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W'Sym M et ry | N g raVIty [Cachazo, Strominger *14];

[Zlotnikov "14];

The study of subleading soft theorems and its connection with asymptotic

symmetries has opened up a new perspective on gravity and YM e Va6
The study of colinear limit revealed a tower of new symmetri€Ss.cvara, imwich, pate, strominger 21

encoded into LW

[Adamo, Mason, Sharma "21];
[Ball, Narayanan, Salzer, Strominger ‘21

These results have been connected to classical results in twistor theory that
relates integrability of Self-dual GR to the existence of LWV, symmetries

These has led to a new perspective on holomorphic quantization of self-dual
theOrleS [Costello, Paquette '22]

Bittleston,Skinner,Sharma 22

In canonical LW, was found in terms of an algebra of Noether charges

build up from the knowledge of the asymptotic dynamics and expressed in terms
of the gravitational phase space Pranzetti, Raclariu, LF 21-23

Geiller 24
Donnay, Herfray, LF 24



W-symmetry in gravity

So far the connection between canonical symmetries and soft theorems cresto, LF 24,25
was mostly perturbative and lacking a first principle derivation from Noether.
The purpose of our work was to remedy this

Our results are deeply connected to the beautiful recent work which provided a
non-perturbative twistor persective on the construction of charges

Kmec, Mason, Ruzziconi, Srikant 24
Kmec, Mason, Ruzziconi, Sharma 25

Loop/log corrections modifies the charge expressions and challenges our

understanding of symmetries. Sahoo, Sen et al. 18-24
Donnay, Nguyen, Ruzziconi ‘22-23

Choi Ladha, Puhm 24-25



Sub-leading theorems and Charge conservation

1

The gravitational phase space can be defined at J ™
It posseses two types of data:

Radiative: complex shear(C, C)(u, z,z) and newsN = 9,C
Coulombic: Charge aspects Q. (u, 2, 2)

Carrollian weight: (), ¢ C(%ig) O c 08?5) N € 08?5)

where & < C(%fg) when

q)(|a\2u, Cl)\a, C_Lj\a) — a_(é_l_s)(_z_(é_s)(b(u’ )\om )\oz> Eastwood-Tod 82

Donnay-Fiorucci-Herfray-Ruzziconi 22




Sub-leading theorems and Charge conservation

1

The gravitational phase space can be defined at J ™
It posseses two types of data:

radiative: complex shear (C,C)(u, z,z) and news N = 9,,C

Coulombic: Charge aspects  Q,(u,z,Z) s>0

Carrollian weight: (), ¢ Cgffg) O c C(Cfg) N € 08?’5)

Newman-Penrose 62

The charge aspects encodes the subradiative components of the

asymptotic Weyl tensor F,Pranzetti, Raclariu 22-23
— Geiller. 24




Sub-leading theorems and Charge conservation

The gravitational phase space can be defined at J— A
It posseses two types of data;:

radiative: complex shear (C,C)(u, z,z) and news N = 9,,C

Coulombic: Charge aspects  Q,(u,z,Z) s>0

Carrollian weight: (), ¢ 08?;“) C ¢ 08?5) N € 08?5)

The charge aspects encodes the components of the asymptotic Weyl tensor

LF,Pranzetti, Raclariu 22-23
Geiller. 24

The data are not independent: They satisty constraint equations D = D.

6u@8 — D@S—l T (3 T 1)CQS—2 C C((fg)




Sub-leading theorems and Charge conservation

1

The data are not independent: They satisfy evolution equations

‘__—~-
s

auC:)S — Dés—l =+ (S = 1)0@3—2 v

s=-—1,0,1,2,3 represent the first 5 Asymptotic Einstein’s equations
Initial val Q -2 Q . diative dat 3
nitial value -2 o 1= A radiative data o A

~ ~ Pranzetti, LF 21
Qo mass aspect (1 angular-momentum aspect

(2, Qs spin 2,3 charges

In pure gravity these equation are initialized by the conditions that Qs(i*) =0

N

In the presence of massive matter  Q;(i%) = Q4 (p+)




Sub-leading theorems and Charge conservation
*

J

The data are not independent: They satisfy evolution equations

auC:)S — Dés—l 1 (S + 1)0@3—2

In pure gravity using  Q,(it) =0

We can integrate these charges as functionals Qs(C,C)

Convenient to introduce an holomorphic perturbative counting (C,C) — (gnC, gnC')
1+[s/2] - —

