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FOREWORD

The Lecture Notes are based on the TCC course given by me in Trinity
Terms of 2009-2011. Chapters I-III contains material discussed in Trinity
Term of 2009 (16 hours in total), Chapters IV-V contains lectures of 2010
(16 hours), and finally, lectures of 2011 are covered by Chapter VI (16 hours).

Chapters I-V can be regarded as an Introduction to the Mathematical
Theory of the Navier-Stokes equations, relying mainly on the classical PDE’s
approach. First, the notion of weak solutions is introduced, then their exis-
tence is proven (where it is possible), and, afterwards, differentiability prop-
erties are analyzed. In other words, we treat the Navier-Stokes equations
as a particular case, maybe very difficult, of the theory of nonlinear PDE’s.
From this point of view, the Lectures Notes do not pretend to be a complete
mathematical theory of the Navier-Stokes equations. There are different ap-
proaches, for example, more related to harmonic analysis, etc. Corresponding
list of references (incomplete, of course) is given at the end of the Lecture
Notes.

Finally, Chapters VI and VII contains more advanced material, which
reflects my scientific interests.



Chapter 1

Preliminaries

1.1 Notation

Let us denote by 2 a domain (open connected set) in R™. Then, C§°(€2; R™) is
set of all infinitely differentiable functions from €2 into R™, having a compact
support in Q. If m = 1, we use abbreviation C§°(£2).

The Lebesgue space is be denoted as L,(£2) and it is be endowed with the

standard norm )
Il = ( [ 15@)Paz)”
Q

[ lloc.0 = ess sup | f(z)]
e

if 1 <p< ooand

if p = o0.

Lemma 1.1. Let 1 < p < co. Then, L,(Q2) = [CF(Q)]F» de., L,(Q) is
the completion of C§°(§2) in L,(Q2).

In what follows, we always assume that the exponent of integrability is
finite unless otherwise is specially indicated.

We say that a distribution u, defined in €2, belongs to the Sobolev space
WF(Q) if and only if all its weak derivatives up to order k are integrable in
) with the power s. The norm in this space is defined as

k
[ullwe@) = Z [Vl 50 < oo.
=0

5



6 CHAPTER 1. PRELIMINARIES

We also let . .
Wi(Q) = [Ceo (@],
It is said that a distribution u, defined in ©, belongs to the space L*(Q)

if and only if all its weak derivatives of order k are integrable in €2 with the
power s. The norm in this space is defined as

ul| Lr ) = [ VFul|s.0 < oco.
A non-trivial statement about spaces L*(Q) is as follows.
Theorem 1.2. L¥(Q) C L 1,.(Q).
PrROOF We have a distribution 7" such that
[ s@etwyiz = -1(v)
Q

for p € C§°(Q) with g = (g;) € Ls(€2). Our aim is to show that is in fact a
regular distribution and moreover, there exists a function u € Lg,.(£2) such
that T'=1T,.

Consider a subdomain €y € €2, i.e., a bounded subdomain €y C 2 such
that the closure of Qy belongs to Q. Let 0 < o < dist(p,092). Define a
linear functional [ : L1(€2) — R in the following way

() =T (1)
for ¢» € L1(€2) where

o) = / ol — y)(y)dy

and w, is a standard mollifier. It is easy to check that [ is a bounded
functional and thus there exists a function u® € L (£29) such that

() = / w(a)()da

Qo

for all ¢ € L1(€). Next, for any ¢ € C§°(£2y) we have

—T(Vy,) = /ggopdx: /gggadx.

Q Q
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On the other hand, by known properties of mollification we find

~T(Vi) = ~T((V¢)) = - [ wVids,
Qo

The latter means that
Go = Vug

where u = u? — [u?]q, and

1
ullo, := — [ uldz.
oy = 57 /

By Poincare inequality
168l < cm, 5, 20) 9%lls20 < e, 5, 20) gl
Without loss of generality, we may assume that
ug — ug

in Ls(€p). And thus
g = Vug

in Qo.
Next, we take a sequence of domains such that €, € Q, Q) € Qyy; for
any natural k£ and
oo
Q=)
k=0

Now, let us described a required function u. We let u = ug in €2y. Then,
repeating the above procedure, we find a function u; € Ly(€2;) such that
g = Vuy in Q. It is easy to see that u1 — u = Cy on 5. Then we let
u=u'—Cyon Q\ Q. Obviously, g = Vu in Q; and u € L,(£2;). In the
same way, we define function u in €25 and so on. [J

We also can introduce the subspace lo;’;(Q) = [C(Q)]%® of the space
LX(2). In general, the following statement

{u € LK(Q) and [Jul| prq) = 0} = u =0
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is NOT true. To see that, let us consider a standard cut-off function ¢ €
C°(R™), having the following properties:
0<op(x)<1 xr € R",
ple)=1 zeB(1l), ¢@)=0 z¢B(2),

vr(z) = ¢(z/R).
Here, B(R) is a ball of radius R centered at the origin.

Lemma 1.3. .
1€ L3(RY).

ProoF
1
/\V2¢R|2dx = / |V2pp|Pdr < cﬁR:” -0
R3 B(2)\B(1)

as R — oo. UJ .
As usual, the equivalence classes are introduced in L3(€2) so that

U ~ U <~ ||U1 — UQHLISc(Q) =0.

Proposition 1.4. For bounded domains €2, the Friedrichs inequality is valid:

ullwr@y < cllullr@

for any u € C§°(Q2) with a positive constant independent of u, i.e.,

WHQ) = LE(Q).

1.2 Newtonian Potential

It is known that the fundamental solution to the Laplace equation is

1 1
E p—
(z) wpn(n — 2) |x|n=2
if n >3 and
1 1
E(z)=—1n
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if n = 2, where w,, is the volume of unit ball in R".
Given function f : R® — R, we define the Newtonian potential of f as
the following convolution:

u=Exf

ulz) = / E(x — ) f(y)dy.

R

Proposition 2.1. Let f € L,(R") with 1 < p < oo and w = Ex f. The
following statements are true:

() [ IV2uds < c(n,p) [ 1fPde,
R’!L RTL

(i4) u € [A(RY),

(i) Au=—f

in R™.

PROOF (i) follows from the theory of singular integrals. (iii) follows from
(i),(ii), and from the classical PDE theory.

Let us prove (ii), assuming that n > 3. By Lemma 1.1, there exists a
sequence f,, € C°(R™) such that f,, — f in L,(R™). Since supp f,, is a
compact set in R",

% C(m7i)
Vi, (z)| < T
for all z € R™, fori =0,1,2, for all m = 1,2, ..., and for some positive ¢(m, ).

Here, u,, = E % f,,.
We claim that .
U, € Lz(R").

Indeed, we have

/|V2(¢Rum — Up,)[Pdx < c[ / V2, |Pd+-
Rn

R™\ B(R)

1

1
— p P
+o / |V, |Pdz + T / |t | dx] <
B(2R)\B(R) B(2R)\B(R)
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1 R 1 R
Rp R(n—1p + R2p R(n—=2)p

<c / VU, [Pdz + C(m)

—0
R™\B(R)
as R — oo for each fixed m.
On the other hand, by (i), we have
V20 = V2uplpen < cllf = frnllprn — 0

as R — oo. This implies (ii). O
Particular cases
1. Let f(«/,2,) = —f(2/, —x,), where &’ = (z1, 22, ..., 2,,_1). Then

w(z' x,) = —u(x', —x,)

and u, u, = 0u/0x,, and U, are in L,1..(R™) that implies u(z’,0) = 0.
So, the Newtonian potential u solves the following Dirichlet problem in half-
space:

Au=—f (1.2.1)

in R? = {z = (2/,2,) : z, >0},
u(x’,0) =0

for any z’.

2. The same arguments show that if f(2/,z,) = f(2/, —x,) then u solves
the Neumann boundary value problem, i.e., it satisfies (1.2.1) and the Neu-
mann boundary condition

un(2',0) =0

for any z’.

1.3 Equation divu =b

We start with the simplest case (2 = R"™.

Proposition 3.1. Let 1 < s < oco. Given b € Ly(R"), there exists u €
2; (R™) with the following properties:

(i) divu="5

in R™,
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(i) IVullsge < c(s,n)|[b]]s .
PrOOF We let h = E'xb. By Proposition 2.1, Vi € z;(]R") If we let
u = —Vh, then, by the same statement, we have

IVullsgr = 1V2h]lszn < c(s, ) [[bl]s e

and
divuy = —divVh = —-Ah =b. O

In the case of the half-space, i.e., @ = R := {x = (2/,z3) : 2’ € R*, 23 >
0}, we have

Proposition 3.2. Let 1 < s < co. Given b € Ly(R"), there exists u €

o

Li(R™) with the following properties:

(1) divu =10
in RT,
(i) IVullsrr < c(s,n)|[b]sr -

Remark 3.3. The above vector-valued function u satisfies the homogeneous
boundary condition ul,,—o = 0 in the sense of traces in Sobolev spaces.

PROOF OF PROPOSITION 3.2 To show the essence of the matter, let us
consider a special case n = 3 and s = 2.
Let b € Cg°(RY) and b is the even extension of b to R*. Clearly, b €

C°(R3). Letting h = —E x b, we see that
Ah=b=b in R} hyly—0=0 (1.3.1)

and
Hv2h||2,Ri < cf[bllo e - (1.3.2)

The idea is to look for u in the form
u=Vh+rotA,
where A is unknown vector field. Obviously,

divu=Ah=0b 1in Ri.
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Equations for A is coming from condition u|,,—9 = 0 that leads to the fol-
lowing relations

rot A= —Vh
at 3 = 0. We are seeking A, satisfying additional assumptions:
A|a;3:0 = 0, A3 =0 in Ri
So, the main equations for A = (A, As,0) are:
Ans(2',0) = Bu(2) a=1,2,
where By (2') = ho(2,0) and By(a') = —h 1(2’,0) are known functions.
Now, we are going to exploit arguments, which are quite typical for the

theory of traces for functions from Sobolev spaces. This theory suggests to
seek A in the form:

2
Ay (', x3) azg/Ba o'+ y'as) K (y')dy',
R

where a function K € C§°(R?) is supposed to obey the following conditions:

Ki)=0 o ¢ B =o' eR: <1} [ K@)y -

Now, our aim to show that functions
uy = h+ Aaz,
Ug = h,2 - A173,

ug=hz+ Ao — Agy,

with the described above A, satisfy all the requirements. This can be done
by direct calculations.
Indeed,

A z() xg/ 97, (@' +y'z3)ys K (y')dy’ —i—/Ba(a:’—i—y’xg)K(y')dy’. (1.3.3)

RQ
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Observing that
0B, 0B, 1

0z5  Oys w3

and integrating by parts with respect ys, we can transform the right hand
side of (1.3.3) to the form

0
Aaae) == [ [Bala’ +3/20) = Buale)] 5 (0B )y’ +
R2 vo
+ / Ba(a' +y'ws) K (Y )dy'.
RQ
By the choice of K, this immediately implies A, 3(2",0) = B, (2'), a0 =1, 2.
Now, our aim is prove the estimate

IV Aallogs < cllbllamy,  a=1,2, (1.3.4)

for some universal constant c.
Let us demonstrate one fact from the theory of traces in Sobolev spaces.

Lemma 3.4. For any smooth function f : R3 — R, vanishing for sufficiently
large |z|, the following inequality is valid:

dz'dy’
T / / 160) = F/ O = < e / ViPde  (13.5)
B

L 2 (]R2
R2 R2

with some universal constant c.

PRrOOF By the shift in variables,

I£12, / F(a + 2.0) — F(o!,0)2da.
L%(RQ)

1P
Applying the triangle inequality, we find
[f(&"+2,0) = f(2" 0)] < [f(a"+ 2, [2]) = f(2', ')+

@'+ 2 ) = @+ 2 0) + [ f (@ 2]) = f(2, 0). (1.3.6)
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According to (1.3.6), we shall evaluate three integrals. In the first one, the
polar coordinates 2’ = (o cos ¢, psin ¢) are used so that:

/ 2 !
/, ,‘3/|f J2)) — (! 0) e =
— o / o’ / §|f<x',g> — J(,0)de.
R2

The right hand side of the latter inequality can be bounded from above with
the help of Hardy’s inequality

oo

[ #7160~ gtorar < ( / o (t) Pt

0

with 1 < p < co. Then

i 2
I, < 27r/dx’4/‘§f($/,g)‘ do < 87r/!Vf\2dx-
R2 0 e Ri_

Now, let us treat I, using the same arguments. As a result, we have

/‘ /’3/]]“3: + 2, |Z]) = f(a’' + 2/,0))?da’ =

/ e / WD = 5 0 a < sx [ (95

3
L

To estimate the third term, we exploit the following simple inequality

1
@+ 2,2 - / [ O a2t <
0

1
< \z’](/lvzf(:c'thz',]z’|)]2dt>2,
0
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which give us

/| /’3/|fx +2,12)) = f(&, |7])|Pde’ <

</|d"f|/dt/yv @+t |2 Pl =
/M/nyvmw

It remains to make the change of variables z’ = (o cos ¢, osin )

I3 < 27T/|Vf|2dx
R3

and complete our proof. [

Now, let us show that (1.3.5) is true for any function f of class C?, having
the decay
c

@) < o

(1.3.7)

where ¢ is a positive constant.
Denoting by B’(R) is the unit disk centered at the origin and letting
fr = for, where pp is a standard cut-off function, we have

/ If(xla 0) B f(y/a 0)|2dx'dy' —

7' —y'?
B/'(R) B'(R)
O ’.0)|?
-y
B/'(R) B'(R)
/wWﬂw+m [ ipars
R} (B(2R)\B(R))NES.

<c [ IVfPde+ <
_c/| fl x—i—R
]R3
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Passing to the limit as R — oo and using Fatou’s lemma, we establish (1.3.5).
Next, we observe that it is sufficient to show

IV2 Aullzs < eI VAC,0)] (13.8)

L?(R2)

Indeed, since
Vh < —~Z
‘ (:C)‘ —= |.T‘2

for |x| > 1 and, by (1.3.5) and by (1.3.2), one can conclude that

2

VR0l

< c|V?hllyps < cllbllaps -

M)

Then statement (ii) of Proposition 3.2 for this particular class of b follows.
Now, let us prove (1.3.8), directly working out the second derivatives of

A,
/ a / / a ! /
Aaps(a’,xg) = — / a—xﬂBa(l’ +vy 1'3)@(%[((34 ))dy'+
R2

a / / ! /
+/8—xﬂBa(fL’ +y'w3) K(y')dy'.

RQ
Obviously,
0 1

_Ba / / — _Ba / / -

oes (2" + y'xs) 9r; (' +y Ig)x3
Then .

S = Ausae) = 1 [ SBale' o/ 2 Kty ).
3R2

where

dBo (2, Y, 23) := Bao(2' + y'x3) — Bu(2')
and

Ks(y') = (0, K(Y)) 5y — Kp(y).

Now, we have

[sar<e [ [ar (o [ 3B m)1Kat)ay )
Ri 0 R2 3R2
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and, by Holder inequality,

I 1
/S2dx < c/dxg,/dxlﬁ/|K5(zl)|dz'/|5Ba(x',y',m3)|2|K5(y')|dy’ <
R3 0 R? *R2 R?

[d
< [1Ka)lay [ 22 [1Bula + /o) = Bola!) P
R2 0 3 R2

Introducing polar coordinates y' = p(cos ¢, sin ¢), we find

1 27 o0
d
/S’de < c//gdgdgp/%/|Ba(x’+g(coscp,sing0)x3) — Bo(2)*da’.
R} 00 0 7 Re

If we set 2/ = x3(cos @, sin ), then

/SQda:<c/ng/‘/|3/]B 2’ + 2'0) — Bo(2)|?dx’.

Letting ¢y = 2’0, we show

B |2

R? R2 |y i
Ba(2') = BaW)I* )
< // TP W < VACOIR, - (1.3.9)

R2 R2

With the remaining second derivatives, we proceed as follows:

Ags(z) = / (Bala' + y's) — Bala)) Ky,

Z3
R2

where

K(y) = (W (ys K(¥).6) i — (5K (W) s
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and
1

Aagn(@) = - [ (Bala! +4/0) = Bale)(K W)

R2

So, the same arguments as above leads to the required bound

[+ A2 )i < VRCOR,

3
R+

Hence, inequality (1.3.8) for smooth compactly supported b is proven.
Now, our aim is to show

u € LH(R?) (1.3.10)

for any b € Cg°(R%). The proof of (1.3.10) consists of two parts.

STEP 1. Let us show first that Vi € Ly(R3). Indeed, since V?h €
Ly(R3), Vh € Ly(By(1)), where By (R) := {z € B(R) : x5 > 0}. We know
that )

c
h < —=
vk < 2

for |z| > 1. So,

R
/|Vh|2dx§ / Vh|dz + / |Vh|2dx§...+c(b)/g
1

Bi(R) By(1) By (R)\B+(1)

< ¢(b)

QL
3IS

for any R > 1.
STEP 2. Let us show VA, € Ly(R%). We know

Aus(z) = / Ba(@' + yfes) Koly')dy.

R2
where
Ko(y') = K() = (ys K()) -
Let a = 1. Then B;(2') = ho(2’,0) and

0 1
B / / — _h / / O .
1($ +yx3> ayQ (x +y3§'3, )1:3
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So,

1 / ! / a / /
Ay s(x) = o (h(z" +y'x3,0) — h(2, 0))8—3&1(0(31 )dy'.
R2

Repeating the evaluation of A, g3, we find

2
< . .
[ A < el y
R}
Since |h(x)| < ¢(b)/|x| for |z| > 1, one can derive with the help of Lemma
3.4 the inequality

5Ol 3 gy < €l Tl

I3
3 (R(2
This means that, by Step 1, A; 3 € LQ(R?;_). The same is true for Ay 3. The
proof of the fact that A, 3 € Ly(R3) is an exercise. So, it has been proven
that
u € Ly(R3) (1.3.11)
provided b € C§°(R%).
Now, we wish to finish the proof of (1.3.10). Letting ug = @gru, we
observe that

1
/ IV(u —up)|*de < c / |Vu|*dx + s / lu|*dz — 0
R3

R3\By (R) By (2R)\B+(R)

as R — oo.

The function ug is not compactly supported in ]Ri and we need to cut
it in the direction of x3. To this end, let us introduce the following cut-off
function: x(f) =0if —co <t <¢e/2, x(t) =2(t —¢/2)/eif /2 <t < e, and
x(t) =1if t > e. Considering ug.(x) = ug(x)x(zs), we have

&€ 1 15
/|V(uR—uR7€)|2dx < c/dx3/|VuR|2dm’+—Q/dx'/|u3|2dx3.
£
R3 0 R2 R2 0

The first integrals on the right hand side of the last inequality tends to zero
as € — 0. To show that the second term does the same, we are going to use
two facts. Firstly, ug(2’,0) = 0 and secondly, by the Friedreich inequality,

€ 5
2

/|uR(x',x3)|2dx3 SCSQ/‘(%?)uR(x’,:Cg) drs.

0 0
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So, combining the latter inequalities, we show that

V(ug —uge)|?dr < c Vug|?dz — 0
V( <)l
R3 0 R2

as ¢ — 0 for each fixed R > 0.
It remains to mollify ug.. The mollification (ug.), belongs to C5°(R3)
for 0 <7 < 7(R,¢e) and

/|V(UR,E - (uR75)7)|2d1’ — O

3
L

as 7 — 0 for each fixed R and e. So, (1.3.10) is proven.

Now, we are going to extend our result to functions b € Ly(R3). Given
b € Ly(R3), there exists b™ € C(R%) such that |[b™ — bllags — 0 as

m — 0o. We know that there is u(™ € Z%(Ri) having the properties:
div u(™ = pm)
in R? and
||Vu(m)”2,Ri < C||b(m)||2,Ri-

Moreover, by construction
IVul™ — Vu®|yps < 0™ — bl ps

which implies that
ul™ —
in L}(R?%). O

Let us mention some consequences and generalizations.

Theorem 3.5. Let Q) C R"™ be a bounded domain with Lipschitz boundary,
1 <p<oo, and let

L,(Q) :={be L,(Q) : /b(x)dx = 0}.

Q
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Then, for any b € L,(S2), there exists u € lo;é(Q) with the following properties:
divu =b

mn Q and
[Vullp.a < clp,n, Q)[0]lp.0-

Remark 3.6. For bounded domain domains, we need the restriction on b:

/b(x)dx = 0.

Q
It is a kind of compatibility condition.

Remark 3.7. Proof of Theorem 3.5 is based on Propositions 3.1 and 3.2,
decomposition of the unity, and changes of coordinates. It is quite involved
but does not contain new ideas.

Remark 3.8. There is a different approach to the proof of Theorem 3.5,
which is due to Bogovkii. It is simpler than the proof above. But it relies
upon the theory of singular integrals.

1.4 Necas Imbedding Theorem

We start this section with recalling known facts related to duality between
function spaces. For are a given Banach space V, let V'’ be its dual one,
i.e., the space of all bounded linear functionals on V. Very often, we need
to identify V' with a particular function space. The choice might depend on
the problem under consideration. There is a relatively general construction
that is very popular in the theory of evolution problems. To describe it, let
us state the corresponding standing assumptions. We are given a reflexive
Banach space V' with the norm || - ||y and a Hilbert space with the scalar
product (-, -). It is supposed that V' is continuously imbedded into H, i.e.,
there exists a constant ¢ such that ||v||g = \/(v,v) < ¢||v]|y for any v € V
and let V' be dense in H.

As usual, we identify H’ with H itself, i.e., H' = H (in usual functional
analysis sense). Now let us f € H, then v — (f,v) is a bounded linear
functional on V' and thus there exists v, € V' with the properties

< v}, v >=(f,v) YoeV



22 CHAPTER 1. PRELIMINARIES

and
[l <cllflu VfeH.

So, we have a bounded linear operator 7 : H — V'’ (one-to-one by density)
defined by the identity 7f = v} for f € H.

Obviously, 7(H) is a linear manifold V’. Moreover, it is dense in V',
To see that it is true, assume it is not, i.e., there exists vy € V’ but v} ¢
[7(H)]V'. By the Hahn-Banach theorem, there exists v” € V" := (V') with
the properties < v” v >= 1 and < v”,v' >= 0 for any v' € 7(H). Since
V' is reflexive, there should be v € V so that < v”,v" >=< v/,v > for any
v" € V'. This gives us: < vp,v >= 1 and < v}, v >= (f,v) = 0 for any
f € H. Therefore, v = 0 and we get a contradiction. The latter allows us to
identify V'’ with the closure of 7(H) in V’. But we can go further and identify
duality relation between V' and V' with the scalar product (-,-) on H. Very
often, we call such an identification of V'’ the space dual to V' relative to the
Hilbert space H.

So, under our standing assumptions, v’ € V' means that there exists a
sequence sequence f,, € H such that

sup{[(fx = fu, 0)| = [[olly =1} =0

as k,n — oo and (v',v) is just notation for klim (fr,v) that exists for all
—00

v € V. Moreover,
10|y = sup{|(v',0)] = [lvllv = 1}

° /
We let us denote by L () an identification of the space ( L}n,(Q)) ac-
cording to the aforesaid scheme with V' = 2,{,(9) and H = Ly(Q).

Theorem 4.1. Let 1 < r < oo and let Q) be a domain in R™. Assume that
that a distribution p, defined in €, has the property:

Vp e LH(Q).

The following statements are valid:

(1) p € Ly1oc(2) and for any Q' € Q there exists a constant c(r,n, Y, Q) such
that

/|p —al"de < || Vpl 1 g,
Q/
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for some constant a;

(i) if @ = R™ or RY, then p € L.(Q) and there exists a constant c(r,n) such
that

[ s < ol
Q

(111) if Q is a bounded Lipschitz domain, then p € L.(2) and there exists a
constant c(r,n, Q) such that

[ p=alds < 9ol
Q

for some constant a.

ProOoOF
(i) Without less of generality, we may assume that a bounded domain €’ has
Lipschitz boundary. We claim that there exists a constant ¢(r,n, ', ) such
that
| <p,q>| < cKlq|r o (1.4.1)

for any ¢ € C3° (') with [g]or = 0. The latter would imply that p is a regular
distribution. Here, the following notion is used:

K = HVPHL;l(Q)

and

1
[q]w = m/cz(l’)dl’-

By Theorem 3.5, there exists u € 27%,(9') such that
divu =gq

in ' and
[Vullr o < e(r,n, Q) lqll o

Functions v and ¢ are supposed to be extended by zero outside €2'. Let us
mollify u in a standard way

(w)(z) = / wol — yuly)dy = / wol — y)uly)dy

Q/ R"
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with the help of a smooth mollifier w,. So, (u), € C§°(f2) for 0 < p <
00(€Y, Q). Moreover, we know that

V(u), = (Vu),

and thus
div (u)g = (q)Qv
[V(w)ollrr o < [[Vulla < cllgll

by the known mollification properties.
Now, we have (in the sense of distributions)

< Vp, (u), >=— < p,div (u), >= — < p,(q), >,
which implies
| <, (@) > | S K|IV(u)ollra < cKllqllm -

It worthy to notice that there exists a compact K such that Q' C K C Q,
supp V*(q), and supp V¥q belong to K, and

V*(g)o — V¥
uniformly in K for any k£ = 0,1, ... as ¢ — 0 and thus
<p (@) >—><p,q>

as ¢ — 0. Tending ¢ — 0, we then find (1.4.1).
It follows from Banach and Riesz theorems that there exist P € L,(§Y)
such that || P||,q < c¢K and

<p,qg>= /qux
Q/

for any ¢ € C§°(€Y') with [g]or = 0.

Now, let us test the latter identity with ¢ = divw for an arbitrary u €
Ce(€Y) (as usual all the functions are extended by zero to the whole domain
). As a result, we have

< Vp,u>=— < p,divu >= —/Pdivudm.

Q/
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This means that V(p|or — P) = 0. And thus, by Theorem 1.2, p — P =
constant on €. So, part (i) is proven.
(ii) According to (i), our distribution v is regular and, therefore,

<pg>= / p(2)q(z)de
Q

for any ¢ € C§°(Q).
Given ¢ € C§°(2), we find u € Zi/(Q) such that divu = ¢ in 2 and

IVullvo < cllgllva

By the definition of 21{,(9), there exists a sequence u(™ € C5°(€2) such that
Vu™ — Vu in L,.(£2)

and thus
¢"™ =dive™ = ¢  in L.(Q)

as m — oo. Then, as it is pointed out above, we should have

< Vp,u™ >= — /pdiv u™dr = — /pq(m)dx < K || Vu™ ||, q.

Q Q

Passing to the limit, we find the estimate

~ [ bads < K alo, (1.42)
Q

which allows us to state that
Ipllra < cK.

