

EPSRC Centre for Doctoral Training in

Industrially Focused Mathematical

Modelling

Mathematical formulation of the coarse

predictor for the Parareal algorithm in

fusion plasma divertor simulations

Federico Danieli

1

Contents
1. Introduction ... 2

Background .. 2

Parallel computing 2

Glossary of terms 2

2. Description of the original Parareal

algorithm ... 3

3. The Interparareal algorithm: an

alternative to the coarse solver 4

Comments .. 5

4. Comparison of the algorithms 5

Application to ODEs 5

Application to PDEs................................... 6

5. Discussion, Conclusions and

Recommendations .. 7

6. Potential Impact 7

2

1. Introduction

Background
The Culham Centre for Fusion Energy (CCFE) is a leading research centre in the development

of the technology necessary to attain a sustained fusion reaction. Achieving this ambitious

task would represent a major step forward towards the solution of the energetic problem,

providing a chance to tap from a sustainable, clean and durable energy source.

Much of this challenge consists in controlling the behaviour of the hot plasma inside the

fusion reactor, for example by mean of strong induced magnetic fields. However, the

physical laws that describe the whole system are of extreme complexity, and in most cases

not yet fully understood. To gain more insight on the phenomena that occur inside a

fusion reactor, researchers at CCFE rely heavily on numerical simulations, that allow the

approximate evolution of the system to be determined, starting from some basic laws that

describe its dynamics. These laws are expressed as Partial Differential Equations (PDEs),

which are solved using the computational power provided by supercomputers.

Parallel computing
The growing complexity of the PDEs involved in the description of plasma physics

demands ever increasing computational power in order to obtain numerical solutions in

reasonable amounts of time. The frequency of computations that can be carried onto a

single processor is, however, limited and represents an upper bound for the efficiency of

serial algorithms. To overcome this limit, much attention has been directed towards the

implementation of algorithms that work in parallel, thus providing an alternative to sheer

computational power to speed up the computation of numerical solutions.

If the quantity we are solving for depends on position in space, then one way to parallelise

consists on subdividing this space into smaller subdomains, and have different processors

taking care of finding the solution in each of these. For example, if we solve a model to

determine the evolution of the temperature inside a room, we might assign half of the

room to one CPU, and the other half to another one. After the solutions are found, we

have to match them at the interface of the subdomains. The matching comes with a cost,

so further subdividing might be detrimental to the purpose of speeding up the

computation.

Nevertheless, if the solution depends on time, we can still think of applying similar

techniques, and subdivide a time interval instead of a space interval, thus allowing for time

parallelisation. Performing this task is not straightforward, and the additional challenge lies in

the fact that, in this case, there is a specific direction in the flow of information: the

solution at previous instants impacts that at following ones. This makes time parallelisation

counterintuitive, but despite these difficulties many algorithms have been proposed that

can make use of this additional dimension for parallelisation. The Parareal algorithm is one

such algorithm. Our aim is to study ways to improve its performance, for the purpose of

speeding up plasma physics simulations.

Glossary of terms
 Differential equations: The evolution of a physical system can be described by

means of differential equations, which describe laws that define how some
quantities (like temperature or density of a gas) vary. These equations are called
ordinary differential equations (ODEs) if only changes in one variable (usually time)
are considered; if variations in more variables (like space and time) are linked,
then the equations are called partial differential equations. If these variations do not

The power of a single

CPU is limited.

Parallel computing

allows for multiple

CPUs to work

together on the same

task, thus reducing

the time necessary to

complete it.

Parallelising over a

time interval is

challenging: the

solution in the future

depends on values

from the past

3

depend explicitly on the position or instant considered, but are only influenced by
the state of the system itself, then the equations are said to be autonomous. Another
classification is between linear and non-linear equations: the first ones are much
simpler, while the latter present non-trivial interactions that can give rise to much
more complicated behaviours.

 Numerical solver: For many complex systems of differential equations, an explicit
analytical solution is not available. To overcome this issue, we can be satisfied
with approximating such solution to various degrees of accuracy using a
computer. The algorithm used to compute such solution numerically is called a
numerical solver (or scheme, method, integrator, etc). We focus on two different
schemes: a fine solver, which is more accurate and more expensive to use, and a
coarse solver, which is cheaper to compute but less precise.

