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1. Introduction 

Background 
Mathematical models are used to describe complex physical phenomena in disciplines from 

natural sciences to engineering. Their purpose is to provide a framework for systematically 

studying various effects and, ultimately, for making predictions about future events. 

Mathematical models are often built around equations composed of variables and 

parameters, and describe relationships between the variables. Solutions of these equations, 

which are dependent on parameters and initial state of variables/system components, 

determine behaviour of the system over time. No mathematical model is a perfect 

description of the described physical system, and thus models are of little value if they are 

not adjusted over time to better fit the reality of system behaviour. 

Data assimilation is a dynamic process in which observations (measurements) of 

components of the physical system are incorporated into a model estimation/prediction of 

the unknown true state of the system. The wide-ranging applicability of such dynamic 

model-fitting methods make them of interest to the Culham Centre for Fusion Energy 

(CCFE), who use mathematical models to understand the behaviour of plasma in 

tokamaks. Tokamaks are one of the most developed magnetic confinement devices, which 

are needed to confine the hot plasma in a shape of a torus. A plasma is a mixture of 

negatively and positively charged particles with properties of a gas. Fusion reactions 

between types of hydrogen atoms, called deuterium and tritium, take place inside the 

plasma at high temperatures. Large amounts of energy are released from these reactions, 

and exploiting this energy source is the practical issue underlying the development of 

thermonuclear fusion power. 

 
Figure 1: (a) and (b) show plasma inside a tokamak at low (a) and high (b) confinement 
modes, during which the plasma exhibits stable behaviour. (c) shows the unstable 
rearrangement of the plasma during occurrence of edge-localised modes. 

A fundamental barrier to power production is the occurrence of plasma instabilities, such 

as sawteeth or edge-localised modes (ELMs), when large electric currents are passed 

through the plasma to heat it up. In tokamak experiments, these instability events are large 

fluctuations in electron and temperature density during large energy relaxations in the 

plasma, followed by particle and heat pulses/eruptions at the plasma boundary (see Figure 

1 (c)). Since such instabilities are damaging to the tokamak device, there is a need to 

understand them better through mathematical modelling in combination with analysis of 

experimental data. 

When working with real data and complex systems, it is difficult to identify parameters 

which characterise the model we are going to assimilate, and to determine the initial state 

of the system due to observation noise. Our aim is to consider the feasibility of using a 

data assimilation technique called the Ensemble Kalman Filter to improve the 

parameterisation of a simplified model designed to reproduce the behaviour of sawteeth 

and edge-localised modes. 
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Glossary 

 True state: a real physical state (unknown in real systems, known in synthetic ones). 

 Phase portrait: a geometric representation of the trajectories of a dynamical system 
in a coordinate system with axes being the values of system variables. 

  ̇   : the rate of change of the variable      with respect to time. 

 Reference solution: a model solution used to generate synthetic measurements.  

 Zero-mean Gaussian distribution: a description of a set of possible values in terms 
of their probabilities, with values close to zero being more probable.  

 Sampling rate of observations: number of measurements per period of oscillation. 

 Ensemble: a collection of states representing the distribution of state uncertainty. 

2. Mathematical model and observations 

Model of plasma instabilities 
Simulations of large-scale plasma behaviour have proved difficult due to the range of 

plasma instabilities that tend to have nonlinear interactions, and the variety of spatial and 

time scales present in plasma models. Simplifications of models arising from symmetry 

considerations of the torus-shaped tokamak enable the study of sawteeth and edge-

localised modes via simpler ordinary differential equation models [1].  The purpose of 

these models is to describe how system components, such as electron density, temperature, 

or magnetic field, evolve and interact over time. Our model comprises two coupled 

ordinary second-order nonlinear differential equations for system variables   and  , in 

which there are five model parameters. The model can exhibit very different behaviours 

for small changes in parameters or the initial state. In the system, the equation for   is 

decoupled from the equation for  . Solving the equation for  , we find that the solution 

exhibits typical oscillating behaviour as shown in phase portraits in Figure 2 (left). In 

Figure 2 (right), we show solution trajectories to the full problem, given different starting 

points. 

   
Figure 2: Phase portraits showing time-dependent paths of stable system solutions to our 

model for different initial states. (left)   vs  ̇; (right)   vs  ̇ vs  . 

Observations 
The aim of this project is to test hypothetical situations which use artificially generated 

measurements of quantities that describe the system. We obtain these measurements by 

first solving the model for some parameters and initial conditions. As system 

measurements are assumed not to be completely accurate, due to rounding errors and 

other unaccounted sources of noise, we add small numbers to the model solution at 

specific points in time to obtain a set of observations. We pick the error values randomly, 

using uniform and Gaussian distributions, so that most error values lie centred around zero 

and are sufficiently small. In real data, for system variables measured at predetermined 
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points in time, to be descriptive of the system behaviour the spacing of measurements 

must be small enough. Therefore, we introduce the term sampling rate of observations, which 

describes observations by their number of samples per period of oscillation. 