(iii) Here, it is enough to repeat the same arguments as in (i), replacing
with €2, under the additional restriction on ¢ that is [¢]o = 0. As a result, we
arrive at estimate (1.4.2), being valid for any ¢ € C5°(Q2) provided [g]q = 0.
Repeating arguments, used at the end of the proof of the statement (i), we
conclude that there exists P € L,.(2) such that || P/, <cK and P=p—a
for some constant a. [J
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1.5 Spaces of Solenoidal Vector Fields

First, we introduce the set of all smooth compactly supported in 2 vector
fields, which are divergence free there,

Coo(Q) :=={v € Cg°(Q) : dive =0 inQ}.
Next, for 1 < r < oo, we define the following ”energy” spaces
JH(Q) = [CRa (@)@

and

In general,

For r = 2, we use abbreviations:
V(Q) = 5(Q),  V(Q) = Ty
Here, it is an example of a domain in R3
Q, =R*\ {x = (0,39, 73), 25 + 23 > 1},
for which R
V(9. \ V(2.) £ 0.
This example is due to J. Heywood.
Proposition 5.1. V(Q) = V(Q) if Q =R" or R?, n =2, 3.
Proof of Proposition 5.1 is based upon two Leray’s inequalities.

Lemma 5.2. Ifn =2, then

degll / |Vw(z)Pdz

|2 In* [
|z|>1 |z[>1

for any w € C§°(|z| > 1).

If n =3, then
2

[ER] yl
R3

for any w € C(R3) and for any y € R3.
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PROOF Let n = 2. Integration by parts gives:

Ty, 5 Ty, wl?
2 ww —dl’: w —de‘: —dl‘<
/ eIzl / FeP) el P 2]
|z|>1

|z[>1 |z|>1
< 2( ﬁdx>é< |Vw(x)|2dx>é
- |2 In* [
[z|>1 |z|>1

The case n = 3 is an exercise [].

PROOF OF PROPOSITION 5.1 We shall prove the statement for n = 2.
The case n = 3 is treated in a similar way and can be regarded as a good
exercise.

Let 2 = R%. We introduce a special cut-off function ¢ such that ¢g(z) =
Lif |z| < R, Ygr(z) =0 if |z| > R3, and

_ —Inln|z|+Inln R?
 —InlnR+1Inln R3

Yr(z)

if R <lz] <R
Given v € V(R?), let

Ip = / |V (v — vibg)|*dr = / V(1 —¢gr)v*de.
Q

Q

Assuming that R > 3, we have

2
Ir<c / de +c / |Vo|*d. (1.5.1)

|22 In” ||

R<|z|<R? R3\B(R)
! v(x)]?
v(x
dr < oo 1.5.2
P’ 7 152)
3<|z|

is valid, then the right hand side of (5.2) tends to zero as R — oo and thus
VR — v (1.5.3)

in L}(R?).
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Remark 5.3. Show that 1 € zé(RQ)

In order to prove the validity of (1.5.2), we find a sequence v*) € C§°(R?)
such that
Vot = Vo
in Ly(R?) and
o™ — o
a.e. in R? and sequence v® is bounded in Ly(B(3)). Now, let a smooth

cut-off function n satisfy the properties: n(z) = 0 if || < 2 and n(z) = 1 if
|z| > 3. Then, by Leray’s inequality, we have

PP, o [ PR

|2 In* |z

<|z| <|x

Sc/ (Vo) 2dz + ¢ / 0™ 2 dz.

1<|z| 3>|z|

The right hand side of the latter inequality is bounded uniformly in k. And
then (1.5.2) follows from Fatou’s lemma. So, (1.5.3) is proven.
Unfortunately, vig is not divergence free, in fact, div (v¢yg) = v - Vi),
and we should correct it with he help of results of the previous section. We
apply Theorem 3.5 in the ball B(R?), which reads that there exists a function

wr € Ly(B(R%) = Wi(B(R?))

such that
divwg = v - Vyg
in B(R?) and
[Vwell2,pre) < cllv - Vrl2prs)-
It is worthy to notice that a constant c in the latter inequality is independent

of v and of R (by scaling). We extend wg by zero to the whole R%. By the
choice of cut-off function g, we have

[o(2)]”

dz — 0
]2 In? ||

IVl < c /

R<|z|<R3
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as R — oo.
We let ug = v - Vg — wgr. New function has two important properties:
ugr = 0 out of B(R?), divug = 0 in R? and

V(v = ug)ll2rz < cl|V(1 = ¢r)vllp2 + ¢ Vwgllsp = 0

as R — oo.
On the other hand, the mollification (ug). € C5%(R?) and

||V(UR)5 — VURHQ,R? —0

as € — 0 for each fixed R > 0. So, the case Q = R? is done.
Let Q = R2. Given u € L3(R%), denote by @ the extension of u by zero

to the whole R2. Obviously, @ € LL(R?). For A > 0, uy is made of u by shift
in direction of xo: uy = (xy, xo — 2X). This function is zero if z5 < 2\ and
we know that

/ Vi — Vuy|[*dr = / |Vu — Vuy[*dz — 0
R? R

as A — 0.
Next, we introduce the new function vg, = u\tgr ., where Ypg(z) =
wR<$1, Lo — 2)\) Then

/|VUR,)\ - VU)\|2dl‘ = / |VUR7)\ - VU)\|2dZL’ =

R2 R%
/ IV (Yrit — @)|*dz — 0
RQ

as R — oo for fixed A > 0 as
i (x)]?
—— = _dx < oo.
/ || ln2 |:17| / |£B|21I12 ||
3<lal {3<al}nR2

One should correct the divergence of ug  as in the first part. We state that

there exists .
wg\ € Ly(B((0,2)), R?)),
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where B, ((0,2)X),r) = {z € B((0,2\),r) : x3 > 2\}, such that
div WRA = U - VZZJR,A
in B, ((0,2)\), R?) and

IVwrll2,B, (020,83 < cllun - VURA2,B, ((0,2)),8%)

with a constant ¢ independent of R and .

As in the previous case, we extend wg , to the whole R? by zero and then
let

UR N = URX — WR -
What we know about this function up ) is as follows:
VUJR)\ — VUR
in L?(R%) as A — 0,
divug =0
in R,
UR N = 0

out of semi-disk B ((0,2\), R?),
VUR’)\ € LQ(R2)

Then it remain to take the mollification (ug ). that belongs to Cg%(R?) for
sufficiently small ¢, for example, 0 < ¢ < A. The well-known property of the
mollification

V(UR,)\)E — VURJ\ in LQ(Ri)

completes the proof. [J
In fact, we have the following statement

Theorem 5.4. Let 1 < m < oo and let 2 be R, or R, or a bounded domain
with Lipschitz boundary. Then

o

Tn() = J5,(9).

PROOF See next section.
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1.6 Linear Functionals Vanishing on Diver-
gence Free Vector Fields

Proposition 6.1. Let Q@ = R" or R} or be a bounded Lipschitz domain.

Assume that 1 < s < oo. Let, further, I : L}(Q) — R be a linear functional
having the following properties:

[(v)] < e[ Vollsq

for any v € zi(Q) and
l(v) =0

for any v e JH(Q).
Then there exists a function p € Ly(Q), s = s/(s — 1), such that

l(v) = /pdiv vdx

Q

for any v € z;(Q)

PROOF Let us consider case {1 = R" or R’}.
We define a linear functional G : Lg(§2) — R as follows. Given ¢ € L4(£2),

take any u € z;(Q) such that divu = ¢ and let G(q) = l(u). By Proposition
3.2, there is at least one uw with this property. Next, one should show that

functional G is well-defined, i.e., for any v € z;(Q) with divev = ¢, we have
[(u) = Il(v). Indeed, v —v € JX(2) and by our assumptions I(u —v) = 0 =

l(u) —U(v).

It is not a difficult exercise to verify that G is linear functional.

Now, we can select a special u € 10};(9), for which we have the identity
divu = ¢ and the estimate

[Vullsa < CHQHS,Q-
The latter implies

G(q) = l(u) < cl[Vullsa < cllgllso



32 CHAPTER 1. PRELIMINARIES

for any g € Ls(Q2). So, the functional G is bounded on L(2) and by Riesz
theorem, there exists p € Ly () such that

awzfmm

Q

for any ¢ € Ls(2). Now, for any u € L (Q2), we have

l(u) = G(divu) / pdiv udz.
Q

For bounded Lipschitz domains, one should replace the space L¢(£2) with
its subspace

Ly(Q) ={g € Ly() : [glo =0}
and use the same arguments as above. [

However, we can assume that our functional vanish on J1(€) only.

Theorem 6.2. Let Q) = R" or R} or be a bounded Lipschitz domain. Assume

that 1 < s < oo. Let, further, [ : zi(Q) — R be a linear functional having

the following properties:
L(w)] < || Vollso

for any v € z;(Q) and
[(v) =0

for any v € };(Q)
Then there exists a function p € Ly (), s = s/(s — 1), such that

[(v) = /pdivvd:c

Q

for any v € zi(Q)

PROOF Indeed, let us consider a sequence of bounded smooth domains
Qu, m = 1,2, ..., with the following properties:

Qi C Qi1
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and
o

0= U 0,
m=1

Given v € z;(Qm), define v = v in Q,, and v™ = 0 outside €2,,. Obvi-

ously, v™ € 2;(9) We also define a linear functional 1, : lo}i(ﬂm) — R as
follows:

L) == U(vy,)
for any € E&(Qm) It is a bounded functional, i.e.,
(V)] < IVY[ls.0.
with a constant ¢ independent of m.

By mollification, we can show the following fact: if v € J(€,,), then

V"€ j;(Q) This immediately implies that I,,(v) = 0 for any v € JL(Qy).
According to Proposition 6.1, there exists p,, € Ly (£2,,) such that

(V) = /pmdivvdx

Qm

for any v € zi(Qm) Obviously, p,, is defined up to an arbitrary constant.
Moreover, py,+1 — pm = ¢(m) = constant in Q,, if k > m. So, we can change
pm+1 adding a constant to achieve the identity p,,+1 = pm in Q,,. This
allow us to introduce a function p € Ly ,.(£2) so that p = p,, on Q,,. By
construction, it satisfies identity

l(v) = /pdivvdx, (1.6.1)
Q

and the inequality
l(v) < cf[Vollsa

for any v € C3°(€2), which, by definition, means that Vp € L_'(Q2) and as it
follows from Theorem 4.1, p € Ly(2). If so, identity (1.6.1) can be extended

to all function v € z;(Q) by density arguments. [ A
PROOF OF THEOREM 5.4 Indeed, assume that there exists v, € J1(Q)

but v, ¢ 3;(9) By Banach theorem, there exists a functional

e (@)
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with the following properties:

and

for any v € 3;(9) By Theorem 6.2, there exists p € Ly (£2) such that

li(v) = /pdiv vdz

Q

for all v € lo;i(ﬂ) However,
li(vy) = /pdiv vedz =0
Q

since v, € J1(Q). This is a contradiction. ]

1.7 Helmholtz-Weyl Decomposition

Let .
J(Q) = [Cog ()=

and
G(Q) :=={v € La(;R™) : v = Vp for some distribution p}.

Remark 7.1. We know that if a distribution p € G(S)), then in general
P € Lojoc(R2). However, if Q2 is a bounded Lipschitz domain, then in fact
pE L2(Q>

Theorem 7.2. (Ladyzhenskaya) For any domain 2 € R",

La(Q) := J(Q) ® G(Q).

PROOF Obviously, our statement is equivalent to the following formula
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STEP 1 Let 2 be a bounded Lipschitz domain. It is easy to see that

G(Q) C (J()*,

/U-Vpdx:()

Q

since

for any p € G(2) and for any v € C§5(€2). Now, assume

o

u€ (J(Q)T

/u-vdx:()

Q

e, u € Ly(2) and

for any v € CgH(€2). By Poincaré inequality,

Z(v):/u-uda:g (/\uP)é(/va)é <

Q Q Q
< c(Ql[ull20lVoll2o

for any v € 2;(9) So, [ : zé(Q) = I/?/%(Q) — R is bounded and [(v) = 0 for
any v € j%(Q) =: V().
By Theorem 6.2, there exists p € Ly(€2) such that

l(v) = /pdivvda:

Q
for any v € z;(Q) Therefore, u = Vp and thus p € G(€2) and
(J(2)* € G(9).

STEP 2 We proceed is a similar way as in the proof of Theorem 6.2.
Consider a sequence of domains €2; with the properties: ; C €2;,; and

Q - [_OJ Qj,
j=1
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where (2; is a bounded Lipschitz domain.
Since v € Ly(2) = v € Lo(£;), we can state that, for any j,

where ‘ . A
W e J(y),  pY e Wi ().
We know that pU) is defined up to a constant, which is going to be fixed by

the condition
/ pWdr =0,

B
where B, is a fixed ball belonging to ;.
Here, we are going to make use of the following version of Poincaré’s
inequality in a bounded Lipschitz domain €2 containing the ball B,:

/|q| dr < (0 [/|Vq| dx+(/qu . (1.7.1)

A proof of (1.7.1) is based on standard compactness arguments and can be
regarded as a good exercise.
We further let 49 = u¥) in Q; and @) = 0 outside Q;. It is easy to

check that aV) € J(Q) and
19020 = ([t 20, < llv]lag0, < [[v]l20
and, hence, without loss of generality, we may assume that
@ oy

in Ly(€2) and
Next, by (1.7.1), we have for j > s

[ 9 < es) [ 1V Pde < s) ol
Qs Qs

Letting s = 1, we find a subsequence {j}}?2, so that
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in Ly(2;). Then we let s = 2 and select a subsequence {j2}2°, of {j1}2°,
such that

PO = py, VP — Vpy

in Ly(€2s). Obviously, ps = py in ;. Proceeding in the same way, we find a
a subsequence {jL}7°, of {ji '}, such that

in Ly(€Y). For the same reason, p; = p;—1 in €;_;. And so on.
Next, the function p, defined

P =D

in €, is well-defined. Using the celebrated diagonal Cantor process, we find
a subsequence pUs) such that

in Ly(w) for each w € Q. Moreover, we have the estimate

/]Vp|2dx§/]v|2dm
0

w

for any w € €. So, it is easy to deduce from here that p € G(£2).
Now, fix w € C5°(€2). We have

/v cwdr = /Vp(js) ~wdz + /u(js) ~wdz.
s Qjs Qjs

For sufficiently large s, suppw € €;, and thus for s > sg

/v~wdx: /Vp(js)-wdx—l— / ul) - wdz.

Jsq QJSO sto

Passing s — oo, we show that v = u + Vp. Orthogonality and uniqueness
can be proven in standard way (exercise). O
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1.8 Comments

The main aim for writing up Chapter I is to show author’s preferences how
the theory of functional spaces related to Navier-Stokes equations can be
developed. In our approach, the basic things are estimates of certain solutions
to the equation divu = f and their applications to the derivation of the Necas
embedding theorem. Each part of this theory can be given in either more
compact way or even in a different way. For example, in Section 3, one could
apply very nice Bogovskii’s approach, see [1], based on the theory of singular
integrals. For more generic and detailed investigation of spaces arising in the
Navier-Stokes theory, we refer the reader to the monographs [29], [68], and
[17].



Chapter 2

Linear Stationary Problem

2.1 Existence and Uniqueness of Weak Solu-
tions

Let us consider the Dirichlet problem for the Stokes system

—Au+Vp=f
in €, (2.1.1)
divu=0

u’ag =0 (2.1.2)

and if n = 3 and 2 is unbounded then u(z) — g as |z| — oo.
In what follows, we always consider the case

Uy = 0.
Let

(f,9) = / F(2)g(x)de.

If u and p are smooth, then, for any v € Cgy(2), integration by parts
gives the following identity:

/(—Au—i-Vp) cvdr = /Vu : Vodx = (Vu, Vo) = (f,v),
Q

Q

which shows how weak solutions can be defined.

39
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Let us list our standing assumptions: n = 2 or 3 and
feLy'(Q).

Definition 1.1. A function u € V(Q) is called a weak solution to boundary
value problem (2.1.1) and (2.1.2) if and only if

(Vu, Vo) = (f,v)
for any v € C55(Q).

Remark 1.2. Boundary conditions are understood in the sense of trace, see

the definition of spaces 2;(9) and V(Q) in Sections 1 and 5 of Chapter I. If
Q2 is unbounded and n = 3, then condition u(x) — 0 as || — oo holds in the

following sense:
1 1
(/|u|6dx>6 < c</|Vu|2dx>2.
Q Q

Lemma 1.3. (Existence). Given f, there exist at least one weak solution to
boundary value problem (2.1.1) and (2.1.2) that satisfies the estimate

IVullao < 1Ly ()

~ PROOF It is easy to see that [u,v] = (Vu,Vv) is a scalar product in
V(§2). On the hand, I(v) = (f,v) defines the linear functional on V' (2) that
is bounded:

) 1Sl @0l g

Now, the required existence is an easy consequence of the Banach extension
theorem and Riesz representation theorem. []

Lemma 1.4. (Uniqueness). Assume in addition that
V(Q) =V(Q). (2.1.3)
Then the weak solution to (2.1.1) and (2.1.2) is unique.

PROOF Assume that there are two different solutions u' and w?. Then

(V(u' —u?), Vo) =0
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for and v € Cg5(€2) and, by assumption (2.1.3),
IV (u' = u?)[|2.0 = 0.

For n = 3, this immediately implies u' = u?. This is also true if n = 2 and
Q0 #R2 If n =2 and Q = R?, the uniqueness takes place in the equivalence
classes, i.e., u! —u? € [0]. [0] consists of functions that are constant in R
O

To recover the pressure, let us assume that () satisfies conditions of The-
orem 6.2 of Chapter I and consider the following linear functional

l(v) = (Vu,Vv) — (f,v).

It is bounded on 2;(9) and vanishes on V(). By Theorem 6.2 of Chapter
I, there exists a function p € L*(€) such that

(Vu, Vo) — (f,v) = (p,div o)

for any v € L3(Q2). In other words, functions u and p satisfy the Stokes
system in the sense of distributions. [J

2.2 Coercive Estimates

Proposition 2.1. Let ) be a domain with smooth boundary (2 = R™ or R"
or bounded domain). Let functions

f € LQ(Q>7 g€ WQI(Q)7 u € V(Q)7 pE L2(Q)7
with [gla = 0 if Q is bounded, satisfy the nonhomogeneous Stokes system
—Au+Vp=f
in Q.
divu=g
Then V*u,Vp € Ly(Q) and the coercive estimate
IV2ullao + [ Vollao < c(n, Q)(IVgl20 + | fll20)

holds.
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PrRoOOF To demonstrate the essence of the matter, we restrict ourselves
to the case 2 = R3.

STEP 1 Here, we are going to estimate tangential derivatives of u, i.e.,
derivatives with respect to o, o = 1,2. Let h = (hy, he,0) be a vector in R?
and Ay f(x) := f(x 4+ h) — f(z). We have

—AAhU + VAhp = Ahf

div Apu = Apg

with Apu € V(RY). According to Proposition 3.2 of Chapter I, there exists
wy, € V(RY) such that divwy, = Apg and

IVwnllzzs < cl[Angllors

with a constant ¢ independent of h. Then the previous system can be trans-
formed to the following form:

—A(Ahu — ’LUh> + VAhp = Ahf + Awh € Lz_l(Ri)
in Ri.
div (Apu —wp) =0

From the first equation of the above system, it follows that
IV(Apu — wh)llarz < 1A + Awn[ 21 gs

Now, our aim is to evaluate the right hand side of the latter inequality.
By the definition, we have

1
m”Ahf"‘ Awp|| =1 gy =

= sup

/Ahf vdxr + — /Awh-vda:: v € CP(R3), [Vllg gz < 1} =

7] 7]
RB
1 1
:sup{ W/f Ahvdx—m/th:Vvdx: } <
RS
R3.

1 X N
< [ fll2rs sup{m(/mm?daz) : v € CF(RY), [|Vlazs < 1}+
RB



2.2. COERCIVE ESTIMATES 43

1 1
WvathRi < | fllors + WHthHz,Ri-

In the last line, there has been used the following fact (exercise)

+

Sup{i</|Ahv|2dx)é ;v € C°(RY), [Vollgrs < 1} <1.

A
R
So, we have
1 1
TV @mlasy < | Ifllosy + 1 Dnglass |-

Tending h to zero, we find the bound for tangential derivatives of v
IVtallps < cl,

where o = 1,2 and
I'=|fllarz + IVgllars -

STEP 2 Let us start with evaluation of terms w333 and p3. usz33 can be
estimated simply with the help of the equation divu = u,,o + ug3 = 0. This
gives US Uz 33 = —Uq 3 and thus

HU3,33H27R1 <cl.

As to the second term, the above estimate, the equation p 3 = f5+ Aug, and
bounds for tangential derivatives lead to the inequality

”p,S”z,Ri < cl.

Next, it is easy to verify (exercise) that:

g€ Ly(Q) = HVQHLgl(Q) < cllgllzae)-

With this observation, we shall estimate tangential derivatives of the pressure
p. Indeed, by the Stokes equations p,, o = 1,2, we have p, = fo, + Du,
and thus

Pag = fa,,B + Ui = fa,ﬁ + (ua,iﬁ),i S L2_1(R3_)
and
Pas = a0+ Usjia = fa.0+ (Usia),i € Lgl(Ri).
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So, by the aforesaid observation and by the latter estimates, we can conclude
that

VDol gy <l
On the other hand, by Theorem 4.1 of Chapter I,
Hp,ocHQ,Ri < C||Vp,a||L;1(R3+) <cl.
So, the full gradient of the pressure p obeys the estimate
Hvl)Hz,Ri <cl.

The remaining part of the second derivatives can be estimated with the
help of the equation u, 33 = —ua g + P, — fo and previous bounds. Indeed,
we have

||V2U||2,Ri <cl

and this completes the proof. [

Remark 2.2. The Stokes system holds a.e. in € provided assumptions of
Proposition 2.1.

In fact, we have more general statement, which are called Cattabriga-
Solonnikov estimates.

Theorem 2.3. Assume that all assumptions of Proposition 2.1 are fulfilled.
Let Q) be a bounded domain with sufficiently smooth boundary. In addition,
assume that

fewrQ), gewr(Q)
with [glo = 0 and with integer k. Then

IV2ullweq) + [ Vollwe@y < cln,r k, Q) || fllwe@y + IV llwrey |-

2.3 Local Regularity
Proposition 3.1. Assume that we are given functions

veWS(By), q€Ly(By), fe€LyBy), g€Wy(By),
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satisfying the stokes system
—Av+Vq=f
in By

divv =g

and the boundary condition
U|z3:0 = 0.

Then, for any T €0, 1],
V?v,Vq € Ly(By(7))

and the following estimate is valid:

IV*0ll2, 5.7 + [ Vall2.,r) < e(7) [Hsz,B+ + llglle,, +

Hlglhwy o+ Wllwys, |

PROOF Let a cut-off function ¢ € C5°(R3) possess the properties: 0 <
¢ <1, ¢ =1in B(7), and ¢ = 0 outside B(1). Introducing new functions
u = v and p = pq, we can verify that they satisfy the following system:

—Au+Vp=f=q¢f —2VoVy —vAp+ ¢V € Ly(R?)
in Ri,
divo=g=pg+v- Ve W} (R})

By assumptions, u € [i%(]Ri) and p € Ly(R?) and thus we are in a position
to apply Proposition 2.1, which reads that V?u, Vp € LQ(Ri) and

IV2ulloms + IVPllags < c[IV3llagy + 1l |

Then all the statements of Proposition 3.1 follow. [
The statement below can be proven in the same way as Proposition 3.2.

Proposition 3.2. Assume that we are given functions

UEW;(B)? q€L2<B)7 fELQ(B)v gEW;(B)a
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satisfying
—Av+Vqg=f
in B.
divv=g

Then, for any T €0, 1],
V?v,Vq € Ly(B(1))

and the following estimate is valid:

1902y + [ Valle) < ()1l + s+
+lgllwzs + lolwa)-

2.4 Further Local Regularity Results, n = 2,3

Proposition 4.1. Assume that a divergence free vector field v € Wy (B)
obeys the identity

/Vv : Vwdz =0
B
for any w € Cg4(B). Then

sup |Vo(r)|? gc(n)/]Vdex.
B

z€B(1/2)

PROOF As explained earlier, one can introduce the pressure q € Lo(B)
with [¢]p = 0 such that

—Av+Vqg=0
in B
dive =0

in the sense of distributions and

lqll2.5 < cl|Vvll2,5. (2.4.1)
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STEP 1 Let v = v — [v]p and fix 1/2 < 7, < 1. By previous results, see
Proposition 3.2,

/ (|V2v|2+|Vq]2)dmSC(Tl,n)[/|17|2dx—|—/|VU|2dx—|—/|q|2dx]
B(r) B B B

According to Poincaré’s inequality

/|U|2d:v§c(n)/]Vv\2dx
B B

and to estimate (2.4.1),
/ (|V20]? + |Vq|*)dz < c(11,n) / V|’ dz = cl.
B(m1) B
STEP 2 Now, obviously, functions v and g obey the system

—A’U,k + Vq,k =0
in B(m)
divoy, =0

in the sense of distributions. Repeating the same arguments in two balls

B(7mp) and B(m) with 1/2 < 75 < 7y, we find

/ (IV?v,]? + |Vai)dz < e(r2, 71, 1) / (V202 + |Vq|*)dz < c(mo, 7, n) 1.

B(t2) B(71)

As a result,

! -1
/ (D19 + " (Vi) do < c(t,m)1.
=1

By T
Taking | = 3 and using Sobolev’s imbedding theorem, we show

sup (|Vo(@)* + [q(2)[*) < e(m)l. O
z€B(1/2)

The proof of the following statement is slightly more complicated but still
can be made along similar lines.
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Proposition 4.2. Assume that a divergence free vector field v € W} (By)
satisfies the boundary condition

U‘xs:() = O

and the identity
/ Vv : Vwdzr =0
By

for any w € C54(By). Then

2€B4(1/2)

sup  |Vo(x)|? §c(n)/!Vv|2dx.
By

ProOOF First, we recover the pressure ¢ € Lo(By) with [¢]p, = 0 such

that
—Av+Vqg=0

in B+
dive =0

in the sense of distributions with the estimate
lqll2,5, < cl[Vvllz,p, . (2.4.2)

Fix 1/2 <7 < 1. By Proposition 3.1, we have additional regularity so that

|09+ 1VaPyis < com) [ [lof + Vol + ja]de

By (1) By

Since v|,,—0 = 0, Poincaré type inequality ensures the bound:

and, by (2.4.2),

/ (|V*0]* + |Vq|*)dz < c(1,n) / Vo’ dz = cl.

By (1) By
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Tangential derivatives of v and ¢ satisfy the same equations and boundary
conditions:

—Av,+Vg, =0
in By
divv, =0
and
V.oles=0 = 0.

Assume that n =3 (n = 2 is an exercise). We have for 1/2 <175 <7

/ (IV?00l* + [V@al)dz < e(r1,n) / |Voul’dz = cl.
By (72) By

It remains to evaluate v; 333 and ¢33. To this end, we are going to exploit
the incompressibility condition: v3333 = —Va.a33 € La(By(72)), which gives
us the bound

|V3u3|%dx < cl.
By (72)
To estimate v, 333, @ = 1,2, one can make use of the equation
q3i = Avg;
and conclude that
/ |Vqs|?dx < cl.

By (72)

Now, we are going to use the equations —Av, 3+ ¢ 43 = 0 one more time and
find

Vo333 = —Ua,383 + Qas € La(B4(12)).
The latter implies
/ |Ua7333|2d5(] S C].

