlogd

o cryptography dO(l)

o subexp-time algorithms 2\/3

d log log d \/

o poly-time algorithms 2 Togd co




Generic Lattice Problem

I LIRL s s Tyt SR P AT DA A Tty "IN LS 2 R PO . S VSN L P

o Input: a lattice L and a ball C

o Output: decide if LnC is non-trivial, and if
it is, ind a non-trivial point.

o Settings

o Approx: LnC has many points. Ex: SIS
and ISIS.

o Unique: essentially, L has one non-trivial
point, even though C might be small.



The Shortest Vector Problem (SVP)
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o Input: a basis of a d-dim lattice L

o Qutput: nonzero veL minimizing |Ivl| i.e.
[Ivil= A 4(L)
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Relaxing SVP
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o Input: a basis of a d-dim lattice L.

o Qutput: nonzero VEL such that

o Approximate-SVP: |Ivll<f(d) A (L) I[relative]

o Hermite-SVP: lIvli<g(d) vol(L)/d [absolute]



The Closest Vector Problem (CVP)
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o Input: a basis of a la’r’rlce L of dim d, and
a target vector T.

o Qutput: veL minimizing ||v-tll.

o BDD (bounded distance decoding): special
case when T is very close to L.



P Insi ght
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o The most classical problem is fo prove the existence
of short lattice vectors.

o All known upper bounds on Hermites constant have
an algorithmic analogue:

o Hermites inequality: the LLL algorithm.

o Mordells inequality: Blockwise generalizations of LLL.

o Mordells proof of Minkowskis inequality: worst-case
to average-case reductions for SIS and sieve
algorithms [BIN14,ADRS15]



Q :

Hermite’s
Inequality
and LLL




& Hermite’s Inequality
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o Hermite proved in 1850:

e 4 (d—1)/2
S S s— (g)

o [LLL82] finds in polynomial time a non-zero
lattice vector of norm < (4/3+ ¢ )d-D/4yo| (L)Y,

It is an algorithmic version of Hermite’
inequality.



Proof of Hermite’s Inequality
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o Induction over d: obvious for d=1.

oLet b; be a shortest vector of L, and mm the
projection over by

o Let m(bz) be a shortest vector of m(L).

o We can make sure by lifting that:
Iball2< llm(b2)l|2+]|bil|2/4 (size-reduction)

o On the other hand, ||bil|<|Ib:|| and
vol(tr(L))=vol(L)/||bll.



Question
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oIs the proof constructive?

o Does it build a non-zero lattice vector
satisfying Hermites inequality:



An Algorlthmlc Proot

PN LSIEL b Ifa , Trt GBS R P e AN AN Pty S O LT 02 R v RS ZE S T B W Lk JT S

olLet b; be a prlmlhve vector of L, and 1 the
projection over by .

o Find recursively mi(bz)emn(L) satisfying
Hermites inequality.
o Size-reduce so that ||bzl|2< |lm(b2)lI2+]1bill2/4

o If |lball < llbill, swap(by, bz) and restart,
otherwise stop.



An Algorlthmlc Proot
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o This algorithm will terminate and output a
non-zero lattice vector satisfying Hermites

inequality:
3 4\ (d=1)/4
Bil<(3) vl

o But it may not be efficient: LLL does
better by strengthening the test

lball < Ilbll.



Recursive LLL
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o Input: (by,by,...,bs) basis of L and ¢ >0.

o LLL-reduce (11(b2),...,m(bg)) where 1 is the
projection over by .

o Size-reduce so that ||bill2< [Irt(b)lI2+||bil|2/4

o If [|Iball < (1-¢)llbill, swap(bi, bz) and

restart, otherwise stop.



D ﬂl Take Away
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o Hermites inequality and LLL are based
on two key ideas:

o Projection

o Lifting projected vectors aka size-
reduction.



LL1LL. in Practice



The Maglc of LLL
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o One of the main reasons behind the
popularity of LLL is that it performs
“"much better” than what the worst-
case bounds suggest, especially in low
dimension.

o This is another example of worst-case
vs. “average-case”.