Qs= » QF with QY ~ gngk
k=0

the charge are quadratic ~ dnvgn~ for spin 0,1 cubic ~ gngx for spin 2,3



Sub-leading theorems and Charge conservation
*

J

The data are not independent: They satisfy evolution equations

auC:)S — Dés—l 1 (S + 1)0@3—2

In pure gravity using  Q,(it) =0

We can integrate these charges as functionals Qs(C,C)

Convenient to introduce an holomorphic perturbative counting (C,C) — (gnC, gnC')
1+[s/2] - —

Qs= » QF with QY ~ gngk
k=0

This leads, beyond spin 2, to an expansion @S — @i + QN:' + QEH
— a non-linear generalization of the soft theorems




Sub-leading theorems and Charge conservation

1

The data are not independent: They satisfy evolution equations

‘__-~-
S

6)uéés — DQs—l + (3 + 1)CQ8—2 v

In pure gravity using  Q,(it) =0

We can integrate these charges as functionals Q:(C,C) M

Convenient to introduce an holomorphic perturbative counting (C,C) — (gnC, gnC')
1+[s/2] o

Qs= Y Q¥ with QP ~ gngk
k=0 _
Beyond spin4 they represent a truncation of EE linear in 9N non-linear in gn

They represent the Gauss conservation law associated with self-dual gravity

Kmec, Mason, Ruzziconi, Srikant 24



The goal of this talk is to show that the system of equations

5’1&@8 — DQs—l + (3 —+ 1)CQ5_2 v

supplemented by the conservation law  Q.(J) = Q4(J) Stominger 13
represent the charge conservation equation of a symmetry charge

——--~-
S

So far the proof of the subleading theorem is valid only at order gNgN
Can we extend this to all semi non-linear orders gngp ? Pranzetti,Raclariu, LF 23



The goal of this talk is to show that the system of equations

5’u@s — DQS—l —|— (S _|_ ]‘)CQS—Q Strominger .

supplemented by the conservation law Q. (J7") = Q.(J;)
represent the charge conservation equation of a symmetry charge

So far the proof of the subleading theorem is valid only at order gNgN
Can we extend this to all semi non-linear orders gngp ? Pranzetti,Raclariu, LF 23

To do this we need to
identify the symmetry algebra ?
understand its (non-linear) action on the gravitational Phase space

Construct the corresponding Noether charge and prove the charge conservation



Noether Charges

Symmetries are linked to conservation laws

6u@s — D@s—l 1 (3 =+ 1)0@5—2

We have to show that these leads to charge conservation
under non-radiative boundary conditions.

1”  Wald-Zoupas
Harlow-Wu

Admissible bdy conditions are Boundary eom defined as © = 0  LFPranzetii, Oliveri, Speziale [

Odak-Rignon-Bret-Speziale

1
Y

usual notion of no-radiation but too strong

What symplectic potential? " = / (N6C + NoC) — N=N=0
T

Change of boundary conditions are achieved through © — © + 6/ — dv

Key idea: allow complex canonical transformations.

99
19,

21’

22




Noether Charges

Symmetries are linked to conservation laws

6u@s — D@s—l 1 (3 =+ 1)0@5—2

We have to show that these leads to charge conservation
under non-radiative boundary conditions.

1”  Wald-Zoupas
Harlow-Wu

Admissible bdy conditions are Boundary eom defined as © = 0  LFPranzetii, Oliveri, Speziale [

Speziale

1 _ _
We chose instead N> = o / NoC — N =0,N arbitrary
wJg

We are therefore looking for a symmetry charge conserved under this holomorphic
no-radiation condition

99
19,

21’

24




Symmetry Charges

The symmetry parameters are dual to the charges

T i(7;077;17727;. )

super-translation super-rotation

Since QS = C((;?j;) —> Ts © C(C—a{,—s)
This allows us to define a master charge aspect

@7‘ — Z TS(QSdZZ T Qs—ldUdZ)
s=() |

Which can be integrated along arbitrary cuts v = T'(z, z)



Symmetry Charges

The symmetry parameters are dual to the charges

T = (7;077%17727;' )

super-translation super-rotation

Since @S = C((;j;) —> Ts © C(C—a{,—s)
This allows us to define a master charge along cuts u=cst

0O . 1 B
Q? — / QSTS / ToNC
Szz:() S., 47TG S, ’

This charge is conserved under the Holomorphic radiation condition N = 0
provided T satisfy the dual eom E (7) =0