 Interpolant: This is a curve that connects some points (called samples). For
example, if we are interested in describing the evolution in time of the
temperature inside a room, we can imagine measuring such temperature at
constant intervals (sampling), and then draw a curve that passes through the
measured values, so to be able to guess the temperature even at instants in-
between. There are many ways to achieve this, from the naïve “connect-the-dots”
using straight lines to more sophisticated methods that generate smoother curves.

2. Description of the Parareal algorithm
The first step in the Parareal algorithm consists of dividing the time interval over which we

are interested in tracking the evolution of our solution into subintervals (time chunks) of

equal size. We assign the task of computing the solution on each time chunk to an

independent processor. However, in order to start the computations, we need to know the

values of the solution at the beginning of each subinterval, so that we can evolve it from

there. These values are called initial conditions. These are, of course, not known a priori, so

we need to make a guess for the initial conditions, verify them, and possibly correct them

iteratively until we reach a precise enough result. Verifying our guess is simple: we integrate

using a fine solver, and we check the eventual mismatch between final conditions in one

subinterval and initial conditions in the following one. The procedure for correcting (or

updating) the initial conditions so that they are more accurate at the next iteration is not as

straightforward. The Parareal algorithm uses the following formula to conduct the update:

 (

) (
) (

),

where
 represents the initial conditions. The subscript indicates the time chunk the

initial condition refers to, while the superscript indicates the iteration of the algorithm.

We see how the update for each subinterval depends on values from the previous time

chunk, collected both before
 and after

 the update. represents the

result of integrating using the fine solver, starting from , while is the result from the

application of the coarse solver. Moreover, in order to start the computation, we need an

initial guess for the very first iteration. This can be provided by an initial sweep of the

coarse solver on the whole time domain. We present a schematic of the initialisation of the

algorithm in Figure 1. The solution we are interested in approximating is represented by

the black curve. In order to parallelise the computation, we divide the time domain of

interest (from to) into a number of subintervals of equal size. The initial conditions

for each of the subintervals,
 , are guessed by applying the coarse solver serially (red

dotted line). The blue lines represent the evolution of the solution within each time chunk,

as computed using the fine integrator. We note that, in general, the results from the

numerical integrations at the end of each time chunk do not correspond to the initial

conditions we chose for the following time chunk. Hence, we cannot assume that we can

To parallelise in time,

we first make a guess

for the solution at the

beginning of each

subinterval and then

iteratively correct the

guess

4

connect together all the bits of the solution in one single continuous curve, and there is a

corresponding error in the representation of the actual evolution. Iteratively applying the

update formula is expected to reduce such error.

Figure 1: Schematic illustrating an example of the initialisation of the Parareal algorithm.

We can interpret the formula prescribed in the Parareal algorithm as follows: the initial

conditions we pick are updated depending on the result of the integration from the initial

conditions at the previous time chunk, plus a correction that comes from the fact that the

previous initial conditions were inaccurate. The coarse solver takes care of this correction.

Notice that the fine solver can be used in parallel, since all time chunks are independent,

which means that we can afford to invest effort in performing the integration accurately.

On the other hand, the coarse solver needs to be used in serial, to propagate the correction

forward in time, so we are forced to use a quick and inaccurate integrator for the algorithm

to be efficient.

The coarse solver is crucial for the correct functioning of the algorithm: it should be at

the same time accurate enough to resemble the action of , but cheap enough to be

computed serially. Finding the optimal is still an open challenge.

3. The Interparareal algorithm: an alternative

to the coarse solver
We now develop an alternative algorithm that removes altogether the necessity to use a

coarse solver. Instead of relying on the action of , we can infer the effect that a variation

on the initial conditions has on the final conditions directly from the evaluations of

conducted throughout the algorithm. If the differential equation is autonomous, in fact,

each time we perform an integration on any of the time chunks, we are sampling the same

function , which gives us the final conditions at the end of a subinterval starting from

the initial conditions. Given these samples, we can then build an interpolant, (hence the

name Inter-parareal), as an approximation of . Finally, the correction can be done using

the derivative of the interpolant with respect to the initial conditions, , which describes

precisely the impact that varying has on the final conditions. Our update formula is:

 (

)
(

).