By (r2)
So, the final estimate

[T 4 1920 4 (9P 4 V2 + [Vl + faf o < cf
By (m2)
comes out and it implies

sup  |Vo(z)]?* < e(n)l. O
z€B1(1/2)
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2.5 Stokes Operator in Bounded Domains

In this section, we always assume that 2 € R™ has smooth boundary, and
n =2 or 3.
By Ladyzheskaya’s theorem, given f € L,(£2), there exists a unique f; €
3(9) such that
f=5h+Vq

with ¢ € W3(Q). We let Pf := fi. The operator P : Ly(Q2) — Lo(Q) is
called the Leray projector.
It is worthy to notice that the Dirichlet problem

—Au+Vp=f e LyQ)

in €,
divu =0
u|3Q = O
can be transformed in the following way
—NAu + Vpl = f1 € J(Q)
in €,
divu =0
ulagq = 0,

where fi = Pf and p; = p—q. So, without loss of generality, we always may

assume that the right hand side in the Stokes system belongs to J (Q).
We know that

IV2ull2.0 + VP20 < cll fll20-

We can also re-write the Dirichlet problem in the operator form
Ay = 1,

where

A:=PA: J(Q) = J(Q)

is unbounded operator with the domain of the definition

dom A := {fue Wi (Q): divu=0, ulpn=0} = :}%(Q) NW3(Q).
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It is called the Stokes operator.
The Stokes operator /A has the similar properties as the Laplace operator
under the Dirichlet boundary conditions. Let us list these properties:

(i) the Stokes operator has a discrete spectrum
—Au = M, u € 3(9), u # 0,
D<A < <. <A\ <., Am — 00,

(i) dim ker (—A — AI) is finite for each k € N,
(iii) the set {@g }72, of eigenvectors (eigenfunctions) of the Stokes operator is

an orthogonal basis in j(Q) so that (¢, ¢;) = dij,

(iv) the set {¢x}52, is an orthogonal system in :}%(Q) as well as in dom A so
that A\, = [[Verl3g = [[A¢k]l2.0,

(v)if f € j(Q), then || f[13. = > opey |ck|> < 0o, where ¢; = (f, ¢x), and the
series > -, cppp converges to f in Ly(12),

if fe 35(9), then |[VfI50 = > pey cr]* Ak < 0o and series Y77, crp
converges to f in W3 (Q),

if f € domA, then IVfl5a = D ney leel?AZ < oo and series Y77, cpop
converges to f in WZ(Q).

The proof of all above statements is based on the Hilbert-Shmidt theorem
and the compactness of the embedding of W (Q) into Ly(Q).

Let us describe extension of A to J 3(©). We know that
A T NWEQ) = J(Q)
is a bijection. Given u € :}%(Q) NW3(Q), we have
(—Au,v) = (=Au + Vp,v) = (—Au,v) = (Vu, Vo)

for any v € C&%(Q). From the latter identity, we immediately derive the
following estimate

A o < - o .
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Here, we use the identification of the dual space (:} 3(€))’ described in Section

4 of Chapter I with V' = 35(9) and H = j(Q) and in what follows we are
not going to use any special notation for this particular identification. Since

the space j%(Q) NWZ(Q) is dense in j%(Q), there exists a unique extension of
the Stokes operator A (denoted again by A) from 35(9) NWZ(Q) to j%(Q)
Moreover, we have the following statement:

Proposition 5.1. (i) The extension A : f]%(Q) — (f]%(Q))’ is a bijection.
(i) If f € (35(9))', then

115y = 2 Tl
k=1

where fr = (f, SOk)-

~ o ~

PROOF OF PROPOSITION 5.1 Obviously, A : J3(Q2) — A(J3(R)) is a
bijection. Our aim is to show that

A(T3(Q) = (J3(Q))". (2.5.1)

Lemma 5.2. (i)for f € (:}%(Q))’, we have
5, < 2/ M.
171, gy ;fk/ :

(i) if
Zfl?/)‘k < 00,
k=1

then the series Y -, frpr converges to f in (f];(Q))’, fe A(f];(Q)), and

1185y e = 22 T2/ e
k=1
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PROOF Fix an arbitrary function a € 35(9)), then

N
CLN = E arppr — a
k=1

(f,a)

= lim
N—o0 N—oo

N
(fvaN) = lim (f?aN> - A}gn kaak <
k=1

() (Zan) < (S am) 1vale.
k=1 k=1

k=1
The latter certainly implies (i)

[e)

(ii) First, let us show that the series -, frpy converges in (J
Indeed, let fy = SO~ | fuor and then, by (i),

If5 = fu

N
< 2/ = 0
LS D B

2
Jh@
(J3(2) Py

as M, N — 0.
We denote by f € (J3(2)) the sum of our series. Then, by (i),

— vl < 2/ — 0
17 = ilsyy < 2 S/
=N+1
and thus
o — o .
I/ (THQ) If (T

Now, we are going to prove that f € A(}%(Q)) Indeed, we have

N N
fv = fepr = A(ka%/%) = Auy,
i s

where

N
uy = Y frer/ M € J5(Q) NWF(Q).
k=1

1
2

93

(2))"



54 CHAPTER 2. LINEAR STATIONARY PROBLEM

By direct computations,

N
IVuny = Vunllso = > f2/M 0.
k=M+1
Then by definition of the extension of A,
Auy — Au = f

Next, we have

|.fw

20 _ Au 2
(T3©) l NH(

N
o = VU 2 — 2 )\ — 20 . |:|

Lemma 5.3.
R(INQ) = {f € (F3Q) 3 f2/0 < o0} = U.

PROOF According to Lemma 5.2 (ii), we have

U C AJHQ)).

Now, assume that f C A(}%(Q)), i.e., f=Aufor someu € j%(Q) Then
we have

fo = (Fron) = (Bu,n) = (u, A py) = Mg

Since
o0
IVul3o =) uii < oo,
k=1
we find
o
> f Ak < o
k=1

So, f € U and thus U € &(:}%(Q)) O
Now, we proceed with the proof of Proposition 5.1. We are done, if show
that

Fe ) = Y f2n < o
k=1
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Next, we let

N
a = fe/dn, N =) arpr.
k=1

Then
N N
IVaN 30 = larIVerll3o =D £/ M-
k=1 k=1

Next, we have

(f? a‘N) - ka?/)\k S Hf”(;%(ﬂ))/HVGNHZQ - ||f||(3%(ﬂ))/<2f’?/)\k)2

k=1 k=1

which implies

N
2 < 2O
>t < A1

2(Q))

for any N € R". This completes our proof of Proposition 5.1. [J

2.6 Comments

Chapter 2 contains standard results on linear stationary Stokes system in-
cluding the notion of Stokes operator in smooth bounded domains. In ad-
dition, various global and local interior and boundary regularity results are
discussed.
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Chapter 3

Non-Linear Stationary Problem

3.1 Existence of Weak Solutions

Consider the Dirichlet boundary value problem for the classical stationary
Navier-Stokes system

—vAu+u-Vu+Vp=f
in €, (3.1.1)
divu=20

and if n = 3 and Q is unbounded then u(x) — 0 as |z| — oco. Here, v is a
positive parameter called viscosity. We always assume that

fe L)

Definition 1.1. A function u € V(Q) is called a weak solution to boundary
value problem (3.1.1) and (3.1.2) if

V(Vu, Vo) = (u @ u, Vo) + (f, )
for any v € CgH(Q).
For n = 2 or 3, the imbedding theorems ensure that
u € L4,10C(Q).

So, the first term on the right hand side in the identity of Definition 1.1 is
well-defined.

57
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If domain €2 is bounded and has Lipschitz boundary, then
u e L4<Q)

Proposition 1.2. Let 2 be a bounded Lipschitz domain. Then boundary
value problem (3.1.1) and (3.1.2) has at least one weak solution.

PROOF Let us reduce our boundary value problem to a fixed point prob-
lem and try to apply the celebrated Leray-Schauder principle.

Theorem 1.3. (Leray-Schauder principle) Let X be a separable Banach
space, B : X — X be a continuous operator. Assume that the operator
B has the following additional properties:

(i) B is compact operator, i.e., the operator that maps bounded sets of
X into precompact sets in X, in other words, B is a completely continuous
operator;

(ii) all possible solutions to the equation

u = AB(u)

satisfy the inequality ||ul|x < R with R independent of A € [0, 1].
Then the operator B has at least one fized point u, i.e., u = B(u).

We define, as usual, [u,v] := (Vu, Vv) a scalar product on V() that
coincides with V' (€2) under assumptions of the proposition. It is not difficult
to prove that, for any w € V(Q),

divw x w € Ly1(9).

According to our results in Chapter II, given w € V (), there exists a unique
u € V() such that

v(Vu, Vo) = (v @ w, Vv) + (f,v)

for any v € V(). By Riesz representation theorem, we can define an oper-
ator A: V(Q) — V(Q) so that

[A(w),v] := (w x w, Vv)

and

[F,v] = (f,v).
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So, the previous identity can be re-written in the operator form

L) + F).

U = —
14

Then, the existence of weak solutions is equivalent to the existence of fixed
point of the latter operator equation.

First, let us show that A is a completely continuous operator. To this
end, we take an arbitrary weakly converging sequence such that

in V(§2). Then, the compactness of the imbedding of V(Q2) into L4(2) gives
us:
w® @ wh) = wew

in Ly(©2). From the main identity, it follows that

for any v € V(£2). It remains to plaque v = u® —u(™ into the latter relation
and make use of the fact that

Q’Q_>O

as k,m — 0o. So, complete continuity of A has been proven.
Now, we need to get estimates of all possible solutions to the equation

vuy = MA(uy) + F,
depending on a parameter A € [0, 1]. Since (uy ® uy, Vuy) = 0, we have
V[uy, un] = (i @ uy, V) + (f, wn) < ([l 0 Vuallzg

and thus ]
IVurllze < <1125 @)

The right hand side of the latter inequality is independent of A\ and thus
the existence of at least one fixed point follows from the Leray-Schauder
principle. [

Regarding the uniqueness of weak solutions, we have the following
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Lemma 1.4. Assume that all assumptions of Proposition 1.2 hold. Let in

addition 2 )
ce(n, Q
0—2||f||L;1(Q) <1,

where co(n, Q) is a constant in the inequality

0|10 < co(n, Q)| V20 (3.1.3)

for any v € Z%(Q)
Then, our boundary value problem (3.1.1) and (3.1.2) has a unique weak
solution.

PROOF Let u! and u? be two different solutions to boundary value prob-
lem (3.1.1), (3.1.2). Then, we have

viu' —u? vt —u?) = (v @ut — v’ @u?, V(u - ) =
(u' ® (u' —u®), V(u' —u?)) + ((u' =) x v, V(u' —u?)) =

= (' ® (' —u),V(u' —u”)) < [l laalu’ —u?iel V(u' —u?)|20.

Applying inequality (3.1.3) twice and taking into account the last estimate
in the proof of Proposition 1.2 for u!, i.e.,

1
IVallloo < —[1f 1150 (),

we find
V[V(u' —u?)30 < GlIVU' 5ol V(u' —u?)|5q <

2
¢
< 2NV = w)EallF i (-
This, by contradiction, implies the statement of the lemma. [J

Proposition 1.5. Assume that unbounded domain (2 satisfies the condition
V(Q) = V(Q). Then problem (3.1.1) and (3.1.2) has at least one weak
solution satisfying the estimate

1
IVullz < — [l £1251(5)-
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PROOF Let R > 1. Consider problem (3.1.1), (3.1.2) in Qg := B(R)N <.
By Proposition 1.2, there exists ur € V(£2r), satisfying the identity

V(VUR, VU)QR = (UR & UR, VU)QR + (fv U)QR

for any v € Cg3(Q2r). Extending ur by zero to the whole domain 2, we
notice that

1 1
IVurlz0 = IVurlzon < S [l (Qr) < Il (82).

The latter allows us to select a subsequence, still denoted by ug, with the
following properties:

VUR —~Vu
in Ly(£2) and
Up — U
in Lojoc(2). It remains to pass to the limits as R — oo in the identity for
up and show that

v(Vu, Vv) = (u® u, Vo) + (f,v)

for any v € C§5(€2), which means that u is a required weak solution. [
Now, the question is whether we can recover the pressure? We shall
consider two cases.
CASE 1 Here, we assume that 2 is a bounded domain with Lipschitz
boundary. Since, for v € C§°(Q),

[(v) :==v(Vu,Vv) — (u®u, Vv) — (f,v) <

< C[[Vullz0,

with a positive constant €' = C(v, [Vull2q, [[ulls.0, || f]| ;1 (€2)), and I(v) = 0
for any v € Cg(§2), we can use the same arguments as before to recover the
pressure. According to them, there exists p € Ly(€2) such that

v(Vu, Vo) = (u® u, Vv) + (f,v) + (p,divo)

for any v € C§°(Q2).
CASE 2 Here, we can use a familiar procedure, described in Section 1,
where

Q = G Qm, Qm C Qm+17

m=1
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and 2, is a bounded Lipschitz domain. Since v € Lyj0.(€2) implies u €
L4(€2,), one can state that there exists p,, € Lay(€2,) such that

v(Vu, Vo) = (u® u, Vo) + (f,v) + (pm, div o)

for any v € C§°(2,,). Moreover, we can fix p,, so that p,, = pm1 in Q,,. So,
now, if we introduce a function p, letting p = p,, in Q,,, then p € Ly o.(2)
and the following identity is valid:

v(Vu,Vv) = (u® u, Vo) + (f,v) + (p,divo)

for any v € C§°(Q).

3.2 Regularity of Weak Solutions

We need the following known auxiliary statement.

Lemma 2.1. Let a non-decreasing function ® :0, Ry] — R, satisfy the
following condition:

(o) < c((%)m—Fa)@(R) +COR? (3.2.1)

for any 0 < o < R < Ry, for some positive constants c¢,C,e > 0, and for
some m > s > 0.

There exist positive numbers €9 = €o(m, s,c) and ¢; = c1(m, s, c) such
that if € < €g, then

B(0) < &1 [(ﬁ) + CQS} (3.2.2)
Ry
for any 0 < o < Ry.
PROOF Let o =7TR, 0 <7 <1, 69 =7™. So, if € < &g, then
®(TR) < 27 ®(R) + CR® = 2c7"7 172 ®(R) + CR* <

< " ®(R) + CR".

If we select g so that 2¢7™2 < 1, then, after iterations, we have

m+s m-+s

FO(Ry) + CTRI(1 4777 + .. 412 kD) <

@(TkRo) <7k
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<

< M O(Ry) + TR}

m—s *

1—7"2

Given 0 < p < Ry, we find an integer number & such that
Ror" ! < o< Rot*.

Then
®(0) < B(r*Ry) < (%%)%(RO) + C(%)% 0

1—772

Lemma 2.2. Let a divergence free vector-valued function w € W3 (B(R)) and
a tensor-valued function F € L.(B(R)), with r > n = 3, satisfy the identity

/Vu Voudx = /u@u VUd:L“—I—/F YVudz

B(R B(R) B(R)

for any v € C54(B(R)).
Then,

/|Vu| dm<c Q +R /|u|6dx >/|Vu|2dx+
B(R)
2
—l—cRS(lf%)( / !F|Td:v)r

B(R)

for 0 < o < R. Here, c is a universal positive constant.

Lemma 2.3. Let a divergence free vector-valued function u € Wi (B, (R)),
with u|,—0 = 0, and a tensor-valued function F € L.(B.(R)), with r > n =
3, satisfy the identity

/Vu:Vvdx: / u®u: Vodx + / F : Vudzx

B (R) B (R) B (R)

for any v € Cg4(By(R)).
Then,

1

/|Vu|2dx§c(<}%>3+R( / |u|6dx>§> / Vu|2dz+

B1(e) B+ (R) B (R)
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—i—cR?’(l_%)( / |F’rd.:1:>3

By (R)

for 0 < o < R. Here, ¢ is a universal positive constant.

PROOF OF LEMMA 2.2 We know that divu ® u € Ly (B(R)). Hence,

there exist .
ip € J5(B(R)), Pr € Lo( B(R)),

with [pr|p(r)) = 0, so that

—vAtg + Vpr = —divu ® u — div F’
in B(R). (3.2.3)
diVﬂR =0

Multiplying the first equation in (3.2.3) by @z and integrating the product
by parts, we find

/ \Viig|2de = / (u®u— [u®ulpmr) : Virds + / F : agpdz
B(R) B(R) B(R)
and, therefore, after application of the Cauchy-Schwartz inequality
/ Vig|2de < 2( / u® u — [u® g |2de + / |F|2dx>.
B(R) B(R) B(R)

Next, we estimate the first term on the right hand side of the latter relation
with the help of Galliardo-Nirenberg inequality and, then, with the help of
Holder inequality. As a result, we have

galar;)§ <

/\u@u—[u@u]B(R)Fdec(/|V(u®u)
B(R) B(R)

4

§c< / |u|g]Vu]§da:>g§c( / |u]6da:>§( / |Vu\%d:c>3§
B(R) B(R) B(R)
Sc( / |u|6dx>éR/|Vu|2dx,

B(R) B(R)
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where ¢ is a universal constant.
Let ur = u — ug. This function satisfies the identity

/ Vug : Vodr =0

B(R)

for any v € Cg5(B(R)). By the results of Chapter II, see Section 2, we have
the following estimate

/ |Vug|?dr < c / |Vug|*dr,

B(o)

which, in turn, implies another one:

/ |Vul*dz < c / |Vul*dz + ¢ / |Viig|*dx.

B(R)

At first, we apply our earlier estimates for

/ |V’L~LR|2d$
B(R)

and, then, Holder’s inequality for the term, containing F', in order to get the
estimate of Lemma 2.2.

Lemma 2.4. (Ch.-B. Morrey) Let u € W\ (Q) satisfy the condition

/ |VU‘2d£If < Kanerma

B(o)

for some 0 < a < 1 and for any B(x, 0) C § such that 0 < o < gy with two
positive constants K and og.
Then u € C2.(Q), i.e., u € C*(Qy) for any subdomain € € 9.

loc

Lemma 2.5. Assume that all assumptions of Lemma 2.2 hold with R = a.
Then

u e Cloc ( (a’))
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PROOF We remind that the case n = 3 is considered only. Fix ; € B(a)
and find © such that Q; € Q € B(a). By shift, we have, for any B(zq, R) C
2, the following estimate

P(20, 0) < c[((%)g’ +RA>(I>(xo,R) _}_CR3—2+206}’

with @ =1 — 3/R,

®(wo, R) == / Vul2dz, A::(/|u|6dx>é, C::</|F|de>i.

B(:Eo,R) B((l) B(C")

Now, we apply Lemma 2.1 for m = 3, s = 3 — 2+ 2a = 1 + 2a. Let us
suppose that RA < gq for all 0 < R < Ry. Then

0 >3—2+2a

®(20,0) < 1 K—

3—24+2«
= ®(z0, R) + Co }

for any xg € € and for any 0 < o < Ry, and

1 . €0
Ry = 5 Inin {dlSt (0B(a), ), Z}

So, we have
/ |V'U/|2d$ S KQ372+20¢
B(z0,0)

for any 0 < 0 < Ry, where K = K(r, [[ullwz sy | £llrBa), Fo)- O

Lemma 2.6. Assume that all assumptions of Lemma 2.3 hold with R = a.
Then B
u € C%(B(b))

for any 0 < b < a witha=1-3/r.

PrROOF We have two types of estimates. The first one is so-called ”inte-
rior”. For any by €]b, a[, the following estimate is valid:

®(z9, 0) < K"t (3.2.4)

for xy € By (b1), w30 > %(a —b1),and 0 < o < Ry = %min{a — by, 00} with
00 = €0/A. Here, K depends on r, Ry, HuHW21(3+(a)), and || F||,.B, (a)-
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The second estimate is "boundary” one:

O, (g, 0) == / |Vul?de < K o' (3.2.5)

By (a)

for zg = (2,0), |zh| < 5(a —b1), 0 < 0 < Ry, and K depends on the same
arguments as K.

Now, let us denote by @ extension of u to the whole ball B(a) by zero
and let

®(x, 0) = / \Va|*dx
B(a)
with 0 < p < Ry and zy € B(by).

Consider two cases: z3) > 3(a — b)) and 239 < 1(a — by). In the first

case, we may use our "interior” estimate (3.2.4) and the definition of @. As
a result, we arrive at the inequality
D (g, 0) < Ko+ (3.2.6)

In the second case, we first assume that x5y > 0 and if x39 > p, we still
have estimate (3.2.6). Now, suppose that x50 < . Then, by (3.2.5), we have

d (0, 0) = / |Vul*dz < / Vulrdz <

B(xg,g)ﬂB+(a) B+((£B6,0),Q+2¢30)

< K+<Q + I30)1+2o¢ < 21+2aK+Ql+2a.

Now, assume that x3y < 0. If |x39] > 0, then, obviously, ®(xq, 0) = 0. So,
let us suppose that —z3y < p. Here,

d(z0, 0) = / |Vul*dz < / |Vul*dz <
B(w0,0)NB+(a) B ((2,0),0)

So, the statement of the lemma follows from Morrey’s condition on Holder
continuity, see Lemma 2.4. []
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Proposition 2.7. Let u € W3 (B(2a)) be a divergence free function and
satisfy the identity

/ (Vu:Vv—u®u: Vo)dr = / f - vdx
B(2a) B(2a)
for any v € C§5(B(2a)). If f is of class C* in B(2a), then u is of class C*
in B(a).

PROOF It is not so difficult to check that there exists a tensor-valued
function F' of class C'"*° such that f = —div F'. Then, the identity from the
statement of the proposition can be re-written in the following way

/ Vu : Vudx = / u®u: Vo + / F : Vudx
B(2a) B(2a) B(2a)

for any v € C§5(B(2a)). From Lemma 2.5, it follows that u belongs, at least,

to C(B(3a/2)). Using the same arguments as in Section 1, we can recover a
pressure p € Lo(B(2a)) (exercise) so that

—Au+Vp=—divG = —div(u®@u+ F)
in B(2a).
divu =0

Since div G € Ly(B(3a/2)), we can apply results of Chapter II on properties
of solutions to the Stokes system and find

V2u € Ly(B(ay)) = Vu € Lg(B(ay)), Vp € Lo(B(ar))

for any a < a; < %a.
Next, we know that, for & = 1,2,3, functions uy € Wy (B(a;)) and
Dk € Lo(B(ay)) satisfy the system

—AUJ{; + Vp,k = —div ij
in B(ay).
div U = 0

Since V2G € Ly(B(ay)), we can use the linear theory one more time and get:

V3u € Ly(B(as)) = V*u € Lg(B(az)), V?p € Ly(B(ay))
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for any a < as < ay.
Then, for k, s = 1,2, 3, functions u s € Wy (B(a;)) and pis € La(B(ay))
satisfy the system

—Auks —+ Vp,ks = —div G,ks
in B(ag),
divugs =0

where V3G € Ly(B(ay)). The similar arguments allow us to deduce that
V4U S LQ(B(CL:J,)) = VSU S LG(B(ag)), VSP S LQ(B(CLg))

for any a < ag < ag. Proceeding, further, in the same way, we complete the
proof of the lemma. [J

Proposition 2.8. Let u € W} (B(2a)) be a divergence free function and
satisfy the conditions: u|z,—o = 0 and

/ (Vu: Vv —u®u: Vu)dr = / f - vde
B4 (2a) B (2a)

for any v € C§5(B4(2a)). If f is of class C* in B(2a) N{xs > 0}, then u is
of class C* in B(a) N{x3 > 0}.

PrROOF We start with our proof in a similar way as in the latter propo-
sition, i.e., we find F' of class C* in B(2a) N {z3 > 0} so that f = —div F.
Then, we recover the pressure p € Lo(B;(2a)), which gives us:

—Au+Vp=—divG := —div(u®@u+ F)
in By (2a),
divu =0

U|x3:0 = 0.

By Lemma 2.6, u € C(B,(3a/2)) and, by the linear theory,
VQUI € L2(B+(a1)) = Vu € LG(B+(CL1>), Vp € LQ(B+(U,1))

3
for any a < a; < 3;a.
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Next, for « = 1,2 and for k = 1,2, 3, we have functions u j € W, (B, (a;))
and py € Ly(By(ay)) satisfying the system

—Auy+ Vpy = —div Gy,
in By (a1)
div Ur = 0

and the boundary condition
u,a|x3:0 = 07

where V2G € Lo(B,i(ay)). Then, again, we apply the linear theory and
conclude that

VQU,Q € Ly(Bi(a2)) Vpa € Lo(Bi(az))

for any a < ay < a;. We need to establish the same properties for V2u 3
and Vp 3. To achieve this goal, it is sufficient to evaluate wuy, 333 and p 33 for
k =1,2,3, which is, in fact, not so difficult. Indeed, denoting g, := —Gjj j,
we first use the incompressibility condition:

U3333 = —Uqg,a33 € La(Bi(az)).

For other derivatives, we use the equations:

P33 = 933 + Ugkks € Lo(Bi(ag))

and
U333 = —Ja3 + Da3 — Ua,pps € La(Bi(az)).

So, we can state
Viu € Ly(Bi(az)) = V?u € Lg(By(az)), V?p € Ly(By(ay)).
Next, for a, 8 = 1,2 and for k,7 = 1,2, 3, we have functions
ury € Wy (By(az))  puay € La(By(az))
satisfying the conditions

—Au,kj -+ VpJ@j = —div G,kj
in B, (az),
div U ks = 0
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U ap |:r:3:0 = 07

where V3G € Ly(By(as)). Here, we are going to proceed as in the case of
the third derivatives. We let

hijk = —Gimmik-
From the linear theory, one can deduce that
Vuag € Lao(By(as)),  Vpap € La(By(as))
for a < az < as. We start again with the incompressibility condition:

U3 3330 = —Ug gsa € Lo(By(as)).

So,
Viuso € Lo(By(az)).
Then,
D330 = R3sa + U3 jj3 € Lo(By(as))
and thus
V2D € Ly(By(az)).
Next,

UB.3330 = —UB~vy3a + D.g3a — Paas € La(By(as)).

So, we have
Viu,, € Ly(By(a3)).

Now, let us go back to the incompressibility condition:
33333 = —Ugp333 = V ug € Lo(Bi(as)).
For the pressure, we have
P.sss = hsss + Augss = V°p € Ly(By(as)).
Finally,
Un,3333 = —Ua, 8833 T P,a33 — Nazzs = Viu, € Ly(B(as3)).

Proceeding in a similar further, we complete the proof of the proposition. [J
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Theorem 2.9. Let Q) be R", or R}, or a bounded with smooth boundary.
Let u € V(Q) be a weak solution to the stationary Navier-Stokes equations,
see Definition 1.1. Assume that the right hand side in these equations is of
class C*° in the closure of the domain ). Then w is also of class C™ in the
closure of the domain ().

PRroor For 2 = R" or R, the statement follows from Propositions 2.7
and 2.8. [J

3.3 Comments

Chapter 3 contains standard results on the existence and regularity of solu-
tions to non-linear stationary boundary value problem. The main point of
the chapter is the local regularity theory, which differs a bit from the theory
for standard elliptic systems.



