
	

	

	

	

EPSRC Centre for Doctoral Training in
Industrially Focused Mathematical

Modelling

Bayesian Optimisation

Oliver Sheridan-Methven

	

	

	

	

	

	
1	

	

Contents	

1.	 Introduction	 ...	 2	

2.	 Bayesian optimisation	 	 2	

Glossary of terms	 ..	 3	

3.	 Optimisation algorithms	 	 4	

4.	 Results	 ..	 4	

Noiseless objective functions	 	 4	

Noisy objective functions	 	 5	

Application to a real-world example	 	 6	

5.	 Discussion, Conclusions &
Recommendations	 ..	 6	

6.	 Potential Impact	 	 7	

	

	

2	

	

	

1. Introduction
Frequently in industry, academia, and everyday life, we encounter situations where we
would like to find the best solution for a problem. This could be how to best allocate
stocks in a financial portfolio so as to minimise overall risk exposure, or even what
parameter values give the fastest code performance for producing random numbers or
solving a system of differential equations.

For a number of problems it is well understood how to achieve the best results. If we have
some measure of performance and know how it depends on the input parameters, then we
can solve for stationary points. We select either the minima or the maxima, depending on
whichever is sought after. However, solving for stationary points relies on knowing how
the output changes as we vary the input, which corresponds to being able to compute
derivatives. With the increase in evermore complicated models, larger datasets, and noisier
data, either computing the derivative is too expensive, or completely inaccessible.

Frequently when training a neural network, or any machine learning algorithm, the model
produced may contain thousands (possibly millions) of variables, and there is no chance to
understand even how the model works. These types of models are often called black-box
functions and are typically noisy and very expensive to compute.

As these black-box functions are usually very noisy, the machine learning and
computational statistics communities are frequently trying to fine-tune and improve the
parameters governing these models, in a process known as hyper parameter optimisation.
Frequently, the parameter configuration is only the best when compared to similar
configurations, in which case the configuration is known as a local optima. However, given
the models are frequently noisy, we would like to do better than these local and somewhat
“blinkered” solutions, and try to achieve the best performing solution across all possible
configurations, known as the global optima. There is the possibility there may be multiple
such global optima.

NAG are a leading producer of software and high performance computing services. They
are interested in investigating Bayesian algorithms, which are a subclass of global optimisation
algorithms, to see if they should develop these for their commercial library. Our aim is to
assess the performance of a selection of optimisation algorithms including Bayesian, global,
and local methods on a variety of synthetic black-box functions, showcasing in what
scenarios each class of algorithm proves more (or less) effective.

2. Bayesian optimisation

To tackle the emerging torrent of hyper parameter optimisation problems arising from the
machine learning community, Bayesian optimisation methods have gained popularity.
These are a sub-class of global optimisation algorithms more generally. In order to describe
the principles underlying Bayesian algorithms, we first need to introduce the optimisation
problem more formally.

At the centre of global optimisation is the objective function 𝑓 ⋅ , which measures the
quantity we want to optimise by a single number (e.g. profit, accuracy, speed, etc.). By
default we will assume the optima we desire is when the objective function is minimised.
The objective function takes an argument 𝒙 from some search space, where we are trying
to find the global optimiser 𝒙∗ such that 𝑓(𝒙∗) is a global minimum.

Traditionally, global optimisers and derivative-free methods have made progress with these
problems by forming evermore complex approximations of the objective function, either
making assumptions about convexity, producing linear or quadratic models, or partitioning
the search space into many smaller optimisation problems. A common feature of many of
these approaches is they often involve multiple evaluations of the objective function with
little regard to how expensive each query is. However, if the model is the result of training
a facial recognition model or a large scale astrophysical simulation, then it could take hours

Black-box functions
work by some
unknown mechanism.
There is no access to
derivative
information, and they
are frequently noisy,
and expensive to
evaluate.

	

3	

	

	

or even days to evaluate the function even once, making a large number of function
queries undesirable.