Contrarily to the

Parareal algorithm,

Interparareal relies

on a direct

approximation of

the action of the

fine solver in order

to conduct the

update.

The Parareal

algorithm alternates

between an

integration step

(parallel) done with

a fine solver, and an

update step (serial)

done with a coarse

solver.

5

Comments
 The Interparareal algorithm has some strong limitations in its applicability: the

task of building an accurate interpolant become increasingly challenging as we
add more variables to the system of equations considered. This means that it can
be efficiently used only in the case of systems of ODEs that are reasonably small
in size.

 Extending the algorithm to PDEs poses an additional difficulty. PDEs can often
be solved numerically by re-casting them as a very large system of ODEs, hence
falling in the problematic case described in the first comment. However, while it
is true that the number of equations is large, they are all similar in nature. Under
some simplifying assumptions, we can then exploit the particular structure of the
arising system to overcome this issue. In particular, we need to request that the
way a solution evolves is independent on the point in space where we are
evaluating it, and it is only affected by the values around it.

 The Interparareal algorithm has an additional, desirable, feature which makes it
better than the Parareal algorithm. Our theoretical results show us that, if the
equations are linear, then already after the first iteration our guess on the initial
conditions will be exact. This is a very simple category of equations, but linear
PDEs can already describe many relevant physical phenomena.

4. Comparison of the algorithms
To test the efficiency of the Interparareal algorithm against the original Parareal algorithm,

we compare how the error we make in guessing the initial conditions varies as we proceed

with the iterations for both algorithms. The error can be computed as the difference

between our solution and the one obtained applying the fine solver on the whole domain.

If the error approaches zero, the algorithm is said to achieve convergence: the faster this

happens, the better the algorithm is performing.

To conduct our test, we consider the application of the two algorithms both to systems of

ODEs and to PDEs, employing various kinds of numerical solvers which present different

levels of accuracy.

Application to ODEs
Regarding ODEs, we are mostly interested in convergence results for systems that have a

chaotic behaviour, that is, systems whose evolution can vary wildly and is strongly

dependent on the initial conditions. This is both because they represent a first rough

benchmark for simulations describing plasma behaviour, and because our algorithms

become more delicate whenever correctly guessing initial conditions is crucial. The Lorenz

system is considered the model problem for chaotic evolution: a comparison of the two

algorithms when solving the Lorenz system is shown in Figure 2 (left). Furthermore, linear

systems are also of particular relevance, because in that case, the properties of the

Interparareal algorithm allow us to achieve convergence after a single iteration. The

corresponding results are shown in Figure 2 (right). We can see for both cases that the

error in the Interparareal algorithm reduces much more quickly than in the Parareal

algorithm. Similar results are obtained when applying the algorithms to other systems of

ODEs with different numbers of equations, which present a variety of behaviours in the

nature of their evolution. In particular, in our test we consider (i) systems whose state

tends towards equilibrium or away from it, (ii) ODEs that show an oscillatory evolution,

and (iii) combinations of these. Increasing the accuracy of the numerical solvers used tends

to decrease the gap in performance between the two algorithms, but in the majority of

When applied to

linear equations, the

Interparareal

algorithm needs only

one iteration to

converge. In the

majority of the other

cases tested, the

performance of our

modified algorithm is

better than that of

the original Parareal.

6

cases considered Interparareal outperforms Parareal, usually requiring little more than half

the number of iterations in order to achieve the same level of precision.

Figure 2: Error evolution for Parareal (black) and Interparareal (blue) when applied to

Lorenz’s chaotic system (left) and a linear system of ODEs (right).