Chapter 4

Linear Non-Stationary Problem

4.1 Derivative in Time

Let us recall some definitions from the theory of distributions. D() is a
vector space that consist of all elements, belonging to C§°(§2), where the
convergence of a sequence of functions ¢ € C5°(€2) to a function ¢ € C§°(2)
is understood in the following sense. There exists a compact K C ) such
that suppyy, suppy C K and V", — V™ uniformly on K for any m > 0.
The space of all linear functionals on D(£2), being continuous with respect
to the above convergence in D({2), is denoted by D’(2). Elements of D’(2)
are called distributions.

We may consider the space D'(a, b; D'(2)). Given T' € D'(a, b; D'(R2)), let
us denote by 9, T or even by %T the following distribution

@ T(p))(x) = =T()(0ix)

for any ¢ € D(Q2) and for any x € D(a,b).

It is too general definition for our purposes and we are going to use
somewhat more specific. Let V' be a Banach space, V* be its dual space with
duality relation < v*,v >.

Definition 1.1. Let v* € Ly joc(a, b; V*) (t — v*(-,t) € V* andt — ||v*(-, t)||v+
is in L joc(a,b)). We call u* € D'(a,b; V*) derivative of v* in t if and only if

<utus (y) = —/ <0 (), 0() > D (t)dt

73
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for any v € V and for any x € C§°(a,b). We let u* = dyv*.

As usual, the left hand side of the above identity is written in the same
way as the right hand side, i.e.,

b b

/ < O (1), 0() > x(t)dt = —/ < 0 (- 1),0(-) > Oy (t)dt

a a

for any v € V and for any x € C§°(a,b), although the left hand side might
make no sense as Lebesgue’s integral.

Let us discuss the relationship between the introduced notion and and
the Sobolev derivatives. Assume that

VLV € L110c(Q), CF(Q)CV, <vv>= /v*vdaz,
Q
vt e Ll,loc(a; b; Ll,loc(Q)) = LLlOC(QX]CL, b[), (411)
8tU* € Ll’loc(QX]CL,bD.

Then 0,v* is a usual Sobolev derivative of v* in the domain Q2x]a,b[. To
understand why, we are going to use the following simple statement.

Lemma 1.2. Given ¢ > 0 and ¢ € C5°(Qx]a,b[), there ezist positive integer
number N and functions ¢r € C3°(Q2), xx € C5(a,b), k = 1,2,..., N such
that

N

e — Z eXkllor @xjap) < €
k=1

Let us assume that Lemma 1.2 has been proved. Suppose that 0;,v* is
the derivative in the sense of Definition 1.1 and satisfies assumptions (4.1.1).
Our aim is to show that it is Sobolev’s derivative as well. Take an arbitrary
e > 0 and an arbitrary function ¢ € C§°(Q2x]a,b]) and fix them. Clearly,
p € C(Yx]d,V[) for some ' € Q and for some a < @ and O/ < b. Let
number N (e) and functions ¢, and x; be from Lemma 1.2 for the domain
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U'x]a’,b'[. Then we have

\— /b / v (2, 1) Oy, t)ddt — /b / @v*(:r,t)go(:v,t)dxdt‘ <

a a
N(e)
‘// xt 8tg0 (z,t) atZgok x)xk(t )d:cdt’+
a
+)//8tv ZL“t o(z,t) ngk x)xk(t )dmdt‘
a
N(e)
<elle = oexrllor @ <||U*||L1(Q'x]a/,b/[) + ||3tv*||L1(Q/x]a/,b/[)>
k=1

< C€<||U*||L1(Q’><]a’,b’[) + ||8tU*HL1(Q’X]a’7b/D>‘

Tending ¢ to zero, we get

b

//atv z,t)o(x, t)drdt = // z, )0, t)dadt (4.1.2)

a o

for any ¢ € C§°(2x]a,b]). So, dyv* is Sobolev’s derivative as well.

Regarding an inverse statement, we argue as follows. Suppose that 0;v*
is Sobolev’s derivative, i.e., it satisfies identity (4.1.2) with v* and 0,v* from
L1 10c(2%]a, b]). If we assume in addition that C§°(€2) is dense in V, then
Ov* is a derivative of v* in the sense of Definition 1.1.

PrOOF OF LEMMA 1.2 We may extend ¢ by zero to the whole R” x R
(Q C R™). Take a huge cube C;x] — [,1] so that C;x] —[,{[D suppy. Here,
Cr={zxeR": |z;] <l,i=1,2,....,n}. Then we expand ¢ as the Fourier
series in spatial variable x

where
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The Fourier series converges very well. So, after taking real and imaginary
parts, given £ > 0, we find the number N (¢) such that

||‘;0 - (DN(z-:)Hcl(GX[—l,l]) <&

where @y (z,t) = ZkN:(i) or(z)xk(t). Assume that there exist functions
wo € C3°(2), xo € C§°(Ja, b]) with the following property

wo(w)xo(t) = 1 (4.1.3)

if (x,t) € suppp. We may let then

ZIV)N(s) = D n(5)PoXo

and show

I — q)N(s)Hcl(ﬁx[a,b]) = [[(¢ — @N(e))@OXOHCI@X[a,b]) < c(Q,a,b,l)e.

To justify (4.1.3), let us introduce the following sets
(suppp); = {z € Q2 (z,1) € suppp },

A={telab]: (suppyp); # 0}.

Let t; = %nj{t and to = supt. We claim that a < t; < t5 < b. Assume that
€ teA
to = b. Then, by the definition, there exists a sequence (xy,t;) € supp ¢

with ¢, — b as k — o0. Selecting if necessary a subsequence, we have a
contradiction for the limit point (x,b) € supp ¢. Now, let us show that

K = Uy, <4<, (SUpp ©);

is a closed set of R3. Assume that z;, € K and x; — = as k — oco. For each
k, one can find ty € [t1,ts] such that (z,t;) € supp . We may assume that
tr — t € [t1,t2] and then, by the definition of the support, (x,t) € supp .
So, x € K and thus K is closed. It remains to find an open set €}; € €2 such
that K C Q. So, supp ¢ C €y X [t1,t2]. The rest of the proof is easy. [
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4.2 Explicit Solution

Consider a bounded domain {2 C R™ with smooth boundary and the following
initial-boundary value problem

Ou—Au=f—Vp and divu=0 in Qr = Qx]|0,T7,
u=0 on 0QxI[0,T], (4.2.1)
u(z,0) =a(z) xe€ Q.

Assume that 5
aeJ(Q). (4.2.2)

This problem can be written in the operator form

O — Bu = f € L(0,T; (73())),
uli—o = a €J (), (4.2.3)
see notation for the Stokes operator A and for the dual space in the last
section of Chapter 2.
Our task is to construct an explicit solution provided eigenvalues and

eigenfunctions of the Stokes operator A in the domain €2 are known. So, we
have

~App=Npp in Q,
=0 on €, (4.2.4)

where £k =1,2,....
First, we expand functions f and a, using eigenfunctions and eigenvalues
of the Stokes operator,

flat) =" fult)er(x),
where

and
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By our assumptions,

T
=1
2 —
12, iy = | 23 (Ot
0

k=1 "k
lall5q = Zai-
k=1

We are looking for a solution to (4.2.3) of the form
- Z ck(t) ()
k=1

Assume that
Ck<0) = Qg, k= 1,2,....

(4.2.5)

(4.2.6)

(4.2.7)

Our further calculations are going to be formal. Later on, we will explain
in what sense the formal solution is a solution to problem (4.2.3). So, if we

plague (4.2.6) into (4.2.3), then the identity

Z Pk + MeCrpr = Z ey
1 k=1

comes out, which is satisfied if one lets

() + Aper(t) = fult),

Ck(O) = ag,
where k£ = 1,2,.... System (4.2.8) has a unique solution

t

cx(t) = e_’\’“t<ak + /e’\”fk(T)d7'>.

0

So, we have got a formal solution of form (4.2.6).

(4.2.8)

(4.2.9)

Let us analyze its
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properties, starting with estimates for coefficients given by (4.2.9). We have

ci(t) < 272N 2+2\/ HED i (7) \

< 20wt g2 +2/6_2>‘k(t_T)d7'/f,f(7')d7'

1

So, finally,

t
1
ci(t) < 2e 2Mig? 4 " / fé(r)dr. (4.2.10)
k
0

Summing up the above inequalities, we establish the estimate:

o0 o0 [e.9]

1
013 = Yo <2y at+ Y [ frar
k=1 k=1 k=1 "%
< 2e M a3 + || )2 4.2.11
<Pl I, (@21
or
lullicomizan < 2als + 171 o saany (42.12)

To get the second estimate, we multiply the first equation in (4.2.8) by
cx(t) and apply Young’s inequality

i (E)er(t) + e (t) = ful(t)en(t)

LW 1,
<= = t).

So,
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Integration in ¢ gives us:

T T 9
t
+M/c ﬁ<%)+/h0ﬁ
Ak
0 0
" 2
t
:ai—l—/fk()dt.
Ak
0

Then, after summation, we arrive at the second estimate

T
IVul, 00 = / S e (b
k=1

<HMb+HﬂV

. (4.2.13)
L0, T5(73(9)))

The estimates (4.2.12) and (4.2.13) are called energy estimates.
The final estimate will be derived from (4.2.8) in the following way

k=1 k

TOO
2 . |C<t
XU~ —/Z A
0

t
§2/2Akci(t)dt+2/zf’}( Vi
o= 0 k=1 ¥
< 2|W”H%Q(0,T;L2(Q)) + 2Hf”ig(o (L))
AN a]

So, applying (4.2.13), we find the third estimate

10ull} < 2llall3 + 4lI£I1 (4.2.14)

0,T5(T5(2))") L2(0,T5(J5(2)))

Now, we wish to figure out in which sense (4.2.3) holds. Let us take an

arbitrary function w € Ly(0, T 3%(9)) and expend it as a Fourier series

=" d(t)enle)
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Obviously,

T
IVl 0220 = / S e ()t < oo,
0

k=1

Hence,

T T
//@wwd:cdt: /Zc%(t)dk t)dt
0 0 0

k=

T T
//Vu : Vwdzdt = //Z cr(t)dy ()| VorPdzdt =
0 Q 0 k=1

Z )\kck

—_

o\’ﬂ

k=1
Zg/f-wdxdtjg;fk(t)dk(t)dt

and, by (4.2.8),

T
//(&u-w—i—Vu:Vw—f-w)d:vdt:
0 Q

/i )+ Arcr(t) — fk(t))dk;(t)dt =0.

k=1
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Taking w(z,t) = x(t)v(z) with v € 3%(9) and x € C3(0,T), we get that, for

a.a. €]0,7], the identity

Q

/ <8tu(:v,t) -v(x) + Vu(z,t) : Vv(a:))dx = /f(:v,t) ~o(z)dr  (4.2.15)

holds for all v € }é(Q) To be more precise, (4.2.15) is fulfilled at all

Lebesgue’s points of the following functions t — duu(-,t), t — Vu(,

t), and
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t— f(-,t). Identity (4.2.15) is called the weak form of the first equation in
(4.2.3).

It remains to establish in what sense the initial data in (4.2.3) are satisfied.
Lemma 2.1. Function t — u(-,t) € (j%(Q))’ can be modified on a zero-
measure subset of [0, 1] so that, for each v € 33(9), the function

t»—>Q/u(t

PROOF Since u € Ly(0, T (f]%(Q))’), a.a. points ty € [0, 7] are Lebesgue’s
points of ¢ — wu(-,t) in the following sense

is continuous on [0,T7].

to+e

1
5o [ Tty = ulta)l gy 2t =0
to—e
as e — 0.
Denote by S the set of al Lebesgue’s points of ¢ — u(-,t). We know that

|S| = T. Let ty < t; be two points from S. By the definition of the derivative

Dy,
/T / yu(z, 1) - v(x)x(t)dedt = — /T / wle. 1) - o(2)O (1) dedt

for any v € jé(Q) and for any y € C}(0,T). We can easily extend the latter
identity to functions x € vf/;(o, T). Take function y = x. so that x.(¢) =0
if0<t<ty—corti+e<t<T, yv(t) =1iftg+e <t <t —e,
Xe(t) = (t—to+e)/(2e)if tg —e <t <ty+e, and x(t) = (t; + e —1)/(2¢)
if t, —e <t <ty +e. Then, we have

T t1+e
//dgu(a:,t)m( t)dzdt = // (x,t) - v(z)dzdt
0 Q t1 e Q

to+e

/ / (2.1) - v(x)dedt.  (4.2.16)

toEQ
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Obviously,
to+e
‘2%? / /(u(m,t)—u(x,t@) -v(x)dxdt‘
to—c Q
to+e
<o [ et =t gy Ol 0
to—e

as € — 0. So, after taking the limit, we have

t1

/u(x,tl) ~v(z)dr = /u(:v,to) -v(z)dr + //&gu(xﬂ') ~v(z)dzdr
Q Q to Q
for a.a. t; € [0,7]. Since the right-hand side of the latter identity is a
continuous function with respect to 1, the left-hand side is continuous in #;
as well. [

Now, coming back to our function u, we note that u € L (0,77 Ly(£2)).
Therefore, we can state that

t— /u(x,t) ~v(z)dz is continuous in t on [0,T]
0

for each function v €.J (2) and even for each function v € Ly(€2). The
latter follows from the fact that for any v € Lo(€2) we have Helmoholtz-
Weyl decomposition in the Ladyzhenskaya form so that v = v; + Vp, where

v €T () and p € W} (Q). Moreover,

/u(:v,t) ~v(x)dr = /u(x, t) - vy (z)de,

Q Q

since u(-,t) €J ().
So, our initial data are satisfied at least in the following sense. Since
u(+,0) = a(+) by construction u, we have

lim [ u(z,t)-v(r)de = /&(3:) -v(x)dx

t—40
Q Q

for any v € Lo(Q2).
However, in our particular case, we can claim even more.
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Theorem 2.2. Assume that
we Ly(0,T; X)), B € Lo(0,T; (JLQ))).
Then u € C([0,T]; Lo(£2)) and

t
1 1
[ [ ouuwdzat = St 0B = St ) B (4217
t1 Q

for all t,t, € [0,T].

PROOF So, we are given

k=1
where .
k=1
and

In a view of Lemma 2.1, it is sufficient to show that the function t —
|u(-,t)||2,0 is continuous. We know that functions ¢ — dj(t) are continuous
on [0,T]. Therefore, the function t — gy (t) = S.p_, d2(t) is continuous on
[0, 7] as well. We know also that gn (t) = [lu(-,t)|5 as N = co. So, we need
to show that the sequence gy(t) is uniformly bounded and the convergence
is uniform.

First, we show uniform boundedness. We have

gn(t) — gn(ty) =2 / S di(r)di(r)dr (4.2.18)

for any ¢,¢; € [0,7] and thus

(e 9]

T
g()<gNt1+2/Z)\kd/ dt /ZAkCF
0

k=1

< gN( 1) + 2 Vullao,rsLo 0 [10ull La(0,T5(S3(Q))”
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The latter inequality can be integrated with respect to t;

T
/ (t1)dty + 2[Vull 07200 190l g . 1))
0

< T)\ o IVl 0,520 + 21V ull oo, 200 10, OISO

So, uniform boundedness follows.
From (4.2.18), one can deduce uniform continuity. Indeed,

lgn(t) — gn(t)] < 2 /”V“ )Hmdt) HatuHL 0,T5(T5Q))

Now, gn(t) converges to [u(-, t)||3 o uniformly, which means that the function
t = |Ju(-,1)[|3q is continuous on [0, 77].

At last, (4.2.17) follows directly from (4.2.18) if N — +oo. O

Actually, the analogue of Theorem 2.2 takes places. Moreover, an abstract
version of it is valid:

Theorem 2.3. Let H be a Hilbert space, V' be a reflexive Banach space, and
V' s continuously imbedded into H. Let V N H contain a countable set S
which is dense in'V and in H, i.e.,

V=[s", H=I[9"

Let V* be a dual space to V' with respect to scalar product in H, i.e.,

|v* [+ = sup{(v*,v)g : v eV, ||v||y =1}

Assume that v € L,(0,7;V) N Ly(0,T; H) and 0w € Ly (0,T;V*) with p’ =
p/(p—1) and p > 1.
Then, v € C([0,T); H) and

t

lo( Ol = o t)llE = 2/(@0('77)70('77))1&1&

t1

for any t,t; € [0,T].
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PROOF We start with general facts. Let t — v(+,t), where v € L,(0,T;V).
We extend v by zero outside [0,T]. The first fact is the integral continuity:
for any € > 0, there is a number d(¢) > 0 such that

T
/ lo(ot+ ) — ol B)|dt < e
0

whenever |h| < d(e). This property provides the following. Let

ve(e,t) = /wg(t—T)U<'7T)dT,

where w, is a standard mollifying kernel. We then have

:/H/we(t_7—>(v<'77—)_U(‘at))dTHZ{/dtS

= 70/Oowe(f—T)Hv(',T)—v(-,t))l\’édetZ

- / / (0 [0t 4 8) — o, ) [Edrdt <

provided € < $6(7). This means that v. — v in L,(0,T; V).
We know that

8t?)5(', t) = (atv)s('7 t)

provided 0 < e <t < T — . The proof is an exercise. So, we can claim

0. — OpU in Ly,10c(0,7;V7).
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Further, we can use the same trick as in the case of star-shaped domains.
Without loss of generality, we may replace the interval |0, 7 with | — 1, 1].
We take A > 1 and define

At =u5) <A
and thus .
o (-, t) = Xasv(-, s)|s:§.
Here, the crucial things are as follows:
[0* = vl 115v) + [0 = 0l o150 — 0

and
Hatv)\ - atUHLp/(—l,l;V*) — 0

as A\ — 1. Moreover, for fixed A > 1,

[v* = (UA)sHLp(—l,l;V) + [[o* = (UA)aHLz(—l,l;H) —0
and
1850 = 8 (0*)ellz, (-11v+) = O
as ¢ — 0. Summarizing these two properties, we may construct a sequence
v that is differentiable in ¢ and satisfies:
lo® — VllLy-1v) + [ 0l Ly(-1,1501) = O
and
|0, ™) — Ollr,, (—1,v+) — 0

as k — oo.
Now, let u = v®) — (™) we have the identity

(- Ol = 2/ (Opu(c, 1) ul ) dr + [Jul ) |7, (4.2.19)

t1

which implies the bound

1
sup. [, ) < 3 (2190l v -y + el o ).

—1<t<

In turn, the latter inequality yields that the v®) is a Cauchy sequence in
C([0,7T); H) and thus v®) converges to v in C([0,T]; H). The identity of
Theorem 2.3 can be derived from (4.2.19) with u = v®) and k — co. O
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Theorem 2.4. Assume that a €.J (Q) and [ € LQ(O,T;(:}%(Q))’). There
exists a unique function u called weak solution to (4.2.1) such that:

w € Ly(0.T; J5(S),  u € La(0, T (J3(2))); (4.2.20)
for a.a. t €[0,T],

/ [&u(m,t) ~v(z) + Vu(x,t) - Vv(x)] dx = /f(:v,t) cv(x)dr  (4.2.21)

0 Q
for any v € }%(Q),
u(-,0) =a(-) (4.2.22)
and (4.2.22) is fulfilled in the Lo-sense, i.e., ||u(-,t)—a(-)||2.0 — 0 ast — +0.

Moreover,

u € C([0,T]; La(2)).

Proor Existence has been already proven. It remains to show unique-
ness. Assume that u' is another solution satisfying (4.2.20)-(4.2.22). Then
for w = u — u! we have

/&w x,t) - v(x)dr + /Vw(x,t) : Vou(z)dx =0

for a.a. t € [0,7] and for any v € J2(Q) and thus

/&w z,t) - w(x t)dm+/]Vw(x,t)|2d:U = 0.

Q

Integrating the latter identity with respect to ¢ in [0, to], we get, by Theorem
2.2,

lw(,to)ll2.0 < llw(-, 0)[30 =0
for any ¢, € [0,7]. O

4.3 Cauchy Problem

Ou—Au=f—Vp and divu=0 in Qr=R"x]|0,T7,
u(z,0) =a(z) ze€R" (4.3.1)
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Assume that 0 .
a€j=J (R"). (4.3.2)
It is supposed also that
f € Ly(0,T;(J3)) := La(0, T (J5(R™))),  divf =0. (4.3.3)
In this case, the Cauchy problem can be reduced to the Cauchy problem for
the heat equation
ou—Au=f in Qr,
uw(z,0) =a(z) = e€R™ (4.3.4)
Indeed, assume that u is a solution to the Cauchy problem (4.3.4). Take the
divergence of equations in (4.3.4). Then we have
Oydivu — Adivu = 0 in Qr,
divu(z,0) =0 z € R"™
By the unique solvability of the Cauchy problem for the heat equation, one
can claim that divu = 0 in Q7. The pressure field is an arbitrary function of
t.

Solution to (4.3.4) can be given in an explicit form with the help of the
fundamental solution to the heat equation:

t
u(z,t) = /F(x —y,t)a(z)dx + //F(m —y,t —71)f(y, 7)dydr,

Rn 0 Re
where

[(a,t) = —ne’%
(4mt)z

for x € R™ and ¢t > 0. This formula is a good source for understanding
properties of solutions to (4.3.1).

4.4 Pressure Field. Regularity

Let us go back to initial-boundary value problem (4.2.1) and its functional
formulation (4.2.2)

O — Bu = f € Ly(0,T; (JHQ))).
Ueo = a € (Q). (4.4.1)
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Assuming that our domain €2 is bounded, we have constructed a weak solution
to (4.4.1) with the help of eigenfunctions of the Stokes operator, i.e.,

u(w,t) = Z cr(t)or(z).

For unknown coefficient ¢, (t), we have the following system of equations

¢, (1) + Aeci(t) = fr(t),
Ck(O) = Qg, (442)

where £ = 1,2, ... and where

fult) = / @) ou@)de = (FO.8), 06()), an = (a ).

Q

Now, we are going to assume additionally that
a€ J5(Q),  fe€L:0,T;J (). (4.4.3)

Then,

TOO

AP ooy = I l20r = fi(t)dt < oo,
L2(0,T37()) —
-

IVal3q = Z)\kai < 00. (4.4.4)

k=1

Next, let us multiply the first equation in (4.4.2) by ¢, sum up the result
from 1 to N, integrate the sum in time over the interval |0, ¢[, and find

1
3N+ [l far
k=1 0 k=1
t N
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which yields the bound

t t

N N N N
Z)\kci(t) - /Z &, (T)|?dr < Z/\kai + /Zf,?(T)dT
k=1 0 k=1 k=1 0 k=1

< |Vallzq + I flI5.q,

Passing to the limit as N — oo, we derive the following important estimate

t
IVu(-, )50 + / 10cu(-, 7) 20dT < [Vallzq + 1 f12.0, (4.4.5)
0

being valid for any ¢ € [0, T7.
Now, our aim is to recover the pressure field. To this end, we proceed as
follows. Consider the linear functional

li(v) = /Q(Vu(a:, t): Vou(x) + Owu(z,t) - v(z) — f(x,t) - v(x))de

for any 10;5(9) For it, we have the estimate

()] < [Vul DllzallVollze + (10w Oll2o + £ Dll20) [0l

According to Poincare’s inequality, ||v]j2.0 < ¢(Q)]|Vv|l2.0. So, the functional
v+ 1;(v) is bounded for a.a. t € [0, 7] and a bound of its norm is:

11l < (@) ([IVul, Dl + 10l D20 + [ 1)ll20) (4.4.6)

Moreover, l;(v) = 0 for any v € f];(Q) For bounded domains with Lipschitz
boundary, there exists a function ¢t — p(-,t) € Ly(2), see Chapter I, such
that

li(v) = /p(x,t)divvdfc, 1P )20 < [I2]]-
Q

It follows from (4.4.6) that

IPllzr < c[IVullzqr + I0llaqr + 1 l2er]- (44.7)
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So, we have

/Vu(x /p x, t)divo(z)dz

Q

- / fla.t) 78tu (2.1) - v(z)dx (4.4.8)
Q

Q

for any v € zé(ﬂ) and for a.a. t € [0,T].

For those t, i.e., for which (4.4.8) holds, we may apply the regularity
theory developed for the linear stationary Stokes system. More precisely,
one can estimate higher derivatives in spatial variables:

IV2u(, )20 + VP O)ll2n < el )ll20 + 10l 1)ll20

and thus
IV2ullz.or + 1VPl20r < c(lfl2r + 100ll20,)-
Combining the latter estimate with (4.4.5), we get the final bound:

10cull2.0r + IV*ull20r +IVDll20r < c(llfll2ar + I Valzg).  (4.4.9)
Summarizing mentioned above, one can formulate the following result.

Theorem 4.1. Assume that the boundary of a bounded domain 2 is smooth
and conditions (4.4.3) holds. Then,

we W3 (@Qr),  pe W, (Qr),

with estimate (4.4.9). In addition, Vu € C([0,T]; Ly(2)) and equations
ou—Vu=f—Vp, divu = 0

are satisfied a.e. in Q.

Here, we have used the following notion:

WEN(Qr) = {v € Li(0, T; W2(Qr), 9w € Li(0,T; Ly()},

W, (Qr) = {v € Li(0,T; W, (Qr)},
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and
W Qr) =W (Qr),  WQr) =W, ] (Qr).
PROOF OF THEOREM 4.1 We need to show Vu € C([0,T]; L2(Q2)). To
this end, we are going to use Theorem 2.3. Introducing H = :}%(Q) with
scalar product (u,v)y = (Vu,Vv), V = j%(Q) N WZ(Q) with the norm
[vllv = [|Av]|a.0, let us verify that V* = j(Q) is dual to V' with respect H.
Indeed, let [ € V*. So, we have [l(v)| < ¢|[|Av||gq for any v € V. Since

AV) = 3(9)7 for any p € 3(9), one can define G(p) = [(v), where p = —Aw.
Obviously, |G(p)| < |lIpll2.olll]. By Riesz theorem, there exists a unique

vt e j(Q) such that

[o*]l2.0 = [|7]] and

Now, any v* from j (Q) defines a linear functional on V' by formula

= [0 Bde = [ Vs Vods < o aal Bz < 07 2ol
Q Q

It is easy to prove that in fact ||l|| = ||v*||2.q. So, V* ~ j(Q), i.e., spaces are
isometrically isomorphic.
By Theorem 2.3, Vu € C([0,T]; L2(2)). Theorem 4.1 is proved.

Theorem 4.2. Let Q) be a bounded domain with smooth boundary. Consider
the following initial boundary value problem

Ou—Au=f—Vp and divu=0 in Qp=Qx]0,T],

ﬁ/p(x,t)dw = (. D)a=0, te[0.T), (44.10)
Q

u|3’QT =0,

where 0'Qr is the parabolic boundary of Qr.
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Let f € Lg)(Qr) = L;(0,T; Ls(Q2)) for some finite numbers s > 1 and
[ > 1. Then problem (4.4.10) has a unique solution such that u € Wi’ll(QT)

and p € Wsly’lo(QT), satisfying the following coercive estimate

HuHWi'll(QT) + ||p||W51!VZO(QT) < (s, L) flle,@n)-

4.5 Uniqueness Results

Lemma 5.1. Let v € L(0,T; jm(Q)) with m > 1 and Q be a bounded
domain in R™ with sufficiently smooth boundary. If 1 < m < 2, assume in
addition that n = 2 or 3. Assume, further, that

/v - (Oyw + Aw)dxdt =0
Qr

for w(x, t) = x()W (x) with any function x € C'([0,T]) and any divergence
free field W € C?*(Q) subject to the end condition x(T) = 0 and to the
boundary condition W = 0 on OS2, respectively.