LLL: Theory vs Practice
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o The approx factors (4/3+8)(d'1)/4 is tight in the
worst case: but this is only for worst-case
bases of certain lattices.

o Experimentally, 4/3+€~1.33 can be replaced by
a smaller constant =1.08, for any lattice, by
randomizing the input basis.

o But there is no good explanation for this
phenomenon, and no known formula for the
experimental constant =1.08.



I1lustration
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Random Bases
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o There is no natural probability space over the
infinite set of bases.

o Folklore: generate a « random » unimodular
matrix and multiply by a fixed basis. But
distribution not so good.

o Better method:
o Generate say n+20 random long lattice points

o Extract a basis, e.g. using LLL.



Random LLL
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o Surprisingly, [KiVel6] showed that
most LLL bases of a random lattice
have a ||bil| close to the worst case.
Note: in fixed dimension, the number
of LLL bases can be bounded,
independently of the lattice.

o This means that LLL biases the output
distribution.



Open problem
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o Take a random integer lattice L.

oLet B be the Hermite normal form of L, or
a « random » basis from the discrete
Gaussian distribution.

oIs is frue that with overwhelming
probability, after LLL-reducing B,
Ibillccd-tvol(L)d for some c<(4/3)1/4?



Mordell’s
Inequality
and
Blockwise
Algorithms




Divide and Conquer
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oLLL is based on a local reduction in dim 2.

o Blockwise algorithms find shorter vectors
than LLL by using an « exact » SVP-
subroutine in low dim k called blocksize.

o Even if the subroutine takes exponential
time in Kk, this is poly in d if k=log d.



Mordell’s Inequahty
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o If we show the existence of very short
lattice vectors in dim k, can we prove
the existence of very short lattice
vectors in dim d > k?

o [Mordelll944]s inequality generalizes
Hermites inequality:

Va < \/,Tk(d—l)/(k‘—l)
)\1([4) < \/’%(d_l)/(k_l)VOl(L)l/d



Approximation Algorithms for SVP
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o Related fo upper bounds on Herml’res cons’ran’r,
l.e. proving the existence of short lattice
vectors.

o [LLL82] corresponds to [Hermitel850]s
inequality.

LAy 1/d ] 1/d
1Ll < (5 vol(L)/* = /75" vol(L)

o Blockwise algorithms [Schnorr87, GHKNOS,
GamaNO08,MiWalé] are related to

< ARV Doy (L) e




Achieving Mordell’s Inequahty
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o All blockwise algorithms reaching Mordells
inequality use duality, which provides a
different way of reducing the dimension.

oLet v be a non-zero vector in the dual
lattice LX.

o Then Lnv" is a lattice of dimension d-1.



What 1s BKZ.?
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o Among all blockwise algorithms, BKZ is
the simplest, and seems to be the best
in practice, though its bound is a bit
worse than Mordells inequality.

o Blockwise algorithms have different
worst-case bounds, but in high
blocksize, there may not be much
differences in practice.



How BKZ Works
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o0 BKZ repeatedly calls ’rhe k d|m SVP—

u\-,-b.

subroutine to ensure that the first vector in

each block is the first minimum.

K




Descrlptlon of BKZ
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® LLL—reduce the b05|s
Oi = l
o While some block is not reduced

o Find the shortest vector in the k-block
starting at index 1.

o If it is shorter than bi* : insert the new
vector and run LLL to obtain a new
basis.