The bulk of the computational effort when using Bayesian algorithms is spent determining
where the next sample should be taken. The key is to prioritise making a few well-selected
evaluations in favour of producing complicated models which require lots of evaluations.
To achieve this, Bayesian algorithms involve using an acquisition function 𝑎(⋅) to
determine where to sample next. The acquisition function is a combination of the expected
function value 𝜇(⋅) and the uncertainty 𝜎 ⋅ . Minima of the acquisition function typically
correspond to either exploring regions with high uncertainty, or exploiting regions which
show promise for containing the global optima. We illustrate how such a scheme works in
Figure 1, where after n iterations the algorithm has sampled n points (solid markers). The
point which optimises the acquisition function is computed (hollow markers). This point is
then sampled, the acquisition function updated, and the process iterated until termination.

Figure 1: A schematic of the principle underlying Bayesian optimisation algorithms.

To construct the acquisition function, we must make assumptions about the objective
function. As the function is usually noisy we use a probabilistic model, and the most
popular choice is a Gaussian distribution with mean 𝜇 and variance 𝜎+, which is known as
a Gaussian process Bayesian algorithm. Alternative models include using random forests, tree
Parzen estimators, and regression trees. Additionally a model for the covariance of the noise has
to be assumed, and commonly used models are exponential distributions and Matérn kernels,
where these covariance functions are generally called noise kernels.

Glossary of terms
§ Objective function: The function we wish to optimise.

§ Black-box function: A function where nothing is known about how it works or what
output we might achieve for a given input. There is no access to derivative
information, evaluations are expensive, and output may have noise.

§ Acquisition function: The fundamental tool underlying Bayesian optimisation. It is
an aggregate of the objective function’s expected value and its uncertainty.

§ Noise kernel: The model for the objective function’s covariance structure.

Iteration n

Iteration n+ 1

a

xn+1

xn+2

f(xi)

µ f

Bayesian algorithms
use an acquisition
function to determine
which points to
sample.

Points are sampled
based on optima of
the acquisition
function.

	

4	

	

	

3. Optimisation algorithms

To investigate the performance of Bayesian optimisation algorithms, we need a collection
of optimisation algorithms to compare. We pick 6 pre-existing solvers to use in our
numerical experiments. These solvers involve a number of different mechanisms that we
mention without explanation. The solvers are:

• GPyOpt, a Bayesian algorithm using a Gaussian process.
• HyperOpt, a Bayesian algorithm using tree Parzen estimators.
• PySMAC, a Bayesian algorithm using random forests.
• DIRECT, a global algorithm which partitions the search space.
• CMA-ES, a global algorithm using a covariance matrix adaptation scheme.
• BOBYQA, a local derivative-free algorithm using linear or quadratic models.

To complement the solvers, we need a collection of challenging test problems. For
practical purposes, it is preferable to use synthetic quick-to-compute functions rather than
real-world expensive black-box functions. We used 29 problems selected from throughout
the literature of global optimisation studies. Using a relative noise level 𝜖 between 10/0
and 10/1, we made the functions noisy by introducing:

• Deterministic noise.
• Multiplicative Gaussian noise.
• Multiplicative uniform noise.
• Additive Gaussian noise.

4. Results
The performance of each optimisation algorithm is likely to vary between problems. A
common measure taken to try and standardise a problem’s difficulty is to measure the
number of function evaluations scaled by the number of input variables 𝐷. We introduce
the notion of the computational budget 𝑏 which is the number of function evaluations divided
by 𝐷 + 1. Using this scale, the number of function evaluations required to compute a
derivative corresponds to a computational budget of 1. In our experiments we permitted
each solver a maximum computational budget of 100 for each problem, and we attempted
each problem approximately 20 times from random starting points, and repeated this for
each of the different noise models. The results we present are the performance of each
algorithm averaged over all of its attempts.

The most informative measure available to assess how each of the solvers performed
overall, and how they ranked amongst each other, is to look at the data profiles of the
solvers. We use these to show what proportion of the test problems each algorithm solved
on average for a given computational budget. To assess whether the final solution was
approaching the global minima, and hence if the problem was “solved”, we consider if the
quoted solution is close enough to the known global solution, within some tolerance level
𝜏 relative to its first evaluation. We consider tolerance levels between 10/6 and 10/1.