Then v is identically zero in Qr. Here, Qr = Qx]0,T].

PROOF Take as a test function w = x(t)pr(x), where @y is the k-th
eigenfunction of the Stokes operator. ¢y is a smooth function since € is
a domain with smooth boundary. This follows from imbedding theorems,
regularity theory for the linear Stokes problem, and bootstrap arguments.
X(t) is a smooth function, satisfying the end condition x(7") = 0. Then, we
have

/ ol t) - ((Do(x) — (B Mpe(a))dadt = 0
Qr

and thus
T

/ o)X (£) = x(H)A) = 0 (45.1)
for any y € C*([0,T]) with x(T') = 0, where

v (t) = /v(x,t) - pr(x)de.

Q
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From (4.5.1), it follows that

Vi, (t) + Aog(t) =0
The latter immediately implies that vy (t) = 0 for ¢ € [0, T].

Now, we wish to show that v(z,t) =0 for any x € Q and t € [0, 7.
Let us start with the simplest case m > 2. Obviously, for bounded

domains, 3m(Q) C jz(Q) Hence, v(-,t) € 32(9) and

o0

[o(, )0 = 3 vi(t) = 0.

k=1

Let us consider now the case, in which
l<m<2. (4.5.2)

First, we shall show

/ o(z,1) - u(z)dz = 0 (4.5.3)

for and u € C§5(2) and for a.a. ¢ € [0,7]. To this end, fix an arbitrary test
function v € C§H(€2) and let

N

Sy = Z CkPk,

k=1

L = / u - prdr.
Q

We know that Sy — uin Ly(2) as N — oo. But it is not sufficient to justify
(4.5.3) by taking the limit below

where

0= /v(a:,t) - Sn(x)dr — /U(x,t) u(x)de, N — o0,
Q Q
for a.a. t € [0, T]. However, assuming additionally that n = 2 or n = 3, we

will be able to show that sequence Sy is bounded in L, (£2) and this will
imply (4.5.3) in the case 1 < m < 2 (Exercise).
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Let us consider first n = 2. Then, by embedding theorems, we have

L

</|SN|m dx) " c(m,Q)(/|VSN|2d:z;)é

Q Q

c(m, Q) (Z)\kck) < ¢(m, Q)||Vull2,0.

So, required boundedness follows.
In the case n = 3, we have

(/ysm’dx)"l“ < c(m,Q)(/(]VSNIQ—i— |VQSN|2)dx)§.

If we let —ASy = fn € La(Q), then simply, by definition of the Stokes
operator, the partial sum SV solves the following boundary value problem

—ASy + VpY = fu, divSy =0 in Q
SN|8Q = 0.

Now, we are again in a position to apply the regularity theory, developed for
the stationary Stokes system, that gives the estimate

1V2Sx 2.0 + VPN 20 < ()| fxll20-

So, we have

IV2Sn (2.0 < c(Q)|ASy]l20 < c(Q Z)\kck

< () Auflan < (@) Aulz0 < (9 )HVQUIIQ,Q-

And thus boundedness of ||Sx|,o has been proven in the case n = 3 as
well.

Now, the aim is to show that v is identically zero in Qr. Fix t € [0,T]
and consider a linear functional

l(w) = /v -wdzx, w e zin,(Q)
Q
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By Poincaré inequality, it is bounded in zin,(Q) and, by (4.5.3), vanishes on
j}n,(Q), Le.,
(w)=0 VYwe J'(Q)
As we know, any functional, possessing the above properties, can be presented
in the form
l(w) = /pdivwd:r;, Yw € zin,(Q)
Q

for some p € L,,(2). The latter means that v = —Vp.

Our next step is to show that p is a solution to the classical Neumann
problem: Ap = 0 in Q and dp/0v = 0 on 0f2, where v is the unit outward
normal to the surface OS2, in the following sense

/Vp Vqdz =0  Vqge W, (Q). (4.5.4)
0

Indeed, Vp = —v € jm(Q) Therefore, there exists a sequence w™ € C5%(€)
such that w® — Vp in L,,(2). So,

/w(k)-qux:O—)/Vp-quzz(J
Q

Q

for any ¢ € W', ().
Now, our problem has been reduced to the following uniqueness question:
Letp e WL(Q), 1 <m <2, and

/Vp -Vgdx =0 Vg e WL(9Q).
)

Then p must be a constant in 2.
Assume that f is a smooth function on 0f) and satisfies compatibility

condition
/ f(s)ds = 0.
o0

Consider the classical Neumann problem: Ag = 0 in Q and dq/0v = f
on 0f). There exists a smooth solution to this problem. For it, we have

O:/Vp-qu:p:/p%dSZ/pfds.

Q o o
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Since f is a smooth function satisfying the compatibility condition only, we
can claim that
pP=ca
on 0f2 for some constant c;.
We let further p; = p—cq and p; is a solution to the homogeneous Dirichlet
boundary problem: Ap; = 0 in 2 and p; = 0 on 9€). To show that p; is in
fact identically zero, we find for any ¢ € W?2,(Q2) with ¢ = 0 on 9

/Vpl -Vqdr = — /plAqda:.

Q Q
We may select a function ¢ in a special way so that Ag = |py|™ signp; =
f € Ly () with ¢ = 0 on 09. It is well known that such a function exists
and belongs to W2,(€). Hence,

O:/Vpl-qux: —/|p1|md9§
Q Q

and thus p is a constant in 2 and v = 0 in Q7. Lemma 5.1 is proved.
We have another uniqueness result.

Theorem 5.2. Let v € Ly(0,T; 3%(9)) with m > 1 and §2 be a bounded
domain with sufficiently smooth boundary. Assume

/(v -Oyw — Vv : Vw)dz =0 (4.5.5)
Qr
for any w(z,t) = x(t)W(x), where x € C*([0,T]) such that x(T) = 0 and
W e C55(9Q).

Then v is identically zero in Qr.

PROOF By density arguments, (4.5.5), of course, holds for any W €
JL(9Q). B

Take any function W € C?(Q2) with W = 0 on Q and divIW = 0 in .
We know that W € 3,171,(9), see Chapter I, Theorem 4.3. So, v satisfies all
assumptions of Lemma 5.1 and therefore v = 0 in Q7.

The above proof works well under additional assumption on n if 1 <
m < 2. However, we can give an alternative proof that does not need extra
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assumptions on the spatial dimension. We assume that (4.5.3) has been
already proved. Then we can take test function in (4.5.3) in the following way
W =V Aw with arbitrary function w € C§°(€2). This implies V Av(-,t) =0
in . Taking into account the fact that v is divergence free, we deduce that
v(+,t) is a harmonic function in Q belonging to }}n(Q) The rest of the proof
is more or less the same as the final part of the proof of Lemma 5.1, see
arguments providing p; = 0 there. Theorem 5.2 is proved.

4.6 Local Interior Regularity

In this section, we shall restrict ourselves to the 3D case simply to reduce
a number of parameters. Although it is clear that the extension to other
dimensions is straightforward.

The problem of local interior regularity can be formulated as follows.
Consider the Stokes system in a canonical domain, say, in @) = Bx| — 1,0]

Ou— Au= f—Vp, divu = 0. (4.6.1)

We always assume that functions u and p have some starting differentiability
properties. Keeping in mind the 3D non-stationary non-linear problem, we
supposed that

u € errfgm(Q)a P € Lina(Q) (4.6.2)

for some finite m and n being greater than 1.

Assuming that some additional information about the right-hand side f
is given, we shall try to make some conclusions about smoothness of u and
p in smaller parabolic balls Q(r) = B(r)x]| —r%,0[.

It is known that, for stationary Stokes system as well as for heat equation,
solutions are smooth locally as long as f is smooth. However, in the case of
non-stationary Stokes system, we have smoothing is spatial variables but not
in time. This can be seen easily from the following example, in which f =0
and

u(x,t) = c(t)Vh(z), p(z,t) = = (t)h(x).

Here, h is a harmonic function in B and c is a given function, defined on
[0,7]. This solution is infinitely differentiable inside B but, under assump-
tions (4.6.2), it is just Holder continuous in time. There is no smoothing in
time despite the smoothness of f.

In general, we have the following statement.
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Proposition 6.1. Assume that u and p satisfy (4.6.1), conditions (4.6.2),
and let

f € Ls,n(Q) (4.6.3)

with s > m.
Then v € W2 (Q(1/2)) and p € W}X(Q(1/2)) and we have the estimate

10l s.n,00/2) + VUl sm.001/2) + VP lsmaa/2)

< clfllsmq + [ullmng + [Vullmne + 1Plmne)- (4.6.4)

PROOF It is sufficient to prove this proposition for case s = m. General
case can be deduced from it by embedding theorems and bootstrap argu-
ments.

Fix a non-negative cut-off function ¢ € C§°(Bx]| — 1,1[) so that ¢ = 1
in B(1/2)x] — (1/2)% (1/2)?|. For any ¢ €] — 1,0[, we determine a function
w(-,t) as a unique solution to the boundary value problem

Aw(-,t) —Vq(-,t) =0, divw(-,t) = v(-,t) - V(- t)

in B and
[tz =0, ) =0

B
on 0B. It satisfies the estimate

V2w (-, )ls.5 + llaC, s,z + V()]s <

< e[V (u(-t) - Vel 1) llss. (4.6.5)

Letting
V =pv—w, P =yp—q,

F=o¢f +v0p —2VuVy —vAp + pVy — dw,

we observe that new functions V' and P are a unique solution to the following
initial boundary value problem

OV —AV=F-VP, divi=0

in Q,
V=0
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on &'Q). Taking into account the statement of Theorem 4.2 and estimate
there, we find

1000]|sm.001/2) + V0]l sm0a/2) + IVDlsmaas2) < cA+ cldwllsng, (4.6.6)

where
A= fllsma + vllsne + [[VVllsne + [[Pllsne-

So, our task is to evaluate the last term on the right hand side of (4.6.6).
The key point here is duality arguments proposed by V. A. Solonnikov.

Introducing new notation v = d;w and r = 0,;q, we can derive from the
equations for w and ¢

Au(-,t) = Vr(,t) =0
divu(-,t) = dw(-,t) - V(- t) +v(-,t) - VOp(-, 1) (4.6.7)
in B,
/r(:c,t)dx =0, u(-,t) =0 (4.6.8)
on 0B.

Given g € Ly (B) with ' = s/(s — 1), let us define a function @ as a
unique solution to the boundary value problem

Au—Vr =g, divu =0 (4.6.9)
in B,
/ Ma)de =0,  @i=0 (4.6.10)
B

on 0B. Function 7 obeys the estimate
17llsr.5 + [IV7lle.5 < cllglls.s. (4.6.11)
Now, from (4.6.7)—(4.6.11), we find

/ (1) - g(x)de — / (1) - (ATi(x) — Vi(e))de

B B

= /?(x)div u(z, t)de = /?(x)(@tv(x,t) -Veo(z,t) +v(x,t) - Vop(z,t))d.

B
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Expressing 0;v via the Navier-Stokes equations, we derive from the previous
identity

/u(x, t) - g(x)dx = /?(x)(A v(x,t) = Vp(z,t)+ f(x,t) - Vo(z,t)dx

B B

+/?(gg)v(x,t) -V Oyp(z, t)d.

It remains to integrate by parts and use estimate (4.6.11). As a result, we
have

/U(M) ~g(@)dz < cl|glly s ([0(, s, + IV o, 8)ls,5 + [IpC ) ls)

and thus
|0vw]|s.n.0 < cA.

Proposition 6.1 is proved.

Keeping in mind the 3D non-stationary non-linear problem, one cannot
expect that the number n is big. In such cases, the following embedding
result can be useful.

Proposition 6.2. Assume that v € W2 (Q) with

2 3
1l<n<2, p=2————->0.
n s
Then

[0(2) = ()] < e(m,m, ) (Jx = @' + |t = [ ([v]]n e
HVullsna + 1V?0llsn0 + 10w]sn.q)
for all z = (z,t) € Q(1/2) and for all 2/ = (2',¢') € Q(1/2). In other words,
v 1s Holder continuous with exponent p relative to parabolic metric in the

closure of Q(1/2).

Finally, using bootstrap arguments, we can prove the following statement
which in a good accordance with the above example.

Proposition 6.3. Assume that conditions (4.6.2) hold with 1 < n < 2 and
f=0. Let u and p be an arbitrary solution to system (4.6.1). Then for any
0 <7 <1 and for any k = 0,1, ..., the function (z,t) — VFu(z,t) is Holder
continuous with any exponent less than 2 —2/n in the closure of the set Q(T)
relative to the parabolic metric.
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4.7 Local Boundary Regularity

To describe the results of this section, we are going to exploit the following
notation:
T = ('rla Ig), x, - (xlu fL’g),

Q+(T) = C+(T)X] o 7027 O[C Rg X R? CJr(T) = b(T’)X]O, T[E R37
bir)y={2' eR?: |2/| <r}.
The complete analogue of Proposition 6.1 is as follows.

Proposition 7.1. Assume that we are given three functions

uw€Won(Qi(2)),  PELna(Qi(2), [ € Ly n(Q4(2))
with my > m satisfying the system
ou—Au=f—Vp, dive =0 in Q4(2),
and the homogeneous Dirichlet boundary condition
u(x’,0,t) = 0.

Then uw € W2! (Q,(1)) and p € WL (Q, (1)) with the estimate

ml,n ml,TL
10ct]| Lo, (s 1)) + 1Vl L, wi0i ) + IVPN L, i@y ) <

< c(lullzmnior@) + IVUll Lo or@) + 1P L nes@) + 1 Lm, n(0s@))-

If we assume f =0 and 1 < n < 2, then, by embedding theorem similar
to Proposition 4.6.2, u is Holder continuous in the closure of the space-time
cylinder Q. (1). Holder continuity is defined with respect to the parabolic
metrics and the corresponding exponent does not exceed 2—2/n. However, in
general, the analogue of Proposition 6.3 is not true in the boundary regularity
theory, i.e., in general there is no further smoothing even in spatial variables.
Let us describe the corresponding counter-example.

We are looking for non-trivial bounded solutions to the following homoge-
neous initial boundary value problem

ow—Av=-Vgq, dive =0 (4.7.1)
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in R3 x] — 4, 0[ under the homogeneous Dirichlet boundary condition
v(2',0,t) =0 2 €R?) —-4<t<0, (4.7.2)
and under homogeneous initial data
v(z,—4)=0 zeRi (4.7.3)
Here R = {z = (2/,23) : 23> 0}.

Taking an arbitrary function f(¢), we seek a non-trivial solution to (4.7.1)
—(4.7.3) in the form of shear flow, say, along x;-axis:

v(z,t) = (w(xs,1),0,0), q(z,t) = —f(t)z.

Here, a scalar function u solves the following initial boundary value problem

atw(y> t) - wyy(y7 t) = f(t)> (474)
w(0,t) =0, (4.7.5)
w(y, —4) =0, (4.7.6)

where 0 < y < 400 and —4 < ¢ < 0 and wy, = 0%w/dy>.
It is not so difficult to solve (4.7.4)—(4.7.6) explicitly:

Y

Ware==y
|
0
Keeping in mind that our aim is to construct irregular but summable solution,
we choose the function f as follows

T O A
w(y,t) = ﬁ[f(t 4)d d¢. (4.7.7)

() = It\% 0<a<1/2 (4.7.8)

Then, direct calculations give us:

(i) w is a bounded smooth function in the strip |0, +oo[x] — 4, 0] satisfying
boundary and initial conditions;

(ii) wy(y,t) > c(a)yl%m for y and ¢ subject to the inequalities y? > —4t,
0<y<3,and —9/8 <t < 0.
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(iii) Let s, s1, [, and [; be numbers greater than 1 and satisfy the condition

1, 1 1 1
K= {—(1——),1——} hy 47.9
max | ; <oz<2 ( )

Then
v e W' (Ci(3)x] —9/4,0), g€ Ly, (C4(3)x] —9/4,0]).

Assume we are given numbers 1 < m < 400 and 1 < n < 2. Letting
s = s = mand [ = 4 = n and choosing a so that inequality (4.7.9)
holds. The functions v and ¢ constructed above for the chosen o meet all
the conditions of Proposition 7.1 with f = 0. However, Vv is unbounded
in any neighborhood of the space-time point z = (z,t) = 0. This is a
counter-example of Seregin-Sverak, which is an essential simplification of the
counter-example given by K. Kang.

4.8 Comments

Chapter 4 contains standard material about existence, uniqueness, and regu-
larity of solutions to the non-stationary Stokes system. A bit new results for
introductory course are in the last three sections. In particular fine unique-
ness theorems and local regularity issues are discussed in Sections 5-7. They
are needed for the local regularity analysis in Chapter 6.
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Chapter 5

Non-linear Non-Stationary
Problem

5.1 Compactness Results for non-Stationary
Problems

Our standing assumptions are as follows. We are given a triple of Banach
spaces Vp, V', and Vi, having the following properties

(i) Vo Cc V C V4, Vp is a reflexive space;

(ii) imbedding Vi C V' is compact;

(iii) imbedding V' C Vj is continuous;

(iv) v € Vg and ||v]]y; = 0 imply |[v||y = 0.

Lemma 1.1. Given n > 0, there exists C(n) > 0 such that
[ollv < nllvllv, + Cn)llvllv (5.1.1)
for any v € Vj.

PROOF Usual compactness arguments work. Assume that the statement
is wrong. Then for any n € N there exists v, € Vj such that

[onllv > nllvnllve + nllonllv: -
Then after normalization, we have

lvallvy = 1> mllvyllv, + nllonllvi,

107



108 CHAPTER 5. NON-LINEAR NON-STATIONARY PROBLEM

where v/, = v, /||va]|lv. The sequence v/, is bounded in a reflexive space, and
thus without loss of generality we may assume that

vl — v
in Vp and thus

vl — v
in V' and Vj. Since n||v) ||y, is bounded and therefore ||v] ||y, — 0 = ||vol|v;-
Hence, by assumption (iv), ||vo||v = 0. However, 1 = ||v,|lv — ||vo|lv. This

leads to contradiction. Lemma 1.1 is proved.

Proposition 1.2. (Aubin-Lions lemma) Let 1 < py, p1 < 0o, Vi is reflezive,
and define

W = {llelw = el 00 + 19001, 0000) < 0.

Then W is compactly imbedded into L,,(0,T;V).

PROOF Suppose that sequence u¥) is bounded in W. Then, without loss
of generality, we may assume that

W9

in L,,(0,7;Vp) and '
atu(]) — atu

in L, (0,T;V;). Setting v") = u0) — u, we need to show that
v =0
in L,,(0,7;V). By Lemma 1.1, we have for arbitrary number n > 0
oD )l < nlloD (- 8) v, + Cllo? (1)l
and thus
1092, 07y < 0109 || L 0590) + CI0DI L, 0,700

< en+ C oYL, rwa).

So, it is enough to show '
v — 0 (5.1.2)
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in L,,(0,7; V7). To this end, we are going first to prove that

sup sup [0 (-, )|y, < oo. (5.1.3)
j 0<t<T

Indeed, if (5.1.3) would be true, then (5.1.2) would follow from
[0 8) [y — 0 (5.1.4)

for a.a. t € [0,7] and Lebesgue’s theorem. So, our goal is to prove (5.1.3)
and (5.1.4).

To prove (5.1.3), we exploit the following formula (it is a simple conse-
quence of the definition of dv)

t
(1) = /8tv(-,7)d7—|—v(j)(-,s) (5.1.5)
for any 0 < s,t < T, which implies

t
69,0l < 095l + [ 10Dl

4 3
< WD 8) i + TP 0w, 0r51)-

The latter inequality can be integrated in s. As a result, we get (5.1.3).
Now, we wish to expalain validity of (5.1.4). To this end, let us integrate
(5.1.5) in s over the interval J¢, 1]

S1 t S1
(51 — )P (-, 1) :/ds/@tv(-,T)dT+/v(j)(-,s)ds.
t s t

After integration by parts in s in the first term of the right hand side, we
find ' ' '
U(J)<'7 t) = a’(J)(" t) + b(J)(7 t)a

where
S1

a9 (. t) = pa— /v(])(‘7s)ds
t
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and
b (., 1) = / (51 — 8)A0(-, 5)ds.
S1 —t
t

Now, take any ¢ > 0 and fix it. Then

L
B9 0l < / 51— sphas) "

/||8tv J) |p1 )pl < C|81 —t|p1 <e€

for any 7 and for s; sufficiently closed to t.
Next, we wish to show that for each fixed s; (for given )

la? (-, #) v, — 0. (5.1.6)
To this end, we first notice that
a9l (1) =0

in Vi. Then if we would show boundedness in V4, (5.1.6) would follows from
compactness of imbedding V} into V.

We have

1 )lhe < 1o / [0 (. 8)lvyds

-1

|s1— t’%HUU |2 07:v0) < cfs1 — t|%

1
<
|51 — 1]
So, given sq, (5.1.6) is true and we may find N(sy,t) such that
Ha(j)<'>t)||v1 <e

for any 7 > Ni(s1,t). This proves (5.1.4) and completes the proof of Propo-
sition 1.2.
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5.2 Auxiliary Problem

Assume that

o

a€ J() (5.2.1)

and
f € Ly(0,T; (J5(9))) (5.2.2)

Proposition 2.1. Let Qr = Q2x]0,T[ and
w € Loo(Qr), divw =0 in Qr. (5.2.3)
There exists a unique solution v to the initial boundary value problem

ov—Av+divew+Vg=f, divv=0 1in Qr,

/U|QQ><[07T] = 0, (524)
V=0 = a

in the following sense:
v € C(0,T]; La(Q)) N La(0,T5 13(Q)), - v € La(0,T5 (JH()));

for a.a. t € [0,T]

/ (Opv(z,t) - v(x) + Vou(z,t) : Vo(z))dx
Q
= /(v(x,t) ®@w(z,t) : Vo(z) + f(z,t) - v(x))dx (5.2.5)
Q
for all ¥ € JA(Q);
[v(+t) —a(-)[l20 — 0 (5.2.6)

as t — +0.

PROOF We are going to apply the Leray-Schauder principle, see Theorem
1.3 of Chapter III. We let

X = Ly(0,T; J()).
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Given u € X, define v = A(u) as a solution to the following problem:
v € C(10,T); Lo() N Lo(0, T3 JH(Q), 9w € Ly(0,T5 (J3(Q));  (5.2.7)
for a.a. t € [0, 7]

/ (O(x, ) - () + Vola, 1) : V(x))da

Q

= /f(m,t) - v(x)dx (5.2.8)
Q

for all v € j;(Q),
() —a(-)]l20 = 0 (5.2.9)

as t — +0. Here, f: f —u®w. Such a function v exists and is unique (for
given u) according to Theorem 2.3 of Chapter 4 since

€ Ly(0, T; (JHQ)).

So, operator A is well defined. Let us check that it satisfies all the assump-
tions of Theorem 1.3 of Chapter III.
Continuity: Let v' = A(u') and v* = A(u?). Then

/(@(vl —0?) -0+ V(o' —v?) : V)dr = /(u1 —u®) ®w : Vodx

Q Q

and letting v = v! — v?, we find
1
§5t||v1 —0*[30 + Vo' = VO[30 < c(w)[lu’ — w?[lo0]| Vo' — VV?||a0

and thus

sup [[v! = v*[la0 < c(w)[u’ — u?|2q,
0<t<T

The latter implies continuity.
Compactness: As in the previous case, we use the energy estimate

2 2 2 2
su v + [V < c(w)l||u +c o
0<t£T | HZQ | HQQ < c(w)]| H2Q HfHLQ(o,T;(J;(Q))')
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The second estimate comes from (5.2.8)

low]?

< |Vl + clw)||ull3q + 2
La(0,T;( 7} (Q))/)_H HQT (w)]] Hzﬂ c|l 1]

La(0.T3(75(9)))

Combining the latter estimates, we see that sets which are bounded in X
remain to be bounded in

W = {w e Ly(0,T; JXQ)), dw € Lo(0, T; (JHQ)))}.

By Proposition 1.2 for V = :}é(ﬂ), V= j(Q), and V; = (3%(9))’, such a set
is precompact.

Now, we wish to verify the second condition in Theorem 1.3 of Chapter
III. For v = AA(v), after integration by parts, we find that, for a.a. t € [0, T],

/(@v-ﬁ—l—Vu:Vﬁ)dx:)\/(f-ﬁ—(w~Vv)-ﬁ)dx

Q Q

for any v € j;(Q) If we plague v(-) = v(-,t) into the latter relation, then
the identity

/(w-Vv)-vdx:O,

Q

ensures following estimate:

1 2
3 [1ofdo+ [190d < 15,0 [0

Q Q

and thus

lol, < T sup / o, 0)Pde < T 4 alZa) = B2

o<t<T

(T5()))

Now, all the statements of Proposition 2.1 follow from the Leray-Schauder
principle. Proposition 2.1 is proved.
Let w, be the usual mollifying kernel and let

(V)o(x,t) = /wg(x — (2 t)da’

Q
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It is easy to check if t — v(-,t) € 3(@) then div(v),(-,t) = 0 (Exercise).
Now, we wish to show that there exists at least one function v¢ such that:
v? € C(10,T); Ly(92)) N La(0, T3 JH()), 00 € La(0, T3 (J3())); (5.2.10)

for a.a. t € [0, T

/ (Op?(z,t) - v(x) + Vol(z,t) : Vo(z))de
0

= /(Ug(a:,t) ® (v2),(z,t) - Vo(x) + f(z,t) - v(z))dx (5.2.11)

Q
for all v € :}%(Q),
[ve(-; ) —a()[l2,0 — 0 (5.2.12)

as t — +0.

We note that (5.2.10)-(5.2.12) can be regarded as a weak form of the
following initial boundary value problem

8t’l}g — Av? + (UQ)Q . VUQ + ng — f’ dive” =0 in QT’
vaaxpr =0,  (5.2.13)

V=0 = a.

Proposition 2.2. There ezists at least one function v@ satisfying (5.2.10)-
(5.2.12). In addition, it satisfies the energy estimate

05,0, = Osup e Dlz + 1IVV?lzg,

<c(IfI? +llall3 ) (5.2.14)

2(0.T3(J3(2))")
with constant independent of o.

Proor We drop upper index p. The idea is the same as in Proposition
2.1: to use the Leray-Schauder principle. The space X is the same as in
Proposition 2.1. But the operator A will be defined in the different way:
given u € X, we are looking for v = A(u) so that

v € C([0,T]; La(Q)) N La(0, T3 JAQ)), 8w € Lo(0,T; (JHQ))): (5.2.15)
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for a.a. t € (0,7

/ (Opv(z,t) - v(x) + Vo(z,t) : Vo(x))dx

:/( (2, 1) @ (u)o(x, 1) : VU(z) + f(2,t) - U(2))dx (5.2.16)

for all 7 € JL(Q);
[o(-,t) —a(-)[l2.0 — 0 (5.2.17)

as t — +0. By Proposition 2.1, such a function exists and is unique. We
need to check that all the assumptions of Theorem 1.3 of Chapter III hold
for our operator A.

