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1. Introduction 
In recent decades there has been a marked increase in using UAVs (Unmanned Aerial 
Vehicles) in areas such as damage assessment after natural disasters, surveillance and 
detection of coastal hazards, and even large-scale agricultural monitoring. Beyond this, the 
usefulness of UAVs has also been shown in military and defence capacities, allowing for 
safer, real-time situational observation and intelligence gathering, which can be used to 
influence decision-making to reduce operational risk. Leonardo are interested in the 
general concept of using an autonomous system of UAVs, or drones, in such a manner as to 
complete a certain task under given constraints.  

 

Figure 1:  A system of airborne quadcopter drones flies as a group. 

In many situations, it can be useful to replace a single complex vehicle by a system of 
simpler ones that are able to equivalently complete the task at hand by working as a group. 
This leads to the choice of implementing either a centralised approach, or a distributed 
approach to control the system. A centralised approach relies on the availability of a global 
controller of the system, while distributed control does not require any central governance, 
but the system can become more complex as a result. However, there is often more 
flexibility in distributed systems, as well as lower operational costs and greater robustness.  

Models focusing on drone formation are often built using distance-based information, 
meaning that the behaviour of the system is dependent on the relative distances between 
each drone. This is useful because it allows for collisions to be avoided during the 
evolution of the system, and it also enables the system to be controlled into well-defined 
formations. However, in the situation of interest to Leonardo, information on the distance 
between drones is not available. We will instead use bearing-based models, meaning that 
relative distances between each drone are not required, but only the bearing angle from 
one drone to another. With this restriction, we wish to design the dynamics of the system 
such that the drones self-align around a target, without explicit instructions to do so.  

Our aim is to look at the concept of consensus in a multi-drone system, hoping for the 
drones to achieve some kind of equilibrium formation with respect to a chosen target. We 
will focus on the implementation of a distributed approach to control the behaviour of the 
drones. 

Consensus refers to a 
system agreeing upon 
a common behavior 
through local 
interactions between 
drones 

Distributed control 
allows a system to be 
governed without the 
need for a global 
controller, which can 
often be expensive to 
implement 
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2. Formulating the Problem 

We note that if any two drones travel together along similar trajectories, this will cause a 
redundancy in the system, since the two drones will be measuring very similar information. 
It is therefore more useful for the drones to encircle the target in some way, as we depict in 
Figure 2.  

Here, we show three drones ��� , ��, ��� along with a target	�	�. We present the 

information that drone �� can ‘see’, namely its own exact position and 

velocity	�
��,�, ��,��

 , ���, along with the directions to the target and the other drones 

���, ��,�, ��,�� and the velocity orientations of the other drones ���, ���. 

 

Figure 2: We wish for the drones (black) to move around the target (red) in some way, 
using available information in the system; velocities (denoted by  V and v ), positions 
(denoted by X ), and relative directions (denoted by r and y ). 

Glossary of terms 

� Stability: For a solution to be stable, the trajectory should not change too much 
under small disturbances. If a solution is stable, then a different solution that is 
very close to it will be close for all time. 

� Asymptotic Stability: This requires that the perturbed solution is stable, and will 
eventually tend back to the original solution.  

� Robustness: For our model to be robust, we require that it is not sensitive to 
internal disturbances, e.g., the failure of a single drone should not cause the 
collapse of the entire system. 

Mathematical model 
We assume that we can capture the behaviour of each drone by tracking the motion of its 
centre of mass, with the dynamics of each drone being governed by a set of two 
differential equations; one for its position, and one for its velocity. Our aim is to determine 
whether the behaviour of a swarm of drones can be robustly controlled without using 
distance information. 

 



 

 

4 

 

 

We make the following assumptions: 

1. Drones move in only two dimensions. We simplify the true, three-dimensional situation by 
imagining that the system of drones exists on a plane which is perpendicular to a very 
distant target. 

2. The target is stationary.  This makes it easier to analyse the behaviour of the drones 
reacting to a simple target. We locate the target at the origin of our coordinate system. 

3. Each drone knows its exact position and velocity. This is akin to each drone having a perfect 
inertial measurement device, which is unlikely in reality, but allows us to proceed 
without the influence of external noise or measurement error. 

4. Drones are unable to communicate. Leonardo wish for the system to evolve without the 
need for communication (communication could be intercepted and would also make 
the drones more technologically complex). 

5. Drones are unable to compute relative distances. Leonardo mainly works with systems that 
have bearing-only capabilities, meaning relative distances are not able to be measured 
accurately enough for use in distance-based models. This provides the key restriction 
on our control system. 

6. Drones can detect the orientation and direction of their neighbours. This is a great simplification 
and is physically unrealistic. However, it allows for some information to be shared in 
the system without being explicitly communicated. 