Noiseless objective functions
The data profiles for the noiseless objective functions are shown in Figure 2, alongside a
histogram of the number of budgets used at termination. We can see from the histogram
that, although we specified a computational budget allowance of 100, most of the solvers
treated this more as a guideline rather than a strict terminating criteria. However,
BOBYQA rarely went beyond a computational budget of 40.

Looking at the performance profiles between the different tolerance levels, we see that the
solvers could solve the majority of the problems when 𝜏 = 	 10/1, but did not manage to solve
more than half when 𝜏 = 	 10/6. This leaves 𝜏 ∼ 10/0 as a suitable middle ground tolerance
level. We can see in this regime that DIRECT and CMA-ES give the best performance and

As a proxy for real-
world black-box
functions, we used
synthetic functions
which were quick to
evaluate and who’s
global minima were
known.

	

5	

	

	

scaling, while BOBYQA has a good performance for smaller budgets. Although the Bayesian
solvers provide reasonable performances, they are never seen to be the best achieving nor the
best scaling.

Figure 2: Data profiles for different tolerance levels. (Top left) 𝜏 = 	 10/1. (Top right) 𝜏 =
	 10/0. (Bottom left) 𝜏 = 	 10/6. (Bottom right) The computational budget used.

Noisy objective functions
When we made the functions noisy, the Java wrapper in PySMAC encountered technical
issues, and so results for PySMAC are not shown. Similar issues were encountered by
HyperOpt on the MNIST case study presented later.

We first introduce the results using multiplicative noise for the quite conservative tolerance
level 𝜏 = 10/+, and we show the results in Figure 3, from which two key results emerge.
Firstly, BOBYQA’s performance plateaus earlier to a reduced level for a relative noise level
𝜖 between 10/+ and 10/1. Secondly, HyperOpt’s performance appears to increase. For increasing
noise levels we intuitively expect the performances to either remain the same or decrease, but not
improve. While this improvement is not colossal, we also observed this improvement for tolerances
down to 𝜏 = 10/6. We conjecture that this is because when assessing if we converged on
the global solution, the high noise levels produce an increased number of false positives
when comparing against the global minima of the noiseless functions. These
improvements were not observed for noise levels 𝜖 ≤ 10/+.

Figure 3: Data profiles. (Left) No noise. (Right) Multiplicative Gaussian noise.

0 20 40 60 80 100
Budgets b

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

No noise

� = 10�1

BOBYQA

CMA-ES

DIRECT

GPyOpt

HyperOpt

PySMAC

0 20 40 60 80 100
Budgets b

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

No noise

� = 10�3

BOBYQA

CMA-ES

DIRECT

GPyOpt

HyperOpt

PySMAC

0 20 40 60 80 100
Budgets b

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

No noise

� = 10�5

BOBYQA

CMA-ES

DIRECT

GPyOpt

HyperOpt

PySMAC

0 20 40 60 80 100 120
Budget used upon termination

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

Usage of 100 budget allowance

All solvers

BOBYQA

GPyOpt

0 20 40 60 80 100
Budgets b

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

No noise

� = 10�2

BOBYQA

CMA-ES

DIRECT

GPyOpt

HyperOpt

PySMAC

0 20 40 60 80 100
Budgets b

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

� = 10�1

Multiplicative Gaussian noise

� = 10�2

BOBYQA

CMA-ES

DIRECT

GPyOpt

HyperOpt

Data profiles show the
average fraction of
problems solved as
we increase the
allowance of function
evaluations.

We suspect the
relative noise level
𝜖 = 10/1 gives too
many false positives
when testing for
convergence, and
propose noise levels
𝜖 ≤ 10/+ as suitable.

	

6	

	

	

We introduce additive noise and show the results in Figure 4. We can see from this that there is a much
reduced performance across all of the solvers and that, for larger noise levels, DIRECT has the
greatest reduction. CMA-ES is still the best performing optimiser, while the Bayesian solvers show a
reasonable performance for smaller budgets.