Continuity: Do the same as in Proposition 2.1:

1
O0* =50 + V(0" = 0D)l5g

— / (UQ ® (u?), —v'® (ul)g) :V(v* —vl)dx

Q

- /(U2 — oM@ (1), : V(2 - v')da
Q
—i—/vl ® (u® —u'), : V(v* —v')dz.
Q
The first integral in the right hand side of the latter is zero and the second

one I can be bounded as follows

1< supl(u — ') (z, )|V |l20]V(0* = v)l20-
z€eQ

So, by Holder inequality, we have
0i[v* = V'3 + V(0 =030 < c(@ V' [Eallv® = u'lq
and thus

[v* =05, < clo) sup [[v'(H)[3allu” —u'llzg,-
0<t<T
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The latter gives us continuity.
Compactness: Now, we wish to write down the energy estimate for v

Q Q

= /f cvdr. (5.2.18)

As in the proof of the previous proposition, (5.2.18) implies the required
energy estimate

2 2 —
WBar < 12, gy + lB) =S, (5219
where a constant ¢ is independent of p.
Now, we need to evaluate the derivative in time. We have

1011,

< 2 2
"oy < VIR el 72, / (w2 | (), P

<c||Vol?2o +c 2 +c /udz vl|2 .
< Vol + el o+ (@) [ luldz) ol
Q

After integration in time, the following estimate comes out:

2 . < ( 2 ) 2.
H@thLQ(O’T;(J%(Q))/) <c(o) S+ S/ lul“dz (5.2.20)
Qr

Making use of the same arguments as in the proof of Proposition 2.1, we
conclude that for each fixed ¢ > 0 the operator A is compact.

Let us check the second condition of Theorem 1.3. As in the proof of
(5.2.18) and (5.2.19), we can get

2 2 2
ooy < O 1 50y + ) < 25 = B2

So, the existence is established.
The energy estimate can be proved along the lines of the proof of (5.2.19).
Proposition 2.2 is proved.
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5.3 Weak Leray-Hopf Solutions

Now, we consider full non-stationary Navier-Stokes system in a bounded
domain 2 C R" (n=2,3)

ov—Av+divi®uv+Vg=f, divv=0 in Qr,

U’aQX[O,T] = O, (531)
V|i=0 = a
We always assume that
f e Ly(0,T; V") (5.3.2)
and
a€ H, (5.3.3)

where V = J4(Q) and H = J(9).

Definition 3.1. A function v is called a weak Leray-Hopf solution to initial
boundary value problem (5.53.1)-(5.3.3) if it has the following properties:
(i) v € Loo(0,T; H) N Ly(0, T3 V);
(i) function t — [v(z,t) - w(x)dz is continuous on [0,T] for each w €
Q

LQ(Q);
(i) [(—v- 0w —v@v: Vw+ Vv : Vw— f-w)dz =0 for any test
Q

function C§5(Qr) = {v € C5°(Qr) : divw =0 in Qr};
(i) [|v(z,t) —a(x)*de — 0 as t — +0;
0
t ¢
(v) 5 [ |o(z,t)Pdz + [ [ |Vo]*dedt <L [|a(z)|?de+ [ [ f-vdzdt!
0 0 © Q 0 Q
for all t € 10,T).

Theorem 3.2. Under assumptions (5.3.2) and (5.5.3), there exists at least
one weak Leray-Hopf solution to (5.3.1).

PRrOOF By Proposition 2.2, for any positive g, there exists a function v®
such that

vl e C([O, T], H) N LQ(O, T, V), aﬂ)g € LQ(O, T, V/>, (534)
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for a.a. t € [0,7]

/(8tvg(x,t) -u(x) + Vol (z,t) : Vo(z))dx

= /(vg(x,t) ® (v°),(z,t) - Vo(x) + f(z,t) - v(z))dx

forallv e V;
[0°(-, 1) = a() |l = 0

as t — +0. Moreover, v¢ has uniformly bounded energy

1B g, = sup [[09(,0)Bq + V0% 3, < A
o<t<T

where a constant A depends only on T, || f||z.0,7;v), and [|al|2,0-

(5.3.5)

(5.3.6)

(5.3.7)

Now, let us see what happens if p — 0. To apply Proposition 1.2 from
Section 1 on compactness, we need to estimate the derivative of v in t. To

this end, we are going to use the following imbedding theorem
JQ) '),

which is true provided n = 2,3. Then from (5.3.5) it follows

/ By - T < |Vl / 02| (6)ldz + [ Va0l Fo° 2

H v AIVOllz0

for any v € j%(Q) and thus

Therefore

sy < A (020l 0)ella0 + 1V0?lla0 + 1£]1v)

< Q) (I0%h0r 0?20 + V020 + £V ):

1900, o sy < ) (102 elle?llor + 10%r + I laoirn )

Since |[v9]|2,0, < T§|U'9|27QT, we get

Hat'UQH < Al;

2(0,T5(J3()) =

(5.3.8)
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where a constant A; depends only on T, || f||z.0,7:v), and ||al|2.q.
Now, we can apply Proposition 1.2 with the following choice of subspaces

VCHC (PO,

where the space (3%((2))’ is the space dual to 3%(9) relative to H, and state
that after selecting a subsequence

v?0in Loo(0,T; H), (5.3.9)
v —=v  in Ly(0,T;V), (5.3.10)
v? = v in Ly(0,75 H). (5.3.11)
Now, let us show
D, —/\vg )o —v®@uldz — 0

as 0 — 0. Indeed, from (5.3.11), it follows that

§/|(vg—v |dz+/|v® )o — V)|dz
Qr

< [0* = vllar0)ollacr + / 0® (07— )ldz
+ [ 106 (@)= vldz < 10° = v, THe?laor

1 1
T2 vl2r 8 = vll20r + T2 V]2 |(v)e = vll20r = 0

as 0 — 0 by (5.3.11) and (5.3.7).

Setting w(z) = w(z,t) in (5.3.5), with w € CgH(Qr), integrating in ¢ by
parts in (5.3.5), and passing to the limit, we deduce that v satisfies (iii) of
Definition 3.1. So, (i) and (iii) of Definition 3.1 have been verified.

Now, let us take any function ¥ € J3(2) and consider functions

t— f2t) = /vg(x,t) -v(x)dx.

Q
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Now, our goal is to show that for each fixed v, the set of functions f5 is
precompact in C'([0,T]). Indeed, it is uniformly bounded since

0 < |p? 0] < e |l o < |0 .
Sup |5 < [0%2,07 10]l2,0 < clv lz,QTHvHJg(Q) < cAHvHJg(m

Its equicontinuity follows from (5.3.8):

t+AL

2+ 80 - g2 = | [ [ owrtar) - Soydsar]

t Q
t+AL

< [ owetn

S v |At|Hat”QHLQ(o,T;G%m))')”m'f}sm) = ey |At|A1‘|5"33<9>'

dr

Gy PO 550

Now, let 7 be a countable set that is dense in 53(9) Applying thedi-
agonal Cantor procedure, we can select a subsequence such that

/vg(:c,t) W (2)de — /v(x,t) oW (2)da

0
in C([0,77]). By boundedness of

sup sup [[v?(-,t)[2,0,
0>0 0<t<T

one can show (by density arguments)

/vg(z,t) -v(x)dr — Q/U([E,t) -v(x)dx

Q

in C([0,T]) for any v € 53(9) and then for any v € j(Q)
Now, a given w € Ly(Q2) can be decomposed as w = u + Vp, where

u € :}(Q) Then

/vg(x,t) cw(x)dr = /Ug(x,t) u(x)dx

Q Q

— /v(x,t) cu(x)de = /v(:v,t) cw(z)dx (5.3.12)

Q Q
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in C([0,T]) as 0 — 0. So, (ii) of Definition 3.1 has been proved as well.
Now, we would like to justify (v) of Definition 3.1. To achieve this goal,
let us pick up v(x) as v¢(z,t) in (5.3.5) and integrate the equality in ¢. Since
1
/vg ® (v?), : Vvldr = /vf(vf)gvﬁjdx =3 /(vf)g\vgl?j =0,

Q Q Q

¢

1 1

§/|vg(x,t)|2dx+//\VU9|2dxdt'— §/|a(x)|2dm
Q 0 ©

Q

we have

t

N / / footdedt  (5.3.13)

0 Q

for all ¢ € [0, T] and for all o > 0.
By (5.3.12),

limiglf/\vg(x,tﬂzdx > /|U(x,t)|2dx (5.3.14)
o—
Q Q

for any t € [0, 7] and by (5.3.10)

t t
limiglf//\va\zdxdt’2//\Vv[2dxdt/ (5.3.15)
o0—
0 Q 0 Q

t t
liminf//fmgda:dt’://f'vdxdt’ (5.3.16)
0—0
0 © 0 Q

for all t € [0,T]. So, (v) of Definition 3.1 follows from (5.3.13)-(5.3.16).
It remains to prove validity of (iv) of Definition 3.1. To this end, notice
that by (5.3.12)

and

a(-) = v°(-,0) = v(-,0)
in Ly(€2). So, v(-,0) = a(-). Moreover, according to (ii) of Definition 3.1

v("t> - U('a()) = CL()
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in Ly(Q) as t — +0. So,

h}gil&f lv(-, ) |l2.0 > llal20-

However, from the energy inequality it follows that

limsup [|v(-, t)]|2,0 < ||all2o-
t—+40

The latter implies

i, o)l = lollo

which together with week convergence gives (iv) of Definition 3.1. Theorem
3.2 is proved.

5.4 Multiplicative Inequalities and Related
Questions

Case 1: n=2
Lemma 4.1. (Ladyzhenskaya’s inequality)

lulliq < 2llull3ollVullsq
for any u € C§°(Q2).

PROOF. Oviously, it is enough to prove this inequality for Q = R2. We
have

1

|u(:B1,:1:2)|2 =2 / u(t, xo)u(t, zo)dt

§2</|u(t,x2)|2dt>é</|u71(t,x2)|2dt>é.
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And then
//\u(xl,xg)]4dxldx2: //\u(xl,xg)]2\u($1,x2)|2dx1dx2

o0

=4 / drades ( 7 |u(t,x2)l2dt)%( 7 |u,1(ze,a;2)|%zt)é

x( 7 e s)|2ds>%< 7 s (1, s)|2ds>§}
_ 7 ( 7 |u(t,x2)|2dt>%( 7 |u,1(t,x2)|2dt)5dx2
x 7 ( 7 e S)]2d3> 5( 7 s (21, s)|2ds>édm1

< Aflullzflwallzflwll2lluzlle < 2lul3(lwlls + )
= 2lull2IVulz. O (54.1)

Corollary 4.2. Let u € Loo(0,7; H) N Ly(0,T5V). Then

1
lullser < 27 |ul2r-
Proor We have
Ju(- )10 < 2lu )5l Vul, )30 < 20ulz o, IVul-, 1)]30-

After integration in ¢, we get the required inequality. [
Case 2: n=3

Lemma 4.3. Let 2 < s <6 and a = 3(82;2). Then, for any u € C§ (),

lulls.o < c(s)lullzg | Vull5 o
PROOF The Galiardo-Nirenberg inequality in dimension 3 reads

[ulleo < cllVullao, u e GF(Q),
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with a constant ¢ independent of 2. It remains to use interpolation in L
lullse < llullog ullé.o

with a = @ O

Corollary 4.4. Let u € Loo(0,T; H) N Ly(0,T;V). Then

[ullsior < c(s)lulzor

for2 < s <6 andl satisfying

» | W
~| N

N W

Here, [[ulls1.qr = [[ullL0.1:L9)-

PrOOF (Exercise) By Lemma 4.3,

lu( O)llsa < e(s)lulyg, [[Vul, H)ll5q

)i < .
/ a0l qdr) " < c(s)luli, / [Vut o)lghdt) "

If al = 2, then the required inequality follows and

and
1
7

2 2 —
§+—:§+a:§—|—3( S):§. U
s 1 S s 2s 2

Corollary 4.5. Let u € Loo(0,T; H) N Lo(0,T; V). Then

I Vullsior < c(s)luls o,

with s and | greater than one and subject to the identity

5.2
s 1

PRroOF (Exercise) By Holder inequality,

/\u Vul? dx< /]Vu] dx /]u\sldx
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with s = 22—_58 and thus after integration in ¢ and application of Hdélder
inequality

21 2—1

T
- Vllagr < [Vulan ([ ([ lulde) ™ ar) 7
0

Q

It is easy to verify
—F == lh = ——. 5.4.2
S1 + ll 27 ! -2 ( )
The required inequality follows from Corollary 4.4.
Let us discuss some consequences of (5.4.2):
3 2 3 2—1 3(2- 2 3
+ _eoe 2 3

S1 E:;—_SS ) 2s ) 2

which implies
2
3 + - =4 O
s

5.5 Uniqueness of Weak Leray-Hopf
Solutions. 2D Case
Theorem 5.1. (O. Ladyzhenskaya) Let n = 2. Then, under assumptions

(5.3.2), (5.8.3), a weak Leray-Hopf solution to initial boundary value problem
(5.3.1) is unique.

Proor We let f = —divv ® v + f. By Corollary 4.2, f belongs to
Ly(0, 75 V') (since v € Ly(Qr)). By Theorem 2.3 of Section 4, we know that
there exists a unique function u having the following properties:

uwe C([0,T); H) N Ly(0,T; V), dyu € Ly(0,T5V"); (5.5.1)
for a.a. ¢t € [0, 7],
/ [@u(x, t) - w(z) + Vu(z,t) : Vw(z) — f(z,8) - wz)|de =0  (5.5.2)
Q

for all w € V;
u(z,0) = a(z), x € Q. (5.5.3)
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Recalling Definition 3.1, part (ii), we get from (5.5.2) that © = v — u satisfies
the identity

/[—v@¢qumaﬂw+vu@w;vwmmﬂwdz:o (5.5.4)
Qr

for all W € C5(Q) and for any x € Cg(0,T). Our aim is to get rid of the
assumption that x vanishes in a neighborhood of 0. To this end, we are going

to use the following fact:
[7( )]|20 — 0 (5.5.5)

as t — +0. Take any function x € C*([0,T7]) so that x(7) = 0 and a function
¢. having the properties: ¢.(t) = 1if t > ¢, . (t) = 0if 0 < t < &/2, and
:(t) = (2t —e)/e if /2 < t < e. Then, by (5.5.4), with ¢.x as ¥,

[ 6] = vtast) W@ax(0) + Vot 0) s VW (o) d:

Qr

_gj/f@QWW@MWk_@

For the right hand side, we have

L] < sup [W(z)| sup x(7)v/[Q] sup [[o(-;1)[]20 = 0
€N 7€[0,T) 0<t<e

as € — 0.
So,
/ [— U(z,t) - W(x)0x(t) + Vo(z,t) : VIW(z)x(t)|dz =0
Qr
for all W € C§%(2) and any x € C*([0,T]) with x(T') = 0. This means that

v = 0 in Q7 and any weak Leray-Hopf solution v has the following properties:
veC([0,T]; H) N Ly (0, T3 V), O € Lo(0,T;V'); (5.5.6)
for a.a. t € 0,77,

/ [atv(x,t) ~w(z) + Vo(z,t) Vw(x)} dx
Q

= / [U(x,t) ®@v(x,t) : Vw(z) + f(:v,t) . w(flf)} dx (5.5.7)
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for all w € V;
v(z,0) = a(x), x € Q. (5.5.8)

Now, assume that we have two different solutions v! and v?. Letting
u = v? — vl one deduce from (5.5.7) that:

/ [Gtu(:c,t) ~w(x) + Vu(z,t) : Vw(a:)] dr =

Q

— /(U2(;p, t) @ v (z,t) — v (z,t) @ v'(2,t)) : Vw(x)ds

for any w € V. Taking w(x) = u(z,t) in the above identity,

1
FOlluC Ol + IVl )50 =

= /(u(a:,t) ®v*(z,t) : Vu(r,t) + o' (z,t) @ u(x,t) : Vu(z,t))dr <
<0+ [[Vu(, t)llaelluC, llaellv' ¢, )llse.

By using Ladyzhenskaya’s inequality twice,

' (o B)lla0 < 200 GOV ()50 < 210" 50,V (5 D50 <
< c(a, HIIVV' ()30

and
u(- D)o < 2llul- )l Vul, t)3.0.
And thus

1
FOlluC Olg + [ Vul- Dlle <
3 1 1
< c(a, N)|Vu(, )3 0lluC D3l Vo ()5 q.
Applying Young’s inequality, we find
Oullul )30 + IVul, )30 < collu, )3l VY ()50

and thus
Allu(-, )50 < coy(®)lul-,t)]3.0,



128 CHAPTER 5. NON-LINEAR NON-STATIONARY PROBLEM

where y(t) := ||Vo' (-, t)H%Q From this differential inequality, it is not diffi-
cult to derive .
6%(€_fogyoﬂdTHu(vt)”§Q> <0
and
Tl D < u(- 0|20 = 0.

Therefore, [Ju(-,t)|[34 = 0. O
Let us discuss further regularity of 2D weak Leray-Hopf solutions.

Theorem 5.2. Assume that a € V, and f € Ly(Qr). Let v be a unique
solution to initial boundary value problem (5.5.1). Then

ve W3 (Qr), Vv e C(0,T]; Ly(Q)).
Moreover, there exists ¢ € Wy (Qr) such that
ov+v-Vo—Av=f— Vg, dive =0
a.e. in Qr. It is supposed that 2 is a bounded domain with smooth boundary.

PROOF Let us go back to problem (5.3.4)-(5.3.6), where a function v
defined by the following relations:

v? € C([0,T); H) N Ly(0,T; V), 8° € Ly(0,T;V'); (5.5.9)

for a.a. t € [0, 7]

/(@v"(a:,t) -0(z) + Vol (z,t) : Vo(x))de

Q

_ / 1) - 5(2))de (5.5.10)
Q

for all v € V', where

[v¢(-,t) — a(-)llao — 0 (5.5.11)
as t — +0.
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According to Theorem 4.1 of Chapter 4, there exists a functions u? €
Wyt (Qr) with Vue € C([0,T]; Ly(Q)) and p? € W, °(Qr) such that

oul — Aul = fv— Vpe, divu? =0

a.e. in Qr and u?(-,0) = a(-). Using the same arguments as in the proof
of the previous statement, we can claim that v¢ = u?. Multiplying then the
equation

v + (v3) v% — Ave = f¢ =V p*

by Av? and integrating each term in the product with respect to =, we find

/AUQ - Avldz = / | Av®|?da,
Q Q
/Vp@ - Avldz =0,
Q
~ 1
/&:vg - Avdxr = /&:UQ - Avldr = —§8t||V UQH%,Q
Q Q

since Ave € H and 8¢ € H for each fixed . So, we derive the inequality

1 ~ ~
FOVelsa + 1805 < [ fll20l Av?lla0+
H1(09)olla.0ll Veell10] Av? |20 <

< 1 fllzll Avellzq + 10|10l Vo[l Ave |2.0.

To estimate the first and the second factors in the last term of the right
hand side of the above inequality, we are going to exploit Ladyzhenskaya’s
inequality one more time

[0

10 < 2[00l Veell3g < cla, NIIV?l2q

and
IVoe|liq < (V3 o(IV20l50 + [[V4ll5.0).

We also need the Cattabriga-Solonnikov inequality

IV20?l3q < c(Q)| Av?20-
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So, combining the latter results, we find the basic estimate

1 ~ ~
FOVel5a + 1AvlEg < [ fllaal Av?lla0
1 11 1~

+c(a, [, DIV oIVl o (1Av3 o + VY3 o) | Av? 20

Now, if we apply Young’s inequalities in an appropriate way, we can arrive
at the following differential inequality

Oy + 80|50 < cla, f (I fll50 +y + I Vo2l5.09).

where function y(t) = [|[Vve(-, t)||3 o obeys the initial condition y(0) = || Val|3 ¢
The latter, together with energy estimate (5.3.7), gives two estimates

sup |[|[Vo?(-,1)[150 + V2250, < cla, f,) < co. (5.5.12)
o<t<T

To get all remaining estimates, we make use of Theorem 4.1 of Section 4,
which reads

102 20, + IV*02ll20r + VP ll20r < ¢|Ifll2qr + I Val2a].

But _
[ fllz.or < [[fll2.@r + (%) - VU207 <
< [ fllzr + 1(v)ollaor[[VVlaqr <
< cla, )| 1+ [[v°]40r [ VO°|l10r |-

The right hand side of the above inequality can be evaluated with the help
of Ladyzhenskaya’s inequality and (5.5.12).

Finally, we can pass to the limit as p — 0 and get all the statements of
Theorem 5.2. Theorem 5.2 is proved.

5.6 Further Properties of Weak Leray-Hopf
Solutions

Theorem 6.1. Let € be a bounded domain with smooth boundary. Assume

felQr), acH. (5.6.1)
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1. Let v be an arbitrary weak Leray-Hopf solution in Qr with the right
hand side f and initial data a satisfying (5.6.1). Then, for each § > 0 and
for any numbers s,l > 1 subject to the condition

3 2
__|__:47
s 1

we have
CIS Ws2,7ll (Q5,T)7

where Qs = 2x]0,T[. Moreover, there exists a function q (pressure) which
belongs to the following spaces

¢ € W' (Qs7) N Loy (Qsr) (5.6.2)
with the same 0, s and | as above and
3s
"= =1
T T3y
so that 5 9
FRETA

The Navier-Stokes equations
ov+divi®v—Av=f—Vg, dive =0

hold in the sense of distributions and a.e. in Qr.

II. There exists at least one weak Leray-Hopf solution v and a pressure
q with the properties mentioned in Part I such that, for any to €]0,T], the
local energy inequality

to to
/|v(x,t0)|2<p(x,t0)dx+//4,0|VU|2dxdt§//<|v|2(8t<,0+Ago)
Q 0 0 0 Q

+v - Vol|o]? + 2q) + 2f - u) ddt (5.6.3)
holds for any non-negative function ¢ € C§°(R?x]0, oc]).
PRrOOF . Take x € C5°(0,infty) and let u = yv. Obviously,

w € Loo(0,T; H) N Ly(0,T; V).
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Next, plague xw with w € Cg4(Qr) into identity (iii) of Definition 3.1 and
get for u:

/(—u 0w + Vu : Vw)dz = /f wdz,

Qr Qr
where

]7: xf—xdive®ov —dxv = xf — xv-Vu— 0.
By Corollary 4.5, _
f € Lo(Qr)

for any s,1 > 1 satisfying 3/s + 2/l = 4. Moreover, u = 0 for sufficiently
small ¢. On the other hand, the linear theory ensures that, for such f, there
exist functions v and ¢ such that

TeWH(Qr), 7€ W (Qr)

with finite numbers s,l > 1 satisfying 3/s + 2/l = 4 and

O — AT+ Vi=f, divi=0

in Qr,
v(x,t) =0 x € 09, /E]V(x,t)dx =0
0
for t € [0,77,
(-, 0) =0
in €.

Using essentially the same arguments as in 2D-case, we can show that for
v=u—7v
/(i}\- Ow — Vv : Vw)dz =0
Qr
for w = XW with W € Cg4(Q) and with ¥ € C*([0,7]) and X(T') = 0.
Now, the uniqueness results for the linear theory imply that © = 0. Hence,
XV € Wz’ll(QT) and

X(Ow +v-Vv—Av— f)=—-Vq.

Next, take any § > 0 and assume that y(¢) = xs(t) = 1 if t > ¢ and
X(t) = xs(t) = t/d if <t < J. A pressure ¢ corresponding to chosen 0 is
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denoted by ¢s. Obviously, ¢s € WS{}O(Q57T) with required s and /. Assuming
that 0, > d2 then g5, = g5, in Qs, p. This allows us to introduce the function
q so that

q(,t) = gs(-, 1)
if t > 6 > 0. It is well defined and satisfies the required properties. So, the
first part of the theorem is proved.

Part I1. Now, let us go back to the proof of Theorem 3.2 on the existence
of weak Leray-Hopf solutions and try to apply the procedure, described in
the proof of Part I, to regularized problem. Letting u? = yv?, where x is a
function of ¢ from CZ(0,00), we state that u¢ is a solution to the problem:

u? € C([0,T); H)N Ly(0,T;V), Ol € Ly(0,T;V"); (5.6.4)
for a.a. t € 0,7

/(atug(x, t)-v(z) + Vul(z,t) : Vo(z))dx

Q

_ / Fe(a,t) - 5(a))da (5.6.5)
Q

for allv € V;
[u? (- )|l — 0 (5.6.6)
as t — +0.
Here, B o
fe=fR+1f
with

fi(at) = x(t) f(w.t) + Dx(t)v? (., t),
f3 (@ t) = —x(O)(©*)(x, 1) - Vo (x,1).

Simply repeating the proof of Corollary 4.4 and Corollary 4.5, we estimate
the second part

Hf2g||5l7l/7QT < C(S/)’UQ|%,QT < 0(8/’ a, f)

with s',1' > 1 and 3/s" + 2/l = 4. Moreover, we can claim that the whole
right hand side f¢ is estimated similarly:

’lfg"3/7l/7QT S C(Sl, a, f7 X7 Q)
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Now, according to Theorem 5.2 of Chapter 4, there exists functions u?
and ¢¢ satisfy the relations:

WeWrii(Qr), ¢ € Wi (Qr);

Dt — AU = fe— Vg2,  divit=0

in Qr;
u?|orgr = 0, [¢3(, t)]a = 0.

By the same theorem, these functions have the bound
IV?U@||o v 0r + 100000 0.0r + IVl 00r
<o, DN Nlvrar < s, D0, f,X)

Applying Theorem 6.2 of Chapter 4 on uniqueness and the same arguments
as in 2D case, we can state

u? = u?.

Next, we consider the sequence of function ys with 6 = T'/k, k € N, such
that xs(t) =t/0if 0 <t <6 and xs(t) = 1 if t > §. And thus

IV*0l 5 00@s e + 10008l @5 + VG5 N0,
<c(s,Qa,f,9). (5.6.7)

Let v¢ be a sequence constructed in the proof of Theorem 3.2 i.e.,

(IEEuN}
in Lo,(0,T;H),
Ve — Vo
iIl L2<07 TJ V>7
v = v
iIl LQ(QT),

Q/v@(x,t) w(z)de — Q/v(x,t) cw(z)de

in C([0,T1]) for each w € Ly(Q).
In addition, we know that

[08]]s 1. @r < ]2, < e(a; f)
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with 3/s” +2/1" = 3/2, see Corollary 4.4. In particular, we may assume that
(take s” = 1" =10/3)
v =
in Lo (Qr) and therefore
v = v (5.6.8)
in L3(Qr) and
(v9), - Vv? = v-Vu

in Ll(QT)

Given s,l > 1 with 3/s+2/1=3, we find I’ = [ and s = 3s/(s + 3). It
is easy to check, 3/s’ + 2/I" = 4. Using the diagonal Cantor procedure and
bounds (5.6.7), one can ensure that

0y — O, Ve = V3

in Ly y(Qsr) for each 6 > 0. As to the pressure, the diagonal Cantor proce-
dure can be used one more time to show that

Vg§ — Vs

n LS/,I’<Q6,T) and
a5 — as
in Lg;(Qs7) for each 6. Here [gs(-,t)]q = 0.