Output of BKZ
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o A basis output by BKZ is such that:
oIt is LLL-reduced

o For each i, bi* is a (or near-)
shortest vector in the k-block
(ﬂi(bi)zﬂi(biﬂ):---z ﬂi(bmin(d,i+k—1)))



Algorithms
from

Minkowski’s
Inequality




f* Short Lattice Vectors:
42 Minkowski’s Inequahty
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o [Minkowski]: Any d d|m Icn“rlce L has

at least one non-zero vector of norm
£

I'(1+4d/2)/¢
ﬁ

o This is Minkowskis inequality on
Hermites cons’ran’r
F(l N )1/d

V7Yd < 1/d:2 ﬁ <Vd

Vg

2 covol(L)l/d <Vd covol(L)l/d




Four Proofs of "
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o Blichfeldts proof: «continuous» pigeon-hole
principle. A :__

o Minkowskis original proof: sphere packings.

o Siegels proof: Poisson summation.

o Mordell’s proof: pigeon-hole principle.



Mordell’s
Proof

(1933)




H Remember Blichtfeldt’s Proof
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o The short lattice vector is some u-v
where u,veF for a well-chosen convex

(infinite) set F.

o Mordells proof uses a finite F.



- Mordell’s Proof (1933)
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o For geN, let L=g"'L then [I,:L]:qd.
Among >q° points vy,...,.vm in L, Ji#j s.t. vi-vjeL.

o There are enough points in a large ball of radius r
(r is close to Minkowskis bound in L, but large for L)

o We obtain a short non-zero point in L: norm < 2r.



@ Key Point
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o Mordell proved ‘rhe ex1s’rence of short lattice
vectors by using the existence of short
vectors in a special class of higher-
dimensional integer lattices.

o Let distinct vi,...,.vm €L=q"'L.

o Consider the integer lattice L' formed by
all (xi,...,.Xxm)eZ™ s.t. Zixiviel.

o If m>qd, A (L)</2.



An Algorithm From
Mordell’s Proof
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o Mordells proof gives an (meFﬁaem‘) algorithm:
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o Need to generate >q° lattice points in L.

o Among these exponentially many lattice points,
find a difference in L, possibly by exhaustive
search.

o Both steps are expensive.

o [BGJ14] and [ADRSI15] are more efficient
randomized variants of Mordells algorithm:
sampling over L may allow to sample over L.



Sieve algorlthms [AKSOI LADRSI13]
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o Initially, generate long random vectors.

o Using sieving, reduce iferatively the « average »
norm of the distribution.

o After a while, the shortest vector can be
extracted: the running time is 200,

o [ADRSI15] uses the discrete Gaussian distribution
and L=L/2.

o [BGJ14] is somewhat a more efficient heuristic
version of [ADRS15], by using a pool of vectors.
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o To apply the pigeon-hole prmaple, we
need an exponential number m of lattice
vectors in L.

o Can we get away with a small polynomial
number m and make the algorithm
efficient? (unlike [BGJ14] and [ADRSI15])

o Maybe if we could find short vectors in
certain higher-dimensional random lattices.



Worst-case to Average-case

Reductions
from Mordell’s Proof



The SIS Problem (1996):
Small Integer Solutlons
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oLet (G,+) be a finite Abelian group G=(Z/qZ)"
in [Ajtai96]. View G as a Z-module.

o Pick gy,....gm uniformly at random from G.

o Goal: Find short (xi,...,.xm)eZ™ s.t. 2ixigi =0,
e.g. lIxll <« m (#G)V/m.

o This is essentially finding a short vector in a
(uniform) random lattice of Ln(G) = § lattices

N ZOR SERZ /15 =5G ).



@ EX: Cychc G
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olLet G = Z/qZ

o Pick g, ...,gm uniformly at random mod g.

o Goal: Find short x=(xi,...,Xxm)eZ"™
s.t. 2ixig =0 (mod q).



Worst-case to Average-case
Reductlon
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o [Ajtai96]: If one can efficiently solve SIS

for G=(Z/qnZ)" on the average, then one
can efficiently find short vectors in every
n-dim lattice.

o [GINX16]: This can be generalized to any
sequence (G,) of finite abelian groups,
provided that #Gy, is sufficiently large

>n2max(nrank(G)) qnd m too. Ex: (Z/2Z)" is not.