With these assumptions we develop an initial model, which we call ‘Model I’. The motion 

of each drone is governed by � = ��, where � is the drone’s acceleration, � is the 

drone’s mass, and � is a combination of the external forces acting on the drone and the 

forces due to the control system. We assume that � depends on an attraction to the target 

(dependent on a strength factor �), repulsion from neighbouring drones (dependent on a 

strength factor �), and a damping term (dependent on a strength factor �) to ensure that 

the drone velocities do not grow to enormous magnitudes. We scale the model to remove 

the dimensions, and in particular we choose a timescale such that the rescaled � becomes 

equal to 1.  

We assume that the initial drone positions are randomly distributed around the target, 

using the normal distribution. This mimics the real situation, in which the deployment of 

drones would likely not be well-controlled (for example, they could be deployed from a 

moving aircraft). Similarly, the initial velocities of the drones are assumed to be random, 

taking values from a uniform distribution with a minimum of 1 and a maximum of 10.  

We solve Model I numerically to determine the possible dynamics for systems of different 
sizes. We also analyse the model analytically to find attributes of the system for certain 
solutions. 

3.  Results 
We run simulations for systems of different sizes, and find a variety of different 
behaviours. Our initial focus is on a system of four drones, since this is the smallest system 
size which exhibits interesting behaviour, as we show in Figure 3. 

There are three main behaviours of the system of four drones; ‘Consensus’ (left), 
‘Opposite’ (middle), and ‘Triangular’ (right). ‘Consensus’ has same-direction, circular 
trajectories, ‘Opposite’ has pairwise-opposite, circular trajectories, while ‘Triangular’ has 
three elliptic trajectories, with a counter-rotating ellipse. 

Each drone can 
detect the direction 
of its neighbours, 
i.e., the relative 
angular bearing of 
each drone in the 
system. They can 
also measure the 
orientation of each 
neighbour, meaning 
that they can see the 
direction that each 
drone is travelling 

Initial conditions for 
each drone are drawn 
randomly, to 
represent the inability 
to deploy the system 
of drones in a 
controlled manner  
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Figure 3: Numerical plots of the trajectories of four drones: ‘Consensus’ (left), ‘Opposite’ 
(middle), and ‘Triangular’ (right).  The circles represent current positions, while the lines 
indicate the trajectories. 

For larger systems, it is often found that the drones collide with each other, because they 
end up travelling in opposite directions along the same circular trajectories. The system is 
also able to settle into formations in which drones can be extremely close to one another, 
as we show in Figure 4. It is clear that the control system we incorporate into our model 
does not always produce desirable behaviour. 

 

 

 

 

 

Figure 4: Drones may settle into a state very close to a neighbour, which is not ideal 
behaviour for a physical system. 

Influence of initial conditions and parameters 
Due to the randomness of the initial conditions, no prediction can be made about what 

behaviour a system will tend to given a certain choice of � and �, i.e., the final behaviour 

of the system is heavily dependent on the initial positions and velocities. However, if the 

system tends to either ‘Consensus’ or ‘Opposite’ behaviour, we find that the choice of � 

and �	explicitly determine the final solution, such that all drones tend to the same speed 

(prescribed by	�) at a shared orbit radius (prescribed by both � and �). However, for both 

of these behaviour types, the geometric distribution of drones around the circular orbit is 

non-unique, as we show in Figure 5. For ‘Consensus’ behaviour especially, it would instead 

be more useful to force the drones into positions such that they are symmetrically 

distributed around the origin. 

 

Figure 5: For Model I, the final state is set by the vector sum of velocities being zero and so 
the solution for four drones is non-unique. 
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Improvement of Model I 
For the system to evolve into a more ordered formation, it is necessary to include 

additional controls in the model which enable the drones to space themselves equally 

around the circular solution.  

The control that we implement uses the temporal rate-of-change of the bearing between 

drones; for each drone we sum up these rates-of-change over all neighbouring drones in 

the system. We then use this summation to act as a repulsion term such that if any drone 

measures a neighbour’s bearing changing quickly, it will infer that the neighbour is close. 

Although this summation creates a repulsion from all neighbouring drones, the largest 

repulsion is from the (inferred) closest neighbour, such that it attempts to avoid a direct 

collision. 

We find that adding this control to the system leads to swarms that would otherwise have 

found a non-unique ‘Consensus’ solution being forced into a symmetrically distributed 

orbit, as we show in Figure 6. We refer to this improved model as ‘Model II’. We note that 

this additional control does not guarantee that the system tends to ‘Consensus’ behaviour 

for all parameter values and initial conditions. 

 

 

Figure 6: Using the additional control of Model II, the system is able to self-align into a 
perfectly symmetric distribution around the target. These four sets of trajectories are taken 
from a single simulation at different times, with time increasing from left to right. 