It is worthy to note that g5, = g5, in Q1 if 61 < 2. Indeed, it follows
from two identities for 6 = d; and d = 99

Vgs=f—0w—v-Vuo+ Av

in Qs and [gs(-,t)]o = 0.
So, the function, defined as

q(z) = q5(2), z € Qsr,

belongs Wsl,”?,(QT) and L, (Qr) for each ¢ > 0.

The last thing is to check validity of the local energy inequality. It
is known that the regularized solution is smooth enough and, therefore,
obeys the local energy identity. So, a given non-negative function ¢ €
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C5°(R3x]0, 00, we choose § so small that sptp € R3x]d, co[. After mul-
tiplication of the equation

0 + (v9), - Vvl — Av? = f —V¢i

by @v? and integration of the product by parts (which is legal for the regu-
larized solution)

to to
/ 0z, to)| %0, to) e + / / | VePddt = / / (102 (0np + )+
0 Q 0 Q

Q

+(09), - Vip([0?[? + 24§) + 2f - v) dadt (5.6.9)

for any t € [4, 7.
We also know that
4 —q
in L3(Qsr). (Indeed, g — ¢ in L%(Q&T) since 3/(5/3) +2/(5/3) = 3).
Taking into account (5.6.8) and using the same arguments as in the proof of

Theorem 3.2, one can pass to the limit in (5.6.9) as p — 0 and get required
local energy inequality (5.6.3). O

5.7 Strong Solutions
Definition 7.1. A weak Leray-Hopf solution is called a strong solution, if

Vo € Loo(0,T; Ly (). (5.7.1)

Theorem 7.2. (Global ezistence of strong solutions for "small” data). There
exists a constant co(2) such that if

arctan(||Vall3 o) + co(@)(llallz0 + 1fl20,) < 5 (5.7.2)

bo |

then there ezists a strong solution to initial boundary value problem (5.5.1)

PROOF Let us go back to problem (5.3.4)-(5.3.6), see the proof of Theorem
3.2,
ve € O([0,T]; H) N Ly(0,T; V), 02 € Lo(0,T;V'):; (5.7.3)
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for a.a. t € [0, 7]

/(@UQ(:L‘, t)-v(z) + Vol(z,t) : Vo(x))de =

Q
= /(vg(x,t) ® (v9)p(z,t) : Vo(z) + fe(x,t) - v(x))dx (5.7.4)
Q
for all v € V;
[ve(-,t) —a(-)|le.0 — 0 (5.7.5)

as t — +0. Here,
f’g = f - (UQ)Q -Vl e L2<QT)
Using the similar arguments as in the proof of Theorem 5.1 of this section

and Theorems 6.2, 5.1 of Section 4 on uniqueness and regularity for non-
stationary Stokes problem, we may conclude that

v e W2 Qr), Vv e C([0,T]; Ly(R)).

Moreover, there exists a pressure field p?¢ € VV21 ’O(QT) such that the regu-
larised Navier-Stokes equations

O — Ave = € —Vpe,  dive? =0

hold a.e. in Q. This is the starting point for the proof of our theorem.
We know that sequence v¢ converges to a weak Leray-Hopf solution to corre-
sponding initial boundary value problem (5.3.1). So, what we need is to get
uniform estimates of Vv?. Let

y(t) ::/|Vv9(x,t)|2dx.

We proceed as in the proof of Theorem 5.2, multiplying the equation by Av?
and arguing exactly as it has been done there. As a result, after obvious
applications of Cauchy and Holder inequalities, we find

y + / RotPde < / 1(09) 2V 0Pz + cl|fIB0 <
Q [9]

< cllv?llg ollVe?lls o + cll f1I5.0. (5.7.6)
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The first term on the right hand side of the latter inequality can be evaluated
with the help of the Galiardo-Nirenberg inequality

vl < .

and the multiplicative inequality

1
2

IVerlfa < @yt ([ IV20Pde+y)”

Q

In addition, the Cattabriga-Solonnikov inequality of the form

/|V2119|2dx§C(Q)/|Av@|2dx. (5.7.7)
Q Q

is needed. So, from (5.7.6) and (5.7.7), it follows that:

o / AvtPde < QP + el 20 (5.7.8)
Q

Recalling the properties of eigenvalues \; and eigenfunctions ¢y of the
Stokes operator, we observe that:

[ 1B =S = a3 b=
Q k=1 k=1

where

cp(t) = /Ug(l’,t) - p(z)dz.
0
So, (5.7.8) yields the final differential inequality

y'(t) + My (t) < al(@)(° (1) +9(t), (5.7.9)
with
y(0) = [Val3a.  9&) =f(t)50
A weaker versions of (5.7.9) is

y'(t)
1+ y2(t)

< a(@)|y(t) + 9(t)]
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so that after integration of it and application of the energy inequality, we
arrive at the bound

arctan(y(t)) < arctan(|| Va2, +cl(Q)[ / y(t)tdt + / g(t)tdt]

s
< arctan(|Val o) + eo(@) |l + /130, | < 5
for any t € [0, T, which implies
y(t) < C, t e 0,7T],

with a constant ¢ independent of p and . [J

Theorem 7.3. Assume that

ac ‘/, f < LQ(QT)

Then there exists T' €]0,T] such that initial boundary value problem (5.3.1)
has a strong solution in Q.

PROOF Arguing as in the proof of Theorem 7.2, let us go back to inequal-
ity (5.7.9). We need to show that there exists 7" < T, where y(t) has an
upper bound independent of g and ¢ € [0,7"]. To achieve this goal, we make
a substitution z(t) = y(t) — y(0) and, after application of Young’s inequality,
arrive at the following modification of estimate (5.7.9)

2(8) + Mz (t) < er(Q)(2%(1) +5°(0) + g(t)).

An equivalent form of it is:

24+ (1 - f\—1z2)z < e (y*(0) + g(1))
1
with z(0) = 0. By continuity,
A2y <1 (5.7.10)
A

for small positive ¢. Assume that ¢, is the first point, at which inequality
(5.7.10) is violated. So, inequality (5.7.10) holds for 0 < ¢t < ¢, and

C1
)\—122 (tg) =1.
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Next, we take the largest value 7" €]0, 7] so that

T/

o [ [P0+ o0)]ar < %\ﬁ

0

From inequality (5.7.10) and the definition of ¢,, it follows that:

Z(t) < ei(y?(0) + g(t))

for all 0 <t <t,. Therefore,

A0 < e [(P(0) +g(s))ds

for all 0 <t <t,. And thus for t =¢,, we have

2(ty) = \//C\:l1 <a ]g(?f’(o) +9(s))ds

and, in a view of the definition of 7",

Tl

/ [y3(0>+g(t)]dt< / [y3(o>+g(s>}ds.

0
The latter implies t, > 7" for all p > 0 and the required estimate
T/ :
1
1) < [Vallo+e [ [0+ 0] e < [ValBq+ 52

0

for all 0 < ¢t < T” and for all o > 0. [J
Remark 7.4. If f =0, the lower bound for T' can be improved

S C4(Q)
~ [ Vall3q

and this 1s the celebrated Leray estimate.
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PROOF In this case, one can deduce from inequality (5.7.9) the following:

/
% <a
for 0 <t < T. The integration gives us:

— < 2¢;t
v0) )
and thus
Y (1)(1 = 2e1ty*(0)) < y*(0).
We let T} = m. Then 1 — 2¢ty?(0) > 1/2 and y(t) < v2y(0) for

0 <t < T} which implies 7" > T and we get the required estimate with an
appropriated constant.

Remark 7.5. Solutions, constructed in Theorems 7.2 and 7.3, have the fol-
lowing reqularity properties: v € VV22 ’1(QT) and there exists a function q such
that Vq € Lo(Qr) and

ov+v-Vv—Av=f—Vg, dive =0
a.e. i Qr. (One should be replace Qr with Q7+ in the case of Theorem 7.3).

PROOF In fact, from (5.7.8) and from the Cattabriga-Solonnikov inequal-
ity (5.7.7), it follows that:

V2025 o, < c(IVallag, I fll2or)

and, in a view of derivation (5.7.8), we get

/ |(v9)o* Vv Pdz < e(||Vallaa, | fllzer)-
Qr

The linear theory, applied to the initial boundary value problem
O? — Av? + Vgl = f — (v?), - Vo, dive? =0 in Qr
v8]a0x 0,1 = 0, 08— = a,

leads to all other statements of Remark 5.7.5.
The main result of this section is:
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Theorem 7.6. (Uniqueness of strong solutions in the class of weak Leray-
Hopf solutions) Assume that u' and u® are weak Leray-Hopf solutions to the
initial boundary value problem

ov+v-Vo—Av=f— Vg, dive =0 in Qr

U’E)QX[O,T} =0, U|t:0 = a.
with a € V and f € Ly(Qr). Let u® be a strong solution then u' = u?,
We start with several auxiliary propositions.

Proposition 7.7. (Uniqueness of strong solutions in the class of strong so-
lutions) Assume that u' and u® are strong solutions to the initial boundary
value problem

ov+v-Vo—Av=f— Vg, dive =0 in Qr

v]aaxp,m = 0, V)= = a,
with a € V and f € Ly(Qr). Then u' = u?.
PRrROOF First we note that
dwu € Ly(0,T; V).
Indeed,
) /(u V) - wd:v‘ - ] /u @ u: Vudz| < [[u]2ol|Vllag
0

Q
< cQVul3 ol Vol < CQ )|Vl

for any w € V. So, f: f—u-Vu € Ly(0,T; V') and thus dyu € Ly(0,T;V").
Then, by the definition of weak solution, we have

/ (1) [@u(w, 1) w(z) — (u®u)(z,t) : Vw(z)

Qr

+Vu(z,t) : Vw(x)] dz = /X(t)f(x,t) ~w(x)dz
Qr
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for any w € C§5(€2) and for any x € Cg°(0,7T'). It is easy to see

/ [@u(x, t)-w(zr) — (u@u)(z,t): Vw(x)

Q

+Vu(z,t) : Vw(m)} dr = /f(m, t) - w(x)dx
Q

for any w € V' and for a.a. t € [0, 7.
So, assume that u' and u? are two different strong solutions and let v =
u! —u?. Then, we have

1
30lela + Voo = [ @ u — a0 0?): Vods

Q
:/(U®u1+u2®v):Vvdﬁz/u2®v:Vvdx
Q Q
= —/U ®v: Vuldr < ||Vu2||29||v||?m (5.7.11)

Q

Let us recall the following 3D multiplicative inequality
1 3
[v]la0 < cllv]lzallVollsq-
So, after application of Young’s inequality
Aillvllza + IVol3 0 < e Va?ll5gllvl3 o

Since ||Vu?||2.00.0, < Ch,

atHUHg,Q < Cf”””%,m

which implies

e_clt/|v(x,t)|2d$§ /|v(a:,0)|2dx:0.
Q

Q

Proposition 7.7 is proved.
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Proposition 7.8. (Smoothness of strong solutions) Let a vector field u be a
strong solution to the following initial boundary value problem:

ou+u-Vu—Au= f—Vp, divu =0 in Qr

uloaxjo,r) = 0, uli—o = a,
with a € V and f € Ly(Qr). Then u € W' (Qr) and p € Wy°(Qr).

PROOF Let us denote ||Vull2,000, by A. Coming back to our proof of
Theorem 7.3, define a positive number T4 so that

1 [TAA?’ + / g(s)ds} < %\/2\:11 (5.7.12)

10, T[Nt t+Tal

for any ¢ € [0, 7.

By (5.7.12) and by Theorem 7.3, there exists strong solution u! in Qr,
with initial data u'|,—g = a. This solution belongs to W3 (Qr,) and the
corresponding pressure ¢' belongs to W, (Qr, ), see Remark 7.5. By Propo-
sition 7.7, u! = w in Qr,. We know also Vu € C(0,T; Ly(2)). So, we can
apply Theorem 7.3 one more time in ()7, /237, /2 and find a strong solution
u? there with initial data u(-,T4/2). By Proposition 7.7, u? = u Qr, 2,37, /2
and V¢' = V¢? in Qr,/2,7,- After a finite number of steps, we find that
u € WNQr) and can easily recover a function p € W,"(Qr) such that
Vp=Vq" on QrnN QTuk/2,Ta(k+1)/2, Where k=1,2,.... [J

PROOF OF THEOREM 7.6 Since u? is a strong solution, it satisfies the
identity

/ [atzﬂ(x, £) - w(z) + (u¥(x, 1) - Vud(z, 1)) - w(z)

Q

£V (1) V()| di = / F@.t) - w(z)de (5.7.13)
Q
for any w € V and for a.a. t € [0,7]. Regarding to u', we have a weaker

identity

/(—u1 O —ut @ut : Vw + Vu' -V — f-w)dz =0 (5.7.14)
Qr



5.7. STRONG SOLUTIONS 145

for any w € C§5(Qr)-

We would like to test (5.7.14) with «? but it should be justified. Indeed,
we know that

u' € Lo (QT)

3

and, by density arguments, (5.7.14) must be true for w(z,t) = x(t)v(x) with
ve Ji(Q)and x € W1i(0,T) = {x € W}0,T): x(0) =0, x(T) = 0}. For
domains with sufficiently smooth domains

So, we observe that (5.7.14) holds for x¢g, where @y, is the kth eigenfunction
of the Stokes operator. Since u? € W' (Qr), the series S5 | e (t)pr () con-
verges to u? in W' (Qr). This, in turn, implies that the series 72 | cx(t) Vi ()
converges to Vu? in Ls(Qr). The latter follows from the multiplicative in-
equality ’

Vo, 8)lls.0 < c@IVOC DRIV DNz + [V ll0)

which is valid for sufficiently smooth v. Hence,

T 3

IVolls o < (2, T) Sup Vol (IV*ollaqr + [ Voll2gr) 10

Having this inequality in hands, it is not so difficult to show that (5.7.14)
can be tested with x, gu?, where xo5(t) = t/a if 0 <t < a, xap(t) = 1if
a<t<pB, xaplt)=to+8—-1)/Biftg <t <ty+ [, and xap5(t) = 0 if
to+ B8 <t <T. Plaguing w = x, gu? into (5.7.14), we find

/Xa,ﬁ(—ul SO —u' @ut VR + YVl Ve? — f - u?)dz
Qr

= — /ul . UQX;ﬁdz =1, + I3,
Qr
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where

0 Q

1 «
+—//|a|2dxdt.
8}
0 Q

Since [[ul(-,t) — a(:)|l2.0 and [[u*(-,t) — a(-)||2.0 go to zero as t — 0, we can

observe that
I, — —/|a|2dx
Q
as a — 0.

The analogous result takes place at the right end point:

1 1 [
—l—a//a-(u?—a)dxdt—i—a//a-(ul—a)da:dt
0 0

to+p

1
I :—//u1~u2dxdt
°T B
to Q
to+5

:% / /ul(x,t)-(uQ(x,t)—uQ(x,to))d:vdt

to+p

+%to/Q/(ul(:c,t)—ul(:c,to))-UQ(x,to)dxdt

+/u1(x,t0) ~u?(z,to)de

Q

By strong continuity in Lo () of the strong solution u?, the first term on the
right hand side goes to zero and by weak continuity of weak solution u' the
second term there goes to zero as well. So,

Iz — /ul(m,to) cu?(z,to)dx
Q
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as [ — 0. Finally, we have

to
//(—ul-at'zf—ul@ul:Vu2+Vu1:Vuz—f-uQ)dz
0 0

_ / W (2, to) - u (o) — / alfdz (5.7.15)
Q

Q

for any ¢, € [0, 7.
Now, we going to test (5.7.13) with w(z) = u!(x,t) —u?(z,t), which, after
integration over |0, ¢y[, gives us:

//&u (x,t) :ct)dxdt——/\u (z,t0)*dx + = /|a] dx

—l—// —w?®@u’: V(u' —u?) + Vu' : V(u' —u?)
—f-(u' - u2))da:dt =0.

So, adding the latter to (5.7.15), we find

[ = 3la@P + e, t0) (o, t0) = o, t0) o

// [—ul®ul Vu? — v @u? : V(u' —u?) — |[Vul]?
0 0
Fovul Va4 f - ul} dedt = 0. (5.7.16)

We also know that weak solution satisfies the energy inequality

to to
1
5/]ul(x,to)\de—l—//\Vu1]2da:dtg/]a\zdx—l—//f-uldxdt.
0 0 0 0 0 0
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Subtracting (5.7.16) from the energy inequality, we show

/|u (z,t9) — u*(x,to)| dx+//|Vu —u?)[*dzdt

// —u' @u'): V(u' —u?)dadt = I (5.7.17)

The rest of the proof is similar to the proof of Theorem 7.2. Indeed,

[—// (u' —u?)) : V(u' — u?)dzdt
—O/Q/(ul —u?) @ (u' — u?) : Vuldrdt

0
< / IVl — |2 odt

0
< sup [Vallan [ e - [ gt
0<t<T

Since u? is a strong solution, the quantity supy,.r ||[v*|l10 = |Vt?|l2.00.07 18

finite. Applying multiplicative inequality, we have

1 3
1< | Ve lamor / e — a ol V(e — )| it

to
gcuvu?uzmQT(//W ' Pdrdt)’ //yvu — )] dxdt)
0 Q

From here and from (5.7.17), it follows that:

Y (to) < || Vu?||2.00.0,Y(t0), y(to) = / lut(z,t0) — u’(z, to)|*dz

for all ¢y € [0, T] with y(0) = 0. This immediately implies u! = u?.
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Theorem 7.9. (Ladyzhenskaya-Prodi-Serrin condition) Let a € V and f €
Ly(Qr). Assume that we have two weak Leray-Hopf solutions u' and u?.
Assume that u?® obeys the Ladyzhenskaya-Prodi-Serrin condition, i.e.,

U2 S Ls,l (QT)

with s,1 > 1, satisfying

Then u' = u?.

PROOF Just for simplicity let us assume f = 0. We also suppose that
s > 3. The case s = 3 and | = oo is much more complicated and will be
discussed later. Our aim is to show that a weak Leray-Hopf solution, satis-
fying Ladyzhenskaya-Prodi-Serrin condition, is in fact a strong one. Then,
the statement of the theorem follows from Theorem 7.6.

We know that, by Theorem 7.3, there exists a strong solution to our
initial-boundary value problem on a small time interval [0, 7], which, by
Theorem 7.6, coincides with any weak solution and, in particular, with v =
u®. Let us denote by To(< T') the first instance of time, for which u is not a
strong solution on [0, 7]. By Proposition 7.8, we have for any 7" < T,

we W3 Qr),  VueC(0,T']; Ly(Qr))
and there exists a pressure field p € W,°(Qgv) so that
ou+ u-Vu— Au = —Vp, divu =0

a.e. in Qpv.
By Remark 7.4,
Cy
Ty —t> =
V)i,

for all t < Ty. So, we have

lim ||Vu(t)|2.0 = oco. (5.7.18)
aTofO

t

We proceed as in the proof of (5.7.6) simply replacing v¢ with u. As a
result,

y’+/]£u]2da: < c/\u!Q\VuFdx, (5.7.19)
Q 0
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where y(s) = [[Vul[3 .

Applying consequently Holder inequality, an appropriated multiplicative
inequality, and Cattabriga-Solonnikov inequality to the right hand side of
(5.7.19), we have

[ 19uPds < el gl VP,
Q
2 2(1-2) 2
< (2, 9) [ul2IVullz D (192l + [Vl
4 o
< c(,5) a2 Vullf ol A

6
s

~—

[=X

N o

Q
Using Young’s inequality, we arrive at the final inequality
y'(t) < e(Q,8)|Jul, )]0y ()
for all t < Tj. Integrating it, we find
y(t) < y(o)eC(Q’S)HUHZs,l,QT
for all t < T,. This contradicts (5.7.18). O

Remark 7.10. Unfortunately, we do not know whether any weak Leray-Hopf
solution u satisfies Ladyzhenskaya-Prodi-Serrin condition. What we know is
that

ue Lyy(Qr)
with s',1' <1 and

5.2 3

s 2

So, there is a finite gap.

The problem of uniqueness of weak solution is still open.

If we show that any weak (Leray-Hopf) solution is smooth (for example,
it is strong), then we have uniqueness in the class of weak solutions.

The problem of smoothness of weak solutions is one of seven Millennium
problems.



Chapter 6

Local Regularity Theory for
Non-Stationary Navier-Stokes
Equations

6.1 Notation

In this chapter, we are going to exploit the following notation:
R,={teR: t>0} R_={teR: t<0};

R ={o =" 2q): 2/ =(z;), i=1,2,...,d—1, xqg > 0};

Q- =RIxR_,Q,=R¥x Ry;

Qs = Qx]0,T[, Qr = Qx]0,T], Q C RY

B(x,r) is the ball in R? of radius r centered at the point z € R? B(r) =
B(0,r), B = B(1);

By(e,r) = {y = (s/,9a) € B(w,7) : ya > x4} is ahalfball, By (r) = B, (0,7),
By = B, (1);

Q(z,7) = B(x,r)x|t—7r? 1] is the parabolic ball in R? x R of radius r centered
at the point z = (z,t) e RI x R, Q(r) = Q(0,7), Q = Q(1);

Q—l—(T) = Q—l—(ov,r) = B+(T)X] - T27 0[7
Ly(Q2) and W}(Q) are the usual Lebesgue and Sobolev spaces, respectively;

Lai(Qr) = Li(0,T5 Ls(Q)), Ls(Qr) = Ly s(Qr);

151



152 CHAPTER 6. LOCAL REGULARITY THEORY

W' (Qr) = {[v] + Vo] € Loy(Qr)} and W, (Qr) = {[v] + Vo] + V0] +
|0w| € Ly (Qr)} are parabolic Sobolev spaces;

Coo(Q)) = {v € Cg°(Q) : dive = 0};

3(Q) is the closure of the set C§5(€2) in the space Ly(§2), 3%(9) is the closure
of the same set with respect to the Dirichlet integral;

BMO is the space of functions having bounded mean oscillation;

C(Q) is the space of continuous function, C*(Qy) is the space of Holder
continuous with respect to the parabolic metrics;

c is a generic positive constant.

6.2 c-Regularity Theory

The aim of this section is the so-called suitable weak solutions to the Navier-
Stokes equations and their smoothness. Those solutions were introduced in
[2], see also [42]-[45], [38], and [31]. Our version is due to [38].

Definition 2.1. Let w be a open set in R3. We say that a pair w and p is a
suitable weak solution to the Navier-Stokes equations in wx|Ty, T if u and p
obey the conditions:

U € Ly oo (wX]Ty, T[) N Ly(Ty, T; Wy (w)); (6.2.1)
pE L%(wx]Tl,T[); (6.2.2)
Ou+u-Vu—Au= —Vp, divu =0 (6.2.3)

in the sense of distributions;
the local energy inequality

[o(@ )u(z t)Pde+2 [ @ Vul*dedt!
w wX}Tl,t[

(6.2.4)
< | (uP(Ap+ ) +u- Ve(lul? + 29)) dadt!
UJX}Tl,t[

holds for a.a. t €Ty, T[ and all nonnegative functions ¢ € Cg°(wx Ty, c0]).

One of the main results of the theory of suitable weak solutions reads
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Lemma 2.2. There exist absolute positive constants €y and cor, k= 1,2, ...,
with the following property. Assume that a pair U and P is a suitable weak
solution to the Navier-Stokes equations in () and satisfies the condition

/ <|U|3 + |PI%) dz < &. (6.2.5)

Q

Then, for any natural number k, V¥=U is Hélder continuous in @(%) and
the following bound is valid:

max |[V" U (2)| < cor. (6.2.6)
2€Q(3)

Remark 2.3. For k =1, Lemma 2.2 has been proven essentially in [2], see
Corollary 1. For alternative approach, we refer the reader to [31], see Lemma
3.1. The case k > 1 was treated in [40], see Proposition 2.1, with the help of
the case k =1 and reqularity results for linear Stokes type systems.

In turn, if £ = 1, Lemma 2.2 is a consequence of the following statement.

Proposition 2.4. Given numbers 9 €]0,1/2[ and M > 3, there are two
constants £1(9, M) > 0 and c1(M) > 0 such that, for any suitable weak
solution v and q to the Navier-Stokes equations in ), satisfying the additional
conditions

‘(U)J’ < M7 le(“?Q) < €1, (627)

the following estimate is valid:
Yy(v,q) < clﬁg}ﬁ(v,q). (6.2.8)
Here and in what follows, we use the notation:

Y (20, R;v,q) = Y (20, R;v) + Y?(20, R; q),

1

Y20, Biv) = (\Q(lR)\ / 0= @l dz)

Q(z0,R)

Y?(20, R; q) = R<|Q<1R)| / g — [a]0.7]2 d2>§,

Q(z0,R)
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1 1
(v)zoﬁ = ‘Q(R)‘ / v dz? [q]xoﬂ = W / qu>

Q(z0,R) B(zo,R)

Yy(v) =Y'0,9;0),  Yi(q) =Y?(0,9;q),
Yy(v,q) =Y(0,%;0,q),  (v)9=(v)ow, 4]0 = [dlo.0-

PROOF OF PROPOSITION 2.4 Assume that the statement is false. This
means that a number ¥ €]0,1/2[ and a sequence of suitable weak solutions
v* and ¢ (in Q) exist such that:

Yi(v*,¢") = 1 = 0 (6.2.9)

as k — 400, ,
Yy(v*, ") > crepv? (6.2.10)

for all £ € N. The constant ¢; will be specified later. Let us introduce
functions

uf = (Uk - (Uk),l)/glk; Pk = (qk - [qk],l)/glk-

They obey the following relations
Vi, ph) = 1, (6.211)

Yy (ub, p*) > 193, (6.2.12)

and the system

atu + Elkdlv ((U )71 +€1ku >® ((U ),1 +51k‘u ) } in Q (6213)

—Auf =-Vpk, divuF =0

in the sense of distributions.
Without loss of generality, one may assume that:

ub —u in L3(Q)
pF—p in L%(Q) (6.2.14)
(v®)1—>b in R3

and .
atu+d1vu®b—Au:—Vp} in Q

Qo0 (6.2.15)
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in the sense of distributions. By (6.2.11) and (6.2.14) , we have
b < M, Yi(u,p) <1, p(-,t)]1 =0 forallte]—1,0. (6.2.16)

Choosing a cut-off function ¢ in an appropriate way in the local energy
inequality, we find

4 ll2.00.06/0) + IV € ll2.00/0) < c2(M) (6.2.17)
and thus, for the limit function,

|ull2,00,03/4) + |V ull2,03/4) < c2(M).

It is easy to check that p is a harmonic function depending on ¢ as a
parameter. After application of bootstrap arguments, we find

sup <|Vu(z)| + |V2u(2)])
2€Q(2/3)

0

2
+< sup / |@tu(x,t)\%dt>3§cg(M).
z€B(2/3)
—(2/3)?

From the above estimate, a parabolic embedding theorem and scaling, it
follows that

1

(@ / u— (V)2 — () ,Pdz)

Q(7)

1 3 3
<ecr? <m / (|V2ulz + ]atu]2)dz>
Q(7)

2
3

< er?(C(an) + %C(M))g < Co(M)rh

for all 0 < 7 < 2/3. The latter estimates gives us:

W

Yy (u) < e (M)s.