Es (T) — 811,7_5 — DTs—I—l =+ (3 T 3>O7-s—|—2




Symmetry Charges

The symmetry parameters are dual to the charges

T = (7;07 71-17 7-27_'_' ' )
super-translation super-rotation

C
— Tg -~ C(_a{,_s)

This allows us to define a master charge along cuts u=cst

0O 3 1 B
- = sls N
©r E_:O/SQ ErYe ,/S NG

This charge is conserved under the Holomorphic radiation condition N = 0
provided 75 satisfy the dualeom E, =0

ES — OyTg — DTS_|_1 —+- (S —|—3)CTS_|_2




Symmetry parameters

The symmetry parameters are dual to the charges

T = (7-077-177-27_'_' )

satisfy the dual eom  O0yuTs = D7sy1 — (5 + 3)CTey2

These equation determines 7s in terms of the celestial parameters 15
which appears as initial conditions 7 = 7|, —> (T

W = |

For instance for BMS T+=DY 7=V 1,=0
2

Qry) = /j N(—D*T — “D3Y + TN +YDC + 2DYN)




Symmetry action

The W symmetry parameters 7 acts on the sphere as

‘0
1

6.C =19oN — D*19 4+ 21y DC + 3C D11 — 3C*15
7 T T

super-translation
g super-rotation on C 885) Spin2 non-linear action

infinite dimensional and non-linear generalization of the BMS action.

When s > 2 Ts depends on the shear: non-linearity of the action

It controls the time evolution of the generating charge

1 _
uu: NT
9u 0" 47TG/S 5.C




Symmetry action

The W symmetry acts on the sphere as

6,C =19N — D?19 + 21 DC + 3CD1 — 3C* 15

Three remarkable and non-trivial facts:



Symmetry action

The W symmetry acts on the sphere as

6,C =19N — D?19 + 21 DC + 3CD1 — 3C* 15

Three remarkable and non-trivial facts: The action closes

:57'7 57":0 - _5[7,7’]]0




Symmetry action

The W symmetry acts on the sphere as

6,C =19N — D?19 + 21 DC + 3CD1 — 3C* 15

Three remarkable and non-trivial facts: The action closes

:57'7 57":0 - _5[7,7’]]0

~

The symmetry preserves the asymptotic eom Es = 9.Qs — DQs_1 — (s + 1)CQ,_>

6.Es =) L,(7)En,

n>s



Symmetry action

The W symmetry acts on the sphere as

6,C =19N — D?19 + 21 DC + 3CD1 — 3C* 15

Three remarkable and non-trivial facts: The action closes

:57'7 57":0 - _5[7,7’]]0

~

The symmetry preserves the asymptotic eom E; = 9,Qs — DQs—1 — (s + 1)CQs»

6.Es =) L,(7)En,

n>s

The symmetry Is canonical 570 — {QT, C} Q, = I; OHAS



Symmetry Charges

The W symmetry acts on the sphere as

6,C =19N — D?19 + 21 DC + 3CD1 — 3C* 15

We have a compact expression for the charges assuming that Qf =0

Q, — / N§.C
J




Symmetry action

The W symmetry acts on the sphere as

6,C =19N — D?19 + 21 DC + 3CD1 — 3C* 15

We have a compact expression for the charges assuming that Qzﬁ =0

A —_

0. — / (ro(—D2N + NN) + 71(NDC — 3D(NC)) + 7N C?)
J

Solving the dual eom provides the explicit charge expressions



Symmetry Bracket

The symmetry bracket is [7,7']s = [7.7]s + 675 — 0r7,

where [7-7 T/]S — Z(n + 1)(TnDTé F1—n T’r/LDTS -1 n) o (8 + S)C(TOT;—I—Z - T(,)TS-l-Q)
" /

flat space contribution )

deformation to accomodate any SD background

Three non trivial properties:



Symmetry Bracket

The symmetry bracket is [7,7']s = [7.7]s + 675 — 0r7,

where [7-7 T/]S — Z(n + 1)(TnDTé F1—n T’r/LDTS -1 n) o (8 + S)C(TOT;—I—Z - T(,)TS-l-Q)
" /

/
flat space contribution )

deformation to accomodate any SD background

Three non trivial properties: it preserves the dual eom = = %7~ Proes #5030

Es([7,7']) =0 when Es(7) = Es(7') =0



Symmetry Bracket

The symmetry bracket is [7,7']s = [7.7]s + 675 — 0r7,

where [7-7 T/]S — Z(n + 1)(TTLDT; F1—n T’r/LDTS -1 n) o (8 + S)C(TOT;—I—Z - T(,)TS-FQ)
" /