Stability analysis 
Knowing that a system of drones can evolve into a balanced circular formation, we now 

analyse whether these formations are stable; indeed, for Leonardo, it is imperative for such 

a system to have stable behaviour. The symmetric formation is a solution for both Model I 

and II, and so we analyse the stability of both systems to determine why Model I does not 

immediately find the balanced solution. 

To simplify the analysis, we initially look at a system of only two drones operating under 

Model I to understand the behaviour in a symmetric formation. Numerical simulations 

suggest that the symmetric two-drone solution is asymptotically stable, and the same result is 

found for systems of size three. 

However, for a system of four or more drones, a balanced circular formation using Model 

I is verified (numerically) to be stable, and is proven (analytically) to not be asymptotically 

stable. This is a useful result for Leonardo, as it means that for most systems the 

symmetric solution will not be found using the simplest model, and so additional control 

terms must be utilised. 

We also test the stability of Model II and we find that it is (numerically) asymptotically 

stable for systems of size four, and likely the same holds for larger systems too. We have 

only checked the stability numerically at this stage. 

We improve the 
simple model by 
allowing each drone 
to respond to how 
quickly a neighbour’s 
angular bearing 

changes 

Balanced circular 

formation refers to 
the solution whereby 
drones travel along 
the same circular 
trajectory, in the 
same direction, and 
are symmetrically 
distributed around 
the target 
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4. Discussion, Conclusions, & Recommendations 
We have developed two models for controlling the motion of drones in a two-dimensional 

space, finding that emergent behaviour occurs in the form of circular motion, and that 

final positions can be made to be symmetric around the origin. We have numerically 

verified the stability properties of solutions to Model II, with our results suggesting that 

balanced circular formations can be found and maintained. It is not guaranteed that these 

formations will always be attained though, due to the reliance on initial conditions. 

However, if the drones are initialised with an agreed rotation, such that all initial velocities 

are (counter)clockwise with respect to the target, then it is highly likely that a balanced 

circular formation will be achieved. 

We were able to prove the non-asymptotic stability of solutions to Model I, to show that it 

is not a viable way of controlling a physically realistic system of drones. We note that the 

stability analysis of Model II was only performed numerically. However, it will be useful in 

the future to prove that solutions to Model II are asymptotically stable, rather than relying 

on numerical analysis.  

To extend beyond these two simple models, it would be ideal to relax one of the key 

simplifications and not allow drones to know their neighbour’s orientations; this will make 

the model slightly more realistic. To also improve the realism of the models, it would be 

useful to include effects of measurement noise, to determine what impact they can have on 

the long-term dynamics of the system. We should also incorporate moving targets. 

We recommend that these initial models be implemented in a ground-based robotic 

system, using imperfect measurement and control, to hopefully validate our findings with a 

physical proof-of-concept, before progressing into an airborne system.  

5. Potential Impact 
We have found useful results that suggest bearing-only formations can be achieved in a 
way which will guarantee collision avoidance in final system behaviour. Using only simple 
models, we have been able to create balanced circular formations at specified radii and final 
speeds, without needing to constrain the drone behaviour in the initial period of system 
evolution. This research should be a strong foundation upon which further work on 
bearing-only formation control can be built. 

Neil Cade, Lead Systems Specialist at Leonardo, commented “Remote surveillance systems will 
almost always require multiple sensors that are distributed in space.  This is particularly true of passive 
sensors that invariably are not able to directly measure range. For long range surveillance such sensing has 
to be airborne, simply to avoid obscuration by closer objects.  Moreover, to gain any overall sense of range it 
is necessary to have sensor separations to be not too much less than the ranges of interest.  It is therefore 
impractical to use a single aircraft and the sensors must be distributed across multiple platforms. Thus, if 
we are going to perform such sensing autonomously then we are necessarily led to the need for coordination of 
multiple UAVs (drones) carrying our angle-only sensors. 

This short research project is an important step in defining the best approach to this problem.  Here we have 
investigated a non-linear control approach to the problem where there is no attempt to explicitly estimate 
drone separations.  These arise as an emergent behaviour from the dynamics itself.  Indeed this work has 
established that such an approach does work and that asymptotically stable drone constellations can be 
obtained. This is an important step and it opens the way for further exploration under the constraints of 
more realistic sensing and implementable control.” 

The simplest model is 
proven to not be 
asymptotically stable 
if the system has 
more than four 
drones, while the 
improved model 
appears to be 
asymptotically stable 
for systems of any 
size 

Future research 
should focus not only 
on the mathematical 
analysis for the 
stability of these two 
models, but also look 
at making the 
dynamics and the 
measurement models 
more realistic 