Overlattices and Groups
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oIf L is n-dim, L=q"'L and G=(Z/qZ)" then L/L = G

o There is an exact sequence:

O%L%L G — 0

oL=Ker ® where ¢is efficiently computable.

oLet vi,..,.vmeL and define gi,...,.gneG by gi= & (vi).

oIf 2 Xi gi = O for (xl,...,xm)ezm then 2 Xi Vj € L.



Fourier Analysis
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o Fourier analysis shows 1‘hcnL if V1,...,VmEL are

chosen from a suitable (short) distribution,
gi= ® (vi) has uniform distribution over G.

o Any probability mass function f over L
s.t. for any xel, 3y f(x+y) = 1/#G.
Ex: discrete Gaussian distribution.

o This is a key step: transforming a worst-
case into an average-case.



Worst-to-average Reduction
from Mordell’s Proof
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o Sample short vi,...vmel from a suitable
distribution, so that gi=¢ (vi) has uniform

distrib. over G=(Z/qZ)"

o Call the SIS-oracle on (qy,...,gm) to find a
short x=(xi,...,.xm)eZ™ s.t. 2ixigi= 0 in G,

l.e. Zi Xi Vj € &r

oReturn 2 xiv; e L.



‘ﬁ" Generalized SIS Reduction
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o The SIS reduction is based on this crucial
fact: If B is a reduced basis of a lattice L,
then q'B is a reduced basis of the
overlattice L=qL.

o But if G is an arbitrary finite Abelian
group, we need to find a reduced basis of
some overlattice L2L s.t. L/L = G, so that

we can sample short vectors in L.



Structural Lattice Reduction
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o In classical lattice reduction, we try to find a
good basis of a given lattice.

o In structural lattice reduction [GINX16], given
a lattice L and a (sufficiently large) finite
Abelian group G, we find a good basis of some
overlattice L s.t. L/L = G.

o Directly using backwards-LLL.

o Or by reduction to the case L=Z".



2 Easy Cases
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o If G=(Z/qZ)", any basis B of a full-rank
lattice L in Z" can be transformed into a
basis q'B of L=q"'L, which is q=H#G'" times
shorter.

o If G=Z"/L, the canonical basis of L = Z"is
a short basis, typically #G" times
shorter than a short basis of L.



LWE:

A Dual Worst-case

to Average-Case
Reduction
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o Remember the SIS lattice:

O gy,....gm in some finite Abelian group (G,+)

o L={X=(X1,...,Xm)ezm SelP i gi = O}

o The dual lattice of L is related to the dual group G
of (additive) characters of G: morphisms from G to

T=R/Z

o LY={(y1,...,Ym)ER™ s.t. for some s €GY, for all i
vi=s(g)) (mod 1)}



"L The LWE Problem:
L Learning (a Character) with Errors
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oLet (G,+) be any finite Abelian group
e.g. G=(Z/qZ)" in [Re05].

o Pick gi,...,gm uniformly at random from G.
o Pick a random character s in G".

o Goal: recover s given g;,...,.gm and noisy
approximations of s(qi),..., s(gm). Ex: Gaussian
noise.



@ EX: Cychc G
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olLet G = Z/qZ

o Pick gy, ....gm uniformly at random mod q.

o Goal: recover seZ given gi,...,.gm and

randomized approximations of sgi mod gq,...,
sgm mod q.

o This is exactly a randomized variant of
Boneh-Venkatesans Hidden Number
Problem from CRYPTO 96.



Hardness of LWE
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o [RegevO5]: If one can efficiently solve LWE

for G=(Z/qnZ)" on the average, then one
can quantum-efficiently find short vectors
in every n-dim lattice.

o [GINX16]: This can be generalized to any
sequence (Gn) of finite abelian groups,
provided that #G, is sufficiently large.




Conclusion




More Inequahtles
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o All known upper bounds on Hermites
constant have an algorithmic version.

o Is there a polynomial bound on
Hermites constant, possibly worse than
Minkowskis inequality, but with a more
efficient algorithmic version?



Thank you for your attention...
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Any question(s)?
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