/
flat space contribution )

deformation to accomodate any SD background

Three non trivial properties: it preserves the dual eom = = %7~ P (s #9)0T

Es([7,7]) =0 when E.(7) =Es(7') =0
It satisfies Jacobi identity



Symmetry Bracket

The symmetry bracket is [7,7']s = [7.7]s + 675 — 0r7,

where [7-7 T/]S — Z(n + 1)(TnDTé F1—n T’r/LDTS -1 n) o (8 + 3)C(TOT;+2 - T(,)TS-FQ)
" | /

T '
flat space contribution deformation to accomodate any SD background

Three non trivial properties: it preserves the dual eom = = %7~ P (s #9)0T

Es([7,7]) =0 when E.(7) =Es(7') =0
It satisfies Jacobi identity

The Charges provides a canonical representation of the algebra

{QT? QT/} — QI[T,T’]]



Symmetry Bracket

The symmetry bracket is [7,7']s = [7.7]s + 675 — 0r7,

where [7-7 T/]S — Z(n + 1)(TnDTé F1—n T’r/LDTS -1 n) o (8 + 3)C(TOT;+2 o T(,)TS-FQ)

M,

T
flat space contribution deformation to accomodate any SD background

Three non trivial properties: it preserve the dual eom = = %7~ Proes #5030

Es([7,7]) =0 when E.(7) =Es(7') =0
It satisfies Jacobi identity

[7,7']  defines an algebroid bracket

Puzzle: Symmetries are about algebra not algebroids !



From algebroid to algebra

Algebroid are the algebraic expression of dynamical
symmetries when radiation is present.

But true symmetries expressed through algebras
only exist at non-radiative cuts

bt =0

radiation N # 0

Cy # 0

Due to the memory effect different non-radiative cuts
carry different values of the shear

One needs to identify a symmetry algebra W (S) the wedge algebra that depends
on the value of C at non-radiative cuts



Wedge algebra

The wedge algebra W (.5) L+ c=o

radiation N # 0

Cy # 0

is defined as the symmetry algebra that preserves C

0.C =0
for 7 € We(S) Cis a field independent parameter
Wo(S) = {T € C(_1 ()| DT, = 0}




Wedge algebra

The wedge algebra W (.5) L+ c=o

radiation N # 0

Cy # 0

is defined as the symmetry algebra that preserves C

0.C =0
for 7 € We(S) Cis a field independent parameter
Wo(S) = {T € C(_1 ()| DT, = 0}

depends on the topology of S:  Sn = S\{z1, - 2n}



Wedge algebra

The wedge algebra W (.5) L+ c=o

radiation N # 0

Cy # 0

is defined as the symmetry algebra that preserves C

0.C =0
for 7 € We(S) Cis a field independent parameter
Wo(S) = {T € C(_1 ()| DT, = 0}

depends on the topology of S:  Sn = S\{z1, - 2n}
W()(S()) — SL_I_(Q) x C* = Poinc™ HConf(50) = SL(2, C)



Wedge algebra

The wedge algebra W (.5) L+ c=o

radiation N # 0

Cy # 0

is defined as the symmetry algebra that preserves C

0.C =0
for 7 € We(S) Cis a field independent parameter
Wo(S) = {T € C(_1 ()| DT, = 0}

depends on the topology of S:  Sn = S\{z1, - 2n}
W()(S()) — SL_I_(Q) x C* = Poinc™ HConf(50) = SL(2, C)

Wo(Ss) = LW localisation of Poinc like Vir is a localisation of SL(2,C) HConf(52) = Vir



Wedge algebra

The wedge algebra W (.5) L+ c=o

radiation N # 0

Cy # 0

is defined as the symmetry algebra that preserves C

0.C =0
for 7 € We(S) Cis a field independent parameter
Wo(S) = {T € C(_1 ()| DT, = 0}

depends on the topology of S:  Sn = S\{z1, - 2n}
W()(S()) = SL_I_(Q) x C* = Poinc™ HConf(5p) = SL(2, C)
Wo(Ss) = LW localisation of Poinc like Vir is a localisation of SL(2,C) HConf(S;) = Vir

Wo(Sh) Krichever-Novikov like generalisation



Good cut Wedge algebra

the wedge algebra W (S) for C is isomorphic to W (S)