3. Data assimilation 
Data assimilation involves combining a dynamical model with time-dependent 

measurements in some optimal way to approximate the true state of the system. 

Ensemble Kalman filter 
The Linear Kalman Filter is an iterative statistical data assimilation technique which can be 

used in cases where all terms in the model are linear. Suppose we have a sequence of 

system observations measured at successive points in time, along with model forecasts of 

these measurements. At every measurement time, we would like to find the optimal 

approximation to the true state of the system, that is, the most probable state given the 

model forecasts, and observations up to (and including) that point in time. The estimate of 

the true state is a weighted mean of the model forecast at the current time  and the current 

observation. The weighting factors are derived from statistical uncertainty estimates, 

utilising statistical information about the mean and variance of the model forecast and 

observation noise. 

A more computationally efficient version of the Kalman filter, applicable to nonlinear 

models, is the Ensemble Kalman Filter, where uncertainty statistics can be easily and 

intuitively estimated at every time step from a collection of state vectors, called ensemble 

members. These multiple system states represent the distribution of model forecasts with 

respect to uncertainty assumptions about the model and measurements. Ensemble 

members are iteratively evolved from one time step to the next via the original nonlinear 

model, and thus nonlinear evolution of errors, which the ensemble represents, is preserved. 

We explore data assimilation on our simplified model of instabilities by assimilating over 

variables   and  ̇ using the Ensemble Kalman Filter, which we initialise with true 

(observation-generating) parameter values and initial conditions, as well as noisy ones. 

With true initialisation values, we find that the filter tracks the reference solution well, when 12 

observations of Gaussian noise level 0.5 are assimilated per oscillation. We find that error 

estimates increase as the system variable   approaches zero. We believe that this difficulty 

is observed due to an interaction between the system dynamics and observation noise, 

which pulls the estimate of the true state away from the reference solution. 

Further tests confirm that the performance of data assimilation is sensitive to poor 

estimates of the unknown parameters in the assimilated model. There is a version of the 

Ensemble Kalman Filter which incorporates parameters as system variables and estimates 

their true values via assimilation, as for other system variables. Over time, the parameters 

should converge to their true values. We find that this estimation is more inclined to 

exhibit the following two difficulties: (i) mismatch between the most probable solution and 

the mean of the possible solutions found by the algorithm, and (ii) filter divergence. 

Therefore, there is a need for alternative parameter and initial state estimation methods, to 

be used as an aid for initialisation of the Ensemble Kalman Filter. 

4. Parameter (and initial state) estimation 
We use an optimisation approach to parameter and initial state estimation, as this has 

previously been shown to work for nonlinear models. We formulate a measure that 
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quantifies the total error between the model predictions and the system observations over 

the first period of oscillation, where the period is estimated from observations. We call this 

measure the error function. Our goal is to find the parameters and initial state that define 

the model, for which the error function takes the smallest possible value. 

Choice of solvers 
We consider three optimisation algorithms in order to find the parameters and initial state 

for which the error function is minimal: two local solvers for nonlinear least squares 

problems, DFOGN and DFO-LS [2], and a stochastic search method called Covariance 

Matrix Adaptation Evolutionary Strategy (CMA-ES). Our aim is to explore variations in 

performance of these algorithms, and their appropriateness for finding the solution to our 

problem. 

Local solvers perform the search for the global minimum point iteratively by zooming in on 

error function values in the close neighbourhood of the current best point held (the one 

with the smallest function value); new best-point candidates are taken deterministically to 

be the best neighbouring points. In particular, solvers DFOGN and DFO-LS choose the 

next iterate based on the approximation of the function in the neighbouring region using a 

linear model, since this is cheap to evaluate and applicable to black-box or noisy functions. 

On the other hand, stochastic search methods use an element of randomness in searching 

for new best candidates that minimise the error function. CMA-ES searches the 

neighbourhood of the current best minimum point by sorting between samples from a 

normal distribution centred at this point. At the next iteration, the distribution is moved 

and reshaped in the direction of best samples. 

Methodology 
We pick 100 different starting guesses of parameter and initial state values, and assess how 

each of the solvers performs. In real problems, the observed data may provide a very good 

estimate of the initial system state. To imitate and test such situations, we perturb the true 

initial state with a small error of up to 0.05, and fix it at this value. Optimisation is then 

carried out with the same set of 100 starting parameters. We test the robustness of solvers 

for these problems to noisy or sparse data sets by varying the noise levels and sampling 

rates of the synthetic observations. 

5. Optimisation results 

Performance profiles 

   
Figure 3: Performance profiles for combined parameter and initial state estimation (left) 

and parameter estimation (right) with      and Gaussian noise      . The dashed 
green lines indicate one standard deviation away from the mean profile for CMA-ES. 