Application to PDEs
We now compare the performance of the Interparareal and Parareal algorithms on some

simple PDEs. The Parareal algorithm is known to have particular difficulties in achieving

convergence when applied to a category of PDEs named transport equations. Among other

things, transport equations are used to describe how substances propagate within a

medium. Conversely, the Parareal algorithm has proven to be reasonably stable when

applied to diffusion equations, which describe for example how the temperature distribution

varies inside a room. A comparison of the error for both these cases using the two

algorithms is shown in Figure 3. The transport equation chosen is linear, and we see in

Figure 3 (left) that convergence is achieved immediately when using the Interparareal

algorithm. The diffusion equation has an additional non-linear component, which

represents a reaction term: in our temperature example, it could represent for instance

production or absorption of heat. From Figure 3 (right), we again see how quickly the

Interparareal algorithm can reach convergence, even when used for the solution of some

types of PDEs.

Figure 3: Error evolution for Parareal (black) and Interparareal (blue) when applied to a

linear transport PDE (left) and a simple non-linear diffusion-reaction PDE (right).

However, we point out that the range of PDEs our algorithm can be applied to is still very

limited, and additional research is required to successfully and efficiently employ it for the

solution of the kind of equations used in plasma physics.

Iteration Iteration

E
rr

o
r

Iteration Iteration

E
rr

o
r

7

5. Discussion, Conclusions & Recommendations
We have considered ways to improve the performance of the Parareal algorithm for time

parallelisation for use in solving problems from plasma physics. We have developed a new

version of the Parareal algorithm, which we have named the Interparareal algorithm. The

Interparareal algorithm uses an alternative to the coarse solver found in the Parareal

algorithm in order to conduct the update of the initial conditions. This requires computing

the derivative of the function that describes the evolution in time of the solution with

respect to the initial conditions. The Interparareal algorithm generates a direct

approximation of this derivative using an interpolating function that employs the

evaluations of the fine solver as sample points. This potentially allows for faster

convergence at comparable cost.

We investigated numerous test cases covering a range of systems of ODEs presenting

different behaviours in their evolutions, as well as some simple PDEs, solved using

numerical schemes of different degrees of accuracy. The results from the comparison

between the two algorithms were very promising, showing how the Interparareal algorithm

needs a smaller number of iterations than Parareal to achieve convergence. This is

definitely seen in applications to linear equations, but even when extended to some simple

non-linear cases, its performance has proven to be not worse (and very often much better)

than that of the original Parareal algorithm. For this reason it represents an alternative

worth investigating and expanding further.

In order to apply the proposed Interparareal algorithm to the systems of PDEs that are of

interest for plasma simulations, more research needs to be put into trying to overcome the

requirements for linearity and space-independence. In particular, effort should be focused

on trying to reduce the number of discretised equations involved in the simulation, which

will simplify the task of building an accurate interpolant.

6. Potential Impact
Solving differential equations is of crucial importance in a variety of applications. In

particular, researchers at CCFE use complex systems to describe the behaviour of hot

plasma confined within a fusion reactor. However, the number of computations necessary

to conduct these simulations is often such that a vast amount of time is required in order

to find the solution. Hence, reducing this time even by a fraction is of extreme relevance.

The Interparareal algorithm can allow for a faster resolution of systems of ODEs and

PDEs, providing in many cases an option which has shown to be much better than the

original Parareal algorithm for employing time parallelisation.

Dr. Debasmita Samaddar, Computational Plasma Physicist at CCFE, commented on the
outcome of the project: “Working with Federico has been an absolute pleasure. He started the mini
project with the goal of identifying ways of choosing a ‘good’ coarse predictor for Parareal implementations in
problems in fusion plasma. The project was challenging for a variety of reasons. Temporal parallelisation is
often considered counter intuitive – so grasping the details of the Parareal algorithm was not expected to be
easy. Federico studied a sufficient amount of literature to quickly find his way in this novel area of research.
Federico then introduced a whole new approach to dealing with the Parareal correction. The rest of the
project was focused on exploring this approach of ‘Interparareal’ to a variety of problems. The results are
very promising although there are a large number of open questions. It will be extremely beneficial to the
mathematical as well as plasma physics communities if Federico further explores the new approach for more
complex non-linear problems for his PhD. If implemented efficiently, his results can usher in a
breakthrough not just in fusion plasma simulations, but in computational physics in general.”