D*Ty, = 2D(CTy) + CDT, — 3C*T,
D3T, = 3D*(CTy) +2D(CDT,) + CD*Ty + - - -

More geherally the twisted wedge algebra is defined
as (D"T)_o =0 where D is a covariant derivative

(DT)s == DTs11 — (s + 3)CT 540

L+ c=o

radiation N ?é 0

Cy # 0



Good cut Wedge algebra

the wedge algebra W (S) for C isisomorphicto Wy(S) 14 _,

radiation N ?é 0
D*Ty = 2D(CTy) + CDT, — 3C*T5 Cr 20
D°Ty = 3D*(CTs) +2D(CDTy) + CD*Ty + - -- T+
Co # C1 #C
Lo

The isomorphism T : Wa(S) — Wy(S) involves the Goldstone G:  D?2G = O

TC(r) = Pexp /O (ad, G (7)

It intertwines the naive and covariant derivative DTS (T) =T%(DT)



From Carrollian to Twistor

Whats the connection with twistor theory?

D
Twistor space provide a fibration of ./ complexified — Jc

(175 Aa) = (u = |pA], 2, Z)
Ax (1, 2)

Remember that u € C(C_aio)

What does the fiber coordinate § - ]
represents ? q = [uA] € Cg) AN = 1.



From Carrollian to Twistor

Whats the connection with twistor theory?

Twistor space provide a fibration of // complexified _D — Jc
(1% Aa) = (u = [uA], 2, Z)

| | . Car 5 Ax (1, 2)
The fiber coordinate ¢ = [u\] € C"y) AN = 1. e
represents the angle at which a congruence of null geodesic intersect J
Carrollian complex structure on J : (“qay =0 Qab = M(g1Mp)
needs to be completed with a Ehresman connection k b+
A null geodesic congruence is characterised by a null vector £, k\g
Suchthat k¢ -€=1k;-m=q JT

mq = m — qf holomorphic frame transverse to k and | 20



From Carrollian to Twistor

Whats the connection with twistor theory?

D
Twistor space provide a fibration of ./ complexified — Jc

(175 Aa) = (u = |pA], 2, Z)

| | 5 . A x (1, 2)
The fiber coordinate q = [uA| € C(%f‘“{) AN = 1.

Adamo-Newman 10

represents the angle at which a congruence of null geodesic intersect J

The transformation (¥.m,€) — (kg,mq, £) corresponds to a null boost with angle ¢
U



From Carrollian to Twistor

Whats the connection with twistor theory?

D
Twistor space provide a fibration of // complexified 5 — Jc
(’ua’ )‘éé) — (u — [lu)‘]? 2 Z)
The total space isomorphic to twistor space is the space of null Ao (1, 2)
rays which reaches scri at a cut u and at an angle g Adamo-Newman 10

It is the total space of the bundle N =O(1,—-1)d J — J

with coordinates (q, u, )\a)

Like scri is the total space of J =0(1,1) s CP; — CPy

Newman 10



From Carrollian to Twistor

Whats the connection with twistor theory?

D),
Twistor space provide a fibration of // complexified 5 — Jc
(’ua’ )‘éé) — (u — [:u)‘]? 2 Z)
The total space isomorphic to twistor space is the space of null Ao (1, 2)
rays reach scri at a cut u and at an angle g Adamo-Newman 10

Note that the “Newman”bundle N = O(1,—1) ¢ O(1,1) — CP*

with coordinates (q, u, )\a)

IS Isomorphic to but has a different complex structure than twistor space

= O0(1) @ O(1) — CP*




From Carrollian to twistor
Car

The symmetry parameters can be converted into a function of g & C (0,1)
O
~ 1 ar
T = (7-077-177-27'”) — T(Q) :ZTSQS_I_ EC(%’D
s=0

The W bracket on can be recasted as a Poisson bracket on-shell of the dual eom
s+1

T, 7] = Z(n + 1) (7 DTy — T DTs1-n) — (s + 3)C(T0Terg — ToTs+2)

n=0



From Carrollian to twistor

The symmetry parameters can be converted into a function

o0
= (7_077-177-27' ' ) — 7A-(C]) — ZTSQS_H
s=1

The W bracket on can be recasted as a Poisson bracket on-shell of the dual eom

> [r.7']sq" = {#,#'} + dual EOM

S

A A~/ / /
where {T, T } — 8(17'8“7' — 8q7' uT

IS the twistor Poisson bracket.