A key measure of the effectiveness of an algorithm is how the proportion of problems 

solved varies with the scaled number of function evaluations (scaled budget). We present 
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our results in Figure 3. We see that, for combined parameter and initial state estimation 

with and without noise, DFOGN is the best-performing solver overall, since from Figure 3 

(left) we can see that the increase in the number of problems solved to high accuracy was 

the steepest and the final proportion reached is the highest at about 60%. DFOGN is 

followed closely by DFO-LS, whereas CMA-ES consistently performs considerably worse, 

when averaged. One issue that we encountered is that these local solvers stagnate at local 

function minima. We find that increase in sampling rates of observations decrease the 

number of points local solvers get stuck at. 

We also consider parameter estimation, as in Figure 3 (right), where we see very 

encouraging results for all solvers, since within 500 function evaluations the solvers find 

the minimum for about 90% of starting guesses. DFOGN and DFO-LS are again 

consistently the fastest solvers over CMA-ES, although we also observe that CMA-ES can 

solve comparable proportions of problems if the budget is sufficiently large. 

Sampling rates and noise levels 

When varying noise levels and sampling rates (denoted as  ) with DFOGN solver, we find 

that larger sampling rates seem to mitigate large noise levels. There is a clear trade-off 

visible between the two when estimating parameters and the initial state, as shown in 

Figure 4 (left). When only estimating the parameters, this trend is less strong, and we see in 

Figure 4 (right) that the average error over the runs for different starting guesses stays 

constant. This is a positive result pointing to errors in parameter estimation occurring 

mostly due to small noise in the known initial state. 

   
Figure 4: Plots of average error of estimates for combined parameters and initial state case 

(left) and just parameters (right).   is the sampling rate and   is the Gaussian noise level. 

6. Data assimilation results 
We develop a new approach for initialisation of the Ensemble Kalman Filter, which 

involves using observations over the first period for parameter and initial state estimation. 

The optimised parameter values are then used to initialise the model to be assimilated, 

whereas the optimised initial state is used for initialisation of the ensemble of initial model 

states. We show the results for one run in Figure 5, where we see that the ensemble 

average matches the reference solution very well, as desired. 

 
Figure 5: Ensemble average (red) with observations (black), and reference solution (green) 

for observation sampling rate      and Gaussian noise level       
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7. Discussion, Conclusions & Recommendations 
We have considered a statistical data assimilation method applied to the problem of 

identifying the parameters and initial conditions in a simple model for plasma instabilities, 

and using synthetic data. We found that the Ensemble Kalman Filter assimilation of the 

nonlinear system exhibits difficulties in certain regions of oscillation, which could 

potentially be improved by reducing the impact of very noisy observations or other 

methods that prevent ensemble members from diverging to other solutions. 

To treat the initialisation difficulties we encountered, we developed a method for 

estimation of parameters and initial state of the system, aimed at finding sufficiently good 

estimates for successful initialisation of data assimilation. Tests showed the local solver 

DFOGN as the most favourable solver in many aspects and situations, with fast progress 

and small errors in a high proportion of cases when stagnation did not occur. CMA-ES 

was seen to overcome those difficulties, but it is thought to require high computational 

efforts for good accuracy estimates, which in particular makes its scalability to larger size 

systems questionable. We found that the final error of optimised estimates for noisy data 

could potentially be controlled through increased sampling rate. 

The size of the parameter estimation problem does not increase with system dimension, 

but only with the number of parameters. When considering the problem with a slightly 

noisy fixed initial state, the success of the solvers we tested points to possible extensions of 

parameter estimation to higher dimensional systems. 

CCFE would like to perform data assimilation of the full coupled model for plasma 

instabilities, for which parameters and initial state are poorly known. The formulation of 

our estimation scheme is extendible, with the additional requirement that we will need to 

impose nonlinear inequality constraints on the optimised variables. This is to ensure that 

we search among oscillatory, non-divergent solution trajectories. We could impose 

constraints through a penalty term in the error function, in conjunction with the use of 

global solvers nonspecific to least squares problems. 

Overall we have seen promising results which confirm the feasibility of parameter and 

initial state estimation in nonlinear plasma models, and suggest possible benefits to 

statistical data assimilation as well as other applications where model tuning is required. 

8. Potential Impact 
Sawteeth and edge-localised modes are proving a major challenge in the development of 

tokamak-based commercial fusion power plants, since they result in eventual damage to 

the device or degradation of plasma if not contained. Better understanding of these 

instabilities is essential, and applications of data assimilation techniques to plasma models 

along with data gathered from experiments with tokamak devices, such as JET and MAST 

in Culham, could become a valuable contribution to increasing understanding. 

Wayne Arter,  at CCFE, commented “This could lead to simple models, running in real time to help 
control the ITER experiment to optimise power production, for eventual use in commercial reactors. These 
techniques should have more general application in industrial plant control, say in chemical reactors.” 
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