Figure 4: Data profiles using additive noise. (Left) 𝜖 = 	 10/0. (Right) 𝜖 = 	 10/1.

Application to a real-world example
The results presented so far were for synthetic problems. As a real-world example, we
considered the MNIST dataset of 60,000 images of hand written digits. We used a
classification scheme, which had three parameters which we could tune. The performance
for each choice of parameters was slow to evaluate, noisy, and there was no prior idea of a
‘good’ choice of parameters, and so the problem was a good example of a genuine black-
box hyper parameter optimisation problem.

Figure 5: Data profiles for a classification scheme on the MNIST dataset. (Left) 𝜏 =
	 5×10/+. (Right) 𝜏 = 	 8×10/+.

The results from the MNIST example are shown in Figure 5, and show some surprising features. The
most surprising is the non-existent performance of CMA-ES, and the very poor performance of
BOBYQA. However, GPyOpt showed a rather unchanging performance across the different
tolerances, whereas the performance of DIRECT was very dependent on the budget allowance and
tolerance level. Overall it was DIRECT which achieved the best result with a classification error of 8.0%.

5. Discussion, Conclusions & Recommendations
We have surveyed the different solvers and have seen the difficulty in producing any
blanket conclusions about “which of the solvers is best”. Generally we found noise levels
𝜖 ≤ 10/+ and tolerances 𝜏 between 10/> and 10/+ as suitable regimes. These avoided
high levels of false positive solutions and that the solutions were assessed at an appropriate
level of accuracy. For noiseless functions, we found DIRECT and CMA-ES solved the
most problems within our computational allowance, and BOBYQA gave good
performance for lower computational budgets. The Bayesian algorithms gave moderate
performances overall, but were never shown to be the best scaling nor the best achieving.
When we used noisy test problems, BOBYQA’s performance reduced considerably,
DIRECT and CMA-ES remained the top competitors, and the Bayesian algorithms
remained largely unchanged in their ranking. Bayesian methods did not appear to

0 20 40 60 80 100
Budgets b

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

� = 10�3

Additive Gaussian noise

� = 10�3

BOBYQA

CMA-ES

DIRECT

GPyOpt

HyperOpt

0 20 40 60 80 100
Budgets b

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

� = 10�1

Additive Gaussian noise

� = 10�3

BOBYQA

CMA-ES

DIRECT

GPyOpt

HyperOpt

0 20 40 60 80 100
Budgets b

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

MNIST

� = 5 ⇥ 10�2

BOBYQA

CMA-ES

DIRECT GPyOpt

0 20 40 60 80 100
Budgets b

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

MNIST

� = 8 ⇥ 10�2

BOBYQA

CMA-ES

DIRECT GPyOpt

DIRECT and CMA-ES
were usually the top
performing solvers.

Using MNIST, DIRECT
achieved the best
classification error.

	

7	

	

	

demonstrate a significantly better resilience to noise above the other solvers considered.
An example using MNIST showed similar results.

Recommendations for further work include adding more solvers and problems to those
considered. The effect of increasing the number of the input variables would be a useful
feature to differentiate performance. Lastly, all the solvers were run “out of the box”, and
no attempt was made to “optimise the optimisers”. Fine-tuning the optimisation
algorithms may have the potential to give new results, and would be worth exploring.

6. Potential Impact
The results presented here will hopefully act to advise NAG whether they should consider
developing Bayesian solvers for their library. Our findings suggest that while Bayesian
algorithms achieve good performance, they appear not to show a competitive edge above
alternative methods. This suggests developing a Bayesian algorithm into a commercial
product would need careful consideration and further investigation against other global
optimisation methods.

Jan Fiala, a numerical software developer at NAG, said: “We are always looking for new ways to
improve our offering within the NAG Library and we know that a good quality global optimization solver
would be very valuable to many of our users. The aim of this project was to find out if Bayesian
optimization, a highly popular optimization technique within Machine Learning, would be applicable as a
generic global optimization solver. Thanks to Oliver we have now gained insight to Bayesian optimization
through his series of experiments and we can make a better decision.”