From Carrollian to twistor
Car

The symmetry parameters can be converted into a function of g & C (0,1)

O
T — (7’077'177-2’ . o ) % %(q) — ZTSQS_I_l
s=0

The dual eom can be simply written as
g0, 7 — DT+ CT7 =0

They can be equivalentely be written in terms of the twistor potential £/ € C(%?%)

s Df_jr {h,%}_: 0
2
where 1 — CIQ I 6,;10
/ /

change in complex structure N — PT from gravity h = hDX € QE9(PT, O(2)).




Supertranslation and Good cut

The supertranslations 7'(z, z) acts non trivially on the pair(u, q)

5TU = 5Tq = — DT

The transformation for q follows from the fact that while 71 is a
vector tangent to the cut v = cst, the vector m,—_pr) = m + DTY
IS the vector tangent to the cut « — T = cst

Given a shear C we can construct a Goldstone G(u, z, Z) solution of the good

cut equation o~
: D’G =Co(QG

Where G: N N is  G(qu,z2) = (q— DG,G,z,2)

L T——




Supertranslation and Good cut

Under this map we have that  G.(9,,¢,m) = (9,,,¢(%, m%)

And the radiative evolution equations are mapped onto the non radiative one !

N N

(gt —m®)G*[1] = G*[(gf —m + C9,)7] = 0




Non-linearity

We have seen that @S = @§ + @g‘ +- QNEH for s> 2

The super-Hard contributions requires an extension of the amplitude that includes
collinear external states and extension of the subsubleading theorems

Can we obtain these SH contribution from amplitudes? Narayanan, Jorstad, To appear

We have seen that E5 = () is valid in Einstein gravity

— One expect su h? leading theorem to be valid. Amplitude proot?



Quantum

What is the quantization of the W-algebra ?

Preliminary investigation of the quantum commutator algebra shows that
there exist potential Lie algebra anomalies

[QT7 QT’] — Q[T,T’] + A(T,T’)
where A(T,T’) depends only on C noton [N
First investigation suggests that A=0 for the wedge.

Lie algebra anomaly versus VOA anomalies? Costello-Paquette 23
Blitteston 24

Anomalies in SD gravity due to all + one loop amplitudes.



Conclusion

We have shown that there exists a semi-perturbative sector of GR ININ

which is integrable and carry the representation of an infinite dimensional
symmetry algebra W_C(S) with bracket

s+1
7,7 = Z(n + 1) (1 DTi iy — T DTsr1-n) — (s +3)C(T0Tes 0 — ToTs+2)

n=0

which can be viewed as a non-linear deformation of LW/
_ _ _ Costello-Paquette 23
And corresponds to the quantization of SD gravity Blitteston 24

Can we use this semi-perturbative sector as a basis for a new form of
perturbative quantization in the same way we use free theory as an asymptotic basis?

s=2 and s=3 are exact symmetry of Einstein gravity. If no quantum anomaly are present
—s Non-trivial Ward identities beyond the linear orders ?

Generalization to Einstein-Yang-Mills Agrawal, Chralambous, Donnay 25






Self-dual Polarization

If instead of QHAS _ 1 \
4WG[7N50 — N=0,N



Self-dual Polarization

we introduce the potential h &€ C’(%a;) suchthat O, h = C

And work with 0°D — ! / N(Sh
47TG N

The no-radiation conditionis N — 0, N arbitrary

The symmetry parameters are 7 = (7_17 T0, T1, T2, " " ° )
subject to E, =0, 5> —1
O
The master charge is QY = Z / QSTS
s=—1 Su

The mass is the covariant mass not the bounday mass



we introduce the potential

Self-dual Polarization

h € C(%?’;) such that 0, ,h = C

And work with 0°D — ! / N(Sh
47TG N

The no-radiation conditionis N — 0, N arbitrary

The symmetry action on

the potentialis  §_h = 71oC — D1_;

The symmetry Charge is O— No-h

The global symmetry algebra: W()(SO) — central extension of Poinc™



From Carrollian to twistor
Car

The symmetry parameters can be converted into a function of g & C (0,1)

O
T = (70,T1,T2, ) — T(q) = ZTSQS_H
s=0

The dual eom can be simply written as
g0, 7T — DT+ C7 =0

They can be equivalentely be written in terms of the twistor potential
Oh+{h,7} =0

For the twistor potential 1, — (91 DX € QO (PT, O(2)).