(6.2.18)

Using the known multiplicative inequality, see the previous chapter, we
derive from (6.2.17) another estimate

||Uk||§,Q(3/4) < ca(M). (6.2.19)
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Let us estimate the first derivative in time with the help of duality argu-
ments. Indeed, we have from (6.2.13) and (6.2.16)

18|, < c5(M). (6.2.20)

5 (/92 0:(V3(B(3/4)))

Here, V(E/g(B(?)/él)) is the completion of C§°(B(2/3)) in W(B(2/3)). By the
compactness arguments used in the previous section, a subsequence can be
selected so that

ubF —u in Ly(Q(3/4)). (6.2.21)

Now, taking into account (6.2.21) and (6.2.18), we pass to the limit in
(6.2.12) and find

195 < 05 + limsup Y2(p"). (6.2.22)

k—o0

To pass to the limit in the last term of the right hand side in (6.2.22), let us
decompose the pressure p* so that (see [46, 51, 52])

p" = pi + ph. (6.2.23)

Here, the first function p% is defined as a unique solution to the following
boundary value problem: find pf(-,t) € L s (B) such that

/p’f(x,t)Aw(x) dx = —ep, /uk(x,t) @ uF(z,t) : V() do

B B

for all smooth test functions ¢ subjected to the boundary condition ¢|s5 = 0.
It is easy to see that
Api(-,t)=0 inB (6.2.24)

and, by the coercive estimates for Laplace’s operator with the homogeneous
Dirichlet boundary condition, we get the bound for p%:

3
/|plf(ﬁc,t)|gdxgcafk/|uk(x,t)|3d:c. (6.2.25)
B B

Passing to the limit in (6.2.22), we show with the help of (6.2.25) that:

195 < G095 + limsup Y2 (p5). (6.2.26)

k—o0
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By Poincare’s inequality, (6.2.26) can be reduced to the form

k—o0

1 2
193 < 95 + c9*lim sup <W / |Vpl§|% dz) ’ (6.2.27)
Q1Y)

We know that the function p(-,¢) is harmonic in B and thus the following
estimate is valid:

sup |V k(e t)l} <c [ Iph(o. o]} da
z€B(3/4) %

which in turns implies

1 3 c 3
—— [ |Vp5]2dz < — [ [p]> dz
1Q(Y)] 0

QW) a

< c(%wt %/Ip'flgdZ)
Q

The latter inequality, together with (6.2.25), allows us to take the limit in
(6.2.27). As a result, we show that

195 < G035 + o, (6.2.28)
If, from the very beginning, ¢, is chosen so that
CcCl = 2(/51 + C),

we arrive at the contradiction. Proposition 2.4 is proved.
Proposition 2.4 admits the following iterations.

Proposition 2.5. Given numbers M > 3 and € [0,2/3[, we choose 9 €
10,1/2[ so that

el (M9 < 1. (6.2.29)
Let 21(9, M) = min{e; (¥, M), 9° M /2}. If
‘(1}),1’ < M> }/1(’(),(]) < gy, (6230)

then, for any k =1,2, ...,

ﬁk71|(v),19’“_1| < M7 Yﬂk_l(U7Q) <& S &1,

2 6.2.31
Yor(v,q) <076 Yyuor (v, q). ( )
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PROOF We use induction on k. For k = 1, this is nothing but Proposition
2.4.

Assume now that statements (6.2.31) are valid for s = 1,2, ...,k > 2. Our
goal is to prove that they are valid for s = k 4+ 1 as well. Obviously, by
induction,

Yﬁk(U7Q) <& S €1,
and
(%) 1] = OF](v) | < OF[(0) g — (V) it | +0F| (V) s

1 1 1
S @Yﬁk—l(v, Q) + §i9k_1|(1)>719k—1| < ﬁgl + M/2 S M.

Introducing scaled functions

ok (y, ) = o0y, 0%s), "y, s) = 9 q(0"y, 9%s)

for (y,s) € Q, we observe that v* and ¢* are a suitable weak solution in Q.

Since
Yl(vk, qk) = ﬂkYﬁk(U, q) <& <&

and
(V") 1] = 0¥ (v) 9| < M,

we conclude
Yok, ¢*) < 031 (%, ¢%) < 075 Vi (o, ¢"),

which is equivalent to the third relation in (6.2.31). Proposition 2.5 is proved.
A direct consequence of Proposition 2.5 and the Navier-Stokes scaling

v(y,s) = Ru(xo + Ry, to + R%s),  q"(y,s) = R*q(xo + Ry, to + Rs)
is the following statement.

Proposition 2.6. Let M, 3, 9, and 1 be as in Proposition 2.5. Let a pair
v and q be an arbitrary suitable weak solution to the Navier-Stokes equations
in the parabolic cylinder Q(zo, R), satisfying the additional conditions

R|(v) 4 r| < M, RY (2o, R;v,q) < &. (6.2.32)
Then, for any k = 1,2, ..., the estimates
Y (29,9 R;v,q) < ﬂ#kY(zo, R;v,q) (6.2.33)
hold.
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PrROOF OF LEMMA 2.2 We start with the case k£ = 1. Define
A= / (1P +1PI?) a-.
Q

Then, let M = 2002, § = 1/3, and let 9 be chosen according to (6.2.29) and
fix.
First, we observe that

Qlz,1/4) CQ i 2 €Q(3/4)

and
1 1 2 ]_ 1
Y G0 KU P) < (b 4 4D, L|(U),,] < edb
Selecting ¢( so that
1 2 1
clef +¢b) <&y, ced < 2002.

Then, by (6.2.5), we have
1 _ 1
ZY(ZO71/4;U7P)<517 ZKU) 1|<M,

and thus, by Proposition 2.6,

Y (20, 9% /4; U, P) < 92Y (2, 1/4; U, P) < 927,
for all 2 € Q(3/4) and for all k = 1,2, .... Holder continuity of v on the set
Q(2/3) follows from Campanato’s type condition. Moreover, the quantity

sup  |v(2)|
2€Q(2/3)

is bounded by an absolute constant.

The case k > 1 is treated with the help of the regularity theory for the
Stokes equations and bootstrap arguments, for details, see [40], Proposition
2.1. Lemma 2.2 is proved.

In what follows, the scaled energy quantities will be exploited

1 1
A(v;zg,7) =  sup - / lv(z,t)*dz, E(v;20,7) = / IV v|*dz,
to—’r‘2§t§t0r r

B(xzo,r) Q(zo,r)
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C(v;29,7) = r_12 / lw[*dz, Do(q;z2,7) = % / lq — [q]xo,r\% dz.
Q(zo0,7) Q(zo0,7)
We are also going to use abbreviations like A(r) = A(v;0,7), etc.
Our aim is to prove a version of the Caffarelli-Kohn-Nireberg theorem
(Here, we follow F.-H. Lin’s arguments, see [38]).

Theorem 2.7. Let v and q be a suitable weak solution to the Navier-Stokes
equations in Q. There exists a positive universal constant € such that if

sup E(r) <e,
0<r<1

then z = 0 is reqular point of v, i.e., v is Holder continuous in the closure of
the parabolic cylinder Q(o) with some positive o < r.

Let us start with the proof of auxiliary lemmata. The first statement is
actually the scaled version of a particular multiplicative inequality.

Lemma 2.8. Forall0 <r < o<1,
r

o) < (5) Ak + (8) At B o). (6.2.34)

Proor We have

[ ke = [ (o = oF)) dot [ (oPlude <
B(r)

B(r) B(r)

3

g/ dx—i-(C) /|v|2dx.
0

B(e) B(e)

By the Poincaré-Sobolev inequality,

[ |1er =] de<co [ 19 ullolda,

B(o) B(e)

where ¢ is an absolute positive constant. So, we get
1 1

J |vfPdx < cg( [ |Vv]? dx) ’ ( S/ |v|2dx>2+

B(r) B(@)3 B(e)
+(§) J [vffde < (6.2.35)

B(o)

< cgiAé(w(B{) |vv|2d;c)é + (§)3QA<Q).
o J

[of* = [lvf].¢

)
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Using the known multiplicative inequality, one can find

/|v|3dx<c /|VU|2d{L’ Z /|v|2div>4—|—

B(r) B(r) B(r)

% / Els dx < (See (6.2.35)) <

Integrating the latter inequality in ¢ on |ty — 72, o[, we establish

[P < () 2k +
Q(r) ¢
to

+[g4+f—g}Ai(g) / dt( / ywy?dx)i}g

to—r2 B(zo,0)

sc{ﬂ(f)?’A%(QH{QM s ( /|Vv|2dz

| N

3 Q% 13 0 % 0\?3 2 0\?3 2
et (9 (] <)
2 T T r

and then complete the proof of Lemma 2.8.

161
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Lemma 2.9. For any 0 < R <1,
A(R/2) + E(R/2) < ¢[C3(R) + C3(R)DE (R)
A3 (R)C3(R)E? (R)] . (6.2.36)

PROOF Picking up a suitable cut-off function in energy inequality (6.2.4),
we get the following estimates

A(R/2)+E(R/2)§c{% / o] dz +
Q(R)

1
tz [ o = o) e| oz +
Q(R)

ps( [ la-taadta) ([ wpae))
Q(R) QR)

Since .
i / w2 dz < ¢cC3 (R),
Q(z0,R)

we find
A(R/2) + B(R/2) < {C3(R) + C3(R) DS (R)+

2 [ |l = [of?la| 1ol a2}
Q(z0,R)
Application of Holder inequality to the last term on the right-hand side of

(6.2.37) gives:
S = /

Q(R)

(6.2.37)

[of* = [Jof*].r

32 1
2dm>3(/|v|3dx>3.
B(R)

lv|dz <

0

o ]

—R? B(R)

[of* = [Jo[*].r

By the Galiardo-Nirenberg inequality

3 2
(] [lof = 1oP1e] d) < [ v ollolda,

B(R) B(R)
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we have
0

SSC/ dt</|VU|2da7>é</|v|2dgz:>;</|v|3dazr>é
B(R) B(R) B(R)

_R2

gcR%A%(R)/Odt( / |W|2dx)5< / |v|3dx>§

R2 B(R) B(R)
0

gcR%A%(R)( / ]v|3dz>§</ dt( / |Vv|2da:>
Q(R)

—R? B

IN

IN

Wi

IN

wlo
N[

(®)

< Ri*iA (R)C%(R)R%( / |Vv|2dz>§ <
QiR

< ¢ R*A%(R)C3(R)E*(R).

Now, (6.2.36) follows from the latter relation and from (6.2.37). Lemma 2.9
is proved.
Now, our goal is to work out an estimate for the pressure.

Lemma 2.10. Let 0 < 9o < 1. Then

Do) < e[(£)" Dute) + (£) Ak @100 (6:2.38)

r
for all r €]0, g].
PrROOF We split the pressure in two parts
q=p1tDp2 (6.2.39)
in B(p) so that p; is a unique solution to the variational identity
/ mApdr = — / (1 —7,) : Viepda, (6.2.40)
B(e) B(o)

in which ¢ is an arbitrary test function of W2(B(p)) satisfying the boundary
condition ¢|pp,) = 0 and

Ti=(0—0c) ®@(V—1c¢y), To=[(0—0¢) @ (W —0¢p)lg o= [V],
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Here, time t is considered as a parameter. Clearly,
Ap, =0 (6.2.41)

in B(p).
We can easily find the bound for p; (by a suitable choice of the test

function in (6.2.40))
/ |p1]%d:ﬂ <c / |7 — Tg\%dqz.
B(e) B(e)

The Galiardo-Nirenberg inequality

3
/|p1|gd1‘§c</|U—cg||Vv]dx>2
B(e)

B(o)

and Holder inequality imply

/|P1|gd33§0</\v—cg|2dx>i</\Vv]2dx>i.

B(o) B(o) B(o)

On the other hand, Poincaré’s inequality

/|v—cg|2dx§cg2/|Vv|2dx
B(e)

B(o)

and the minimality property of ¢,

/|U—cg|2dx§ / lv2dx
B(e)

B(o)

lead to the estimate

0
1 3 1
5 [ [ nlias < B4k (6.2.42)
—0? B(o)

By the mean value theorem for harmonic function ps, we have for 0 <
r < 0/2

N|w

3
2

3
sup |pa(w,t) — [p2] »(t)[2 <erz sup  |[Vpa(z,1)]
z€B(r) z€B(0/2)
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<e(% / po(a, 1) = [pal o (1)) (6.2.43)

B(@

/mxt palo(0)] Bl
Next, by (6.2.39) and (6.2.43),

Do <—/m MIM+—/M pal, 3z

Q(r) Q(r)
1 0
C C
ézjjw@ SO [ [ et - ol
Q(r) -r2  B(e)
0\?2 1 r\s 1 3
<c(2) Ba ) +¢(2) 5 [ b= [palfPdz
r e’/ 0
Q(o)
<o(2) Bt +o(2) 5 [ la—ldulia:
cl = cl— — —
= r 0 0 0 Q2 q q:Q
Q(o)
1 3
v [ o= Dol

Qo)

<c[(5) puto + () B0t o)

So, inequality (6.2.38) is shown. Lemma 2.10 is proved.
PROOF OF THEOREM 2.7 It follows from (6.2.34), (6.2.38), and the as-
sumptions of Theorem 2.7 that:

Clr) < c[(§>3Ai(g)ei + (2)3143(@} (6.2.44)
and
Do(r) < c[(g) Dolo) + (g)QA%(g)g]. (6.2.45)
Introducing the new quantity
E(r) = A2(r) + D}(r),
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we derive from local energy inequality (6.2.36) the following estimate

E(r) < ¢[C(2r) + C3(2r)Do(2r) + AT (2r)C3 2r)et ] + DR(r)

< 0[0(27“) + Dj(2r) + A%(QT)C%(QT‘)S%] (6.2.46)

Now, let us assume that 0 < r < p/2 < p < 1. Replacing r with 2r in
(6.2.44) and (6.2.45), we can reduce (6.2.46) to the form

ey < (2) Attt + (5) akco)

r

)5173(@) + (£)4A(@)62

r

Q)gAi(@)ei + (5)3A3(@)>;E§]

r

|3

+(
+A%(2r)<(
<<[(5)

(&) et () o+ (4) st

3
r

2(0) + <£>5D§(9) + <E> 514%(@)5%14%(@)(5) ’

N

Here, the obvious inequality A(2r) < cpoA(p)/r has been used. Applying
Young inequality with an arbitrary positive constant 9§, we show that

3
r\ S

£(r) < o 7)1 + DEo) + b€ (0

(9 (2) " (2]
Therefore,

3
rN 5

£(r) < c[(;) (31 +0]ee) + c(5)<§>12(56 bt ged).  (6.2.47)

Inequality (6.2.47) holds for r < p/2 and can be rewritten as follows.
EWo) < c{ﬁ(g% Y1)+ 5} E(0) + (O (P + 6% +e3)  (6.2.48)

for any 0 < 9 < 1/2 and for any 0 < p < 1.
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Now, assuming that ¢ < 1, let us fix ¥ and ¢ to provide fulfilment of the
conditions:

2001 < 1/2, 0<9<1/2, ¢ <97/2. (6.2.49)
Obviously, ¥ and ¢ are independent of €. So,

E(Wo) < 92E(0) + G (6.2.50)

for any 0 < p <1, where G = G(e) - 0 as ¢ — 0.
Iterations of (6.2.50) give us

E(W%0) < 92E(0) + G
for any natural numbers k and for any 0 < o < 1. Letting o = 1, we find
E(WF) < V92E(1) + G (6.2.51)
for the same values of k. It can be easily deduced from (6.2.51) that
E(r) < c(rz&(1) + G(e)) (6.2.52)
for all 0 < r <1/2. Now, (6.2.44) and (6.2.45) imply

C(r) + Do(r) < e|At(2r)et + A3(20)| + c(rigd (1) + GH(e)

PN

< C[A%(zr) + e] 4 e(rtEE ) + GE(e))

< cle(@BE() + Gle)) + 23| + e(rigb (1) + GH(e)).
Now we see that, for sufficiently small € and sufficiently small rg,
C(T’o) + Do(?”o) < €,

where g¢ is a number of Lemma 2.2. Since v and g — [q] ,,, are a suitable weak
solution in Q(rg), Lemma 2.2 and the Navier-Stokes scaling yield required
statement. Theorem 2.7 is proved.

Now, we are in a position to speculate about e-regularity theory. Quan-
tities that are invariant with respect to the Navier-Stokes scaling

UA(?J? S) - )\U<I0 + )‘ya tO + >\28)7
My, s) = N2q(zo+ Ay, to + A2s) (6.2.53)



168 CHAPTER 6. LOCAL REGULARITY THEORY

play the crucial role in this theory. By the definition, such quantities are
defined on parabolic balls Q(r) and have the property

F(v,q;r) = F(v*, ¢*;r/N).

There are two types of statements in the e-regularity theory for suitable
weak solutions to the Navier-Stokes equations and the first one reads:

Suppose that v and q are a suitable weak solution to the Navier-Stokes
equations in Q. There exist universal positive constants € and {c,}3>, such
that if F(v,q;1) < e then |V*(0)| < e, k = 0,1,2,.... Moreover, the
function z — V¥*v(2) is Hélder continuous (relative to the parabolic metric)
with any exponent less 1/3 in the closure of Q(1/2).

An important example of such kind of quantities appears in Lemma 2.2
and is as follows:

1 3
Flogir) =5 [ (1of +lal?)dz
Q(r)

In the other type of statements, it is supposed that our quantity F' is
independent of the pressure ¢:

Let v and q be a suitable weak solution in Q). There exists a universal
positive constant € with the property: if supg.,; F(v;r) < e then z = 0 is
a reqular point. Moreover, for any k = 0,1,2, ..., the function z — V¥u(z2)
is Hélder continuous with any exponent less 1/3 in the closure of Q(r) for
some positive r.

Dependence on the pressure in the above statement is hidden. In fact,
the radius r is determined by the L% -norm of the pressure over the whole
parabolic cylinder Q.

To illustrate the second statement, let us consider several examples. In
the first one, we deal with the Ladyzhenskaya-Prodi-Serrin type quantities

0

1
F(v;r) = Mg (v;r) = Hles’l’Q(T) = / ( / |v|5d$> *dt

—-r2  B(r)

provided

3 2
__|__:1
s 1

and s > 3. Local regularity results connected with those quantities have been
proved partially by J. Serrin in [63] and then by M. Struwe in [65] for the
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velocity field v having finite energy even with no assumption on the pressure.
However, in such a case, we might loose Holder continuity.

Energy scale-invariant quantities present an important example of the
second kind of quantities. Some of them have been listed above. For more
examples of scaled energy quantities, we refer to the paper [19]. It is worthy
to note that the second statement applied to the scaled dissipation E is the
famous Caffarelli-Kohn-Nirenberg theorem, which is Theorem 2.7. It gives
the best estimate for Hausdorff’s dimension of the singular set for a class of
weak Leray-Hopf solutions to the Cauchy problem. A certain generalization
of the Caffarelli-Kohn-Nirenber theorem itself has been proved in [50] and is
formulated as follows.

Proposition 2.11. Let v and q be a suitable weak solution to the Navier-
Stokes equations in Q. Given M > 0, there ezists a positive number (M)
having the property: if two inequalities limsup,_,, E(r) < M and

hgl_}glf E(r) <e(M)

hold, then z =0 is a reqular point of v.

Typical examples of the third group of quantities invariant to the Navier-
Stokes scaling are:

Gi(v;r) = sup  |x|[v(2)],
z=(z,t)EQ(r)

Go(v;r) = sup  v/—tlu(2)].

z=(z,t)eQ(r)

A proof of the corresponding statements has been presented in [61], see
also [66], [26], and [6] for similar results.

6.3 Bounded Ancient Solutions

Definition 3.1. A bounded divergence free field u € Loo(Q_;R™) is called
a weak bounded ancient solution (or simply bounded ancient solution) to the
Navier-Stokes equations if

/(u-@tw+u®u:Vw+u-Aw)dz:0
Q-
for any w € Cgy(Q-).
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Without loss of generality, we may assume that |u(z)] < 1 a.e. in Q_.
If not, the function u*(x,t) = Au(Az, A\*t) with A = 1/||ulc,q_ will be a
bounded ancient solution satisfying the condition |u*(2)| < 1 a.e. in Q_.

Our aim is differentiability properties of an arbitrary bounded ancient
solution. Before stating and proving the main result, let us formulate several
auxiliary lemmata.

Lemma 3.2. For any F = Lo (R";M™*"), there exists a unique function
qr € BMO(R") such that [gr|pa) = 0 and

in the sense of distributions. Moreover, the following estimate is valid

larll Bromny < c(n) || F|oorn-

To state Lemma 3.2, the following notation has been used. [f]q is the
mean value of a function f over a spatial domain 2 € R”. The mean value
of a function ¢ over a space-time domain () is denoted by (¢g)¢.

Lemma 3.3. Assume that functions f € L,,(B(2)) and q € L,,(B(2)) satisfy
the equation
Ag = —divf in  B(2).

Then

[ 19ands < ctmmy ([ 151mde+ [ la- o).

B(1) B(2) B(2)

Lemma 3.4. Assume that functions f € L, (Q(2)) and u € WL (Q(2))
satisfy the equation

Ou—Au=f in Q2).
Then u € W2Y(Q(1)) and the following estimate is valid:
10cullmay + IV ullmea) < etm,n) ([ flmaoe + |IU||W;;0(Q(2))]-
Lemma 3.2 is proved with the help of the singular integral theory, see

[64]. Proof of Lemmata 3.3 and 3.4 can be found, for example, in [34] and
33].
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If we let
F(-t) = u(-,t) @ u(-, 1),

then, by Lemma 3.2, there exists an unique function
Pugu € Loo(—00,0; BMO(R"))
which satisfies the condition [pye.)p1)(t) = 0 and the equation
Apugu(-,t) = —divdivEF(-, ) in R"

for all t < 0.
To state the main result of this section, we introduce the space

Ln(Q-) = { sup [[fllm.qez01) < 00}

Z()EQ_

Theorem 3.5. Let u be an arbitrary bounded ancient solution. For any
number m > 1,

|VU| + |V2u| + |VPu®u| € 'Cm(Q—)

Moreover, for each ty < 0, there exists a function by, € Loo(tg — 1,tg) with
the following property

sup ||btoHLoo(to—1,to) < ¢(n) < 4o0.
to<0

If we let u'(z,t) = u(x,t) + by (t) in Q° = R™"X|tg — 1,0, then, for any
number m > 1 and for any point xq € R™, the uniform estimate

||Ut0HW,341(Q(ZO,1)) < ¢(m,n) < +oo, z0 = (2o, to),

is valid and, for a.a. z = (z,t) € Q" functions u and u' obey the system of
equations

O™ + divu @ u — Au = —Vpugu, divu = 0.

Remark 3.6. The first equation of the latter system can be rewritten in the
following way

Ou + divu @ u — Au = —Vpugu — b,

to?

by, () = dby, (t)/dt,

in Q% in the sense of distributions. So, the real pressure field in Q% is the
following distribution pug. + by, - .
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Remark 3.7. We can find a measurable vector-valued function b defined on
| = 00,0[ and having the following property. For any ty < 0, there ezists a
constant vector ¢y, such that

sSup Hb - ctoHLoo(tofl,to) < +00.
to<

Moreover, the Navier-Stokes system takes the form
Owu+ divu @ u — Au = =V (pugu + V' - ), divu =0
i Q_ in the sense of distributions.

Remark 3.8. In most of our applications, we shall have some additional
global information about the pressure field, which will make it possible to
conclude that b = 0. For example, it is true if the pressure field belongs to
Loo(—00,0; BMO(R™)), i.e., u is a mild bounded ancient solution, see the
next section for details and definitions.

We can exclude the pressure field completely by considering the equation
for vorticity w = V Awu. Differentiability properties of w are described by the
following theorem.

Theorem 3.9. Let u be an arbitrary bounded ancient solution. For any
m > 1, we have the following statements. If n = 2, then

w=Vru=uy —u € WA(Q.) = {w, Vw, Viw, 0w € L,,(Q_)}

and
Ow+u-Vw—Aw=20 a.e. in Q_.
If n =3, then
w=V AuecW (Q_;R?
and

Ow +1u-Vw—Aw =w-Vu a.e. in Q_.

Remark 3.10. We could analyse smoothness of solutions to the wvorticity
equations further and it would be a good exercise. However, reqularity results
stated in Theorem 3.9 are sufficient for our purposes.

Remark 3.11. By the embedding theorems, see [33], functions w and Vw
are Holder continuous in (Q_ and uniformly bounded there.
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PrROOF OF THEOREM 3.5: STEP 1.ENERGY ESTIMATE. Fix an arbitrary
number ¢ty < 0. Let k.(z) be a standard smoothing kernel. We use the
following notation for mollified functions:

Fe(2) = /kg(z — 2 F(2)d?, F=u®u,
Q-

u®(z) = /ke(z — 2Nu(2)dz.
Q-

Assume that w € 8’80(@'3’), where Q" = R"x] — 0o, to[. For sufficiently

small € (0 < € < £(tp)), w® belongs to CO’SO(Q,) as well. Then using well
known properties of smoothing kernel and Definition 3.1, we find

/w (O 4+ divF® — Auf)dz = 0, Yw € &SO(QE))
Q-

It is easy to see that in our case there exists a smooth function p. with the
following property

O + divF® — Au® = —Vp,, divu® =0 (6.3.1)
in Q™. Let us decompose p, so that
Pe = Pre + Pe. (6.3.2)

It is not difficult to show that the function Vpp- is bounded in Q™ (exercise).
So, it follows from (6.3.1) and (6.3.2) that

Ap.=0 in Q%  Vp. € Lo(Q;RM).

By the Liouville theorem for harmonic functions, there exists a function
a. : [—o0, to[— R™ such that

Vpe(x,t) = a.(t), reR" —oo<t<Ht.
So, we have

o + divF® — Au® = —Vpp- — a., divu® = 0 (6.3.3)
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in Q.
Now, let us introduce new functions

t

ety (1) = / a(r)dr,  to—1<1 <1,
to—1
UE(I', t) — /U/€<.’L', t) + bgto(t)7 2 = (x’ t) e Qto.
Using the notion above, we may rewrite system (6.3.3) so that

o, — Av, = —divF® — Vppe, divu, =0 (6.3.4)

in Q.

Fix an arbitrary cut-off function ¢ so that
0<p<l, =1 in B(1), suppy C B(2).

And then let ¢, () = p(x — x0).
Now, we can derive the energy identity from (6.3.4), multiplying the latter
by gogov@ and integrating the product by parts. As a result, we have

t
f(t)Z/soio(x)|va(x,t)|2dx+2 / /¢§o|vve|2dxdt'=

R to—1 Rn

t
- [@lota- 0P+ [ [ Ao pdsirs

Rn to—1 R™

¢
+ / /(PFf - [pFa]B(zo,z))vg . chiodxdt’—i—

to—1 R

t
+ / /(FS — [F*]Bo2) : V(5 ve)dadt'.
to—1 R™
Introducing the quantity
a.(t) = sup / ve (2, 1) [Pde

zoER™
B(IOal)
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and taking into account that v.(-,tp —1) = u°(-,tp — 1) and |[u(-,tp —1)| < 1,
we can estimate the right hand side of the energy identity in the following

way
t

I(t) < e(n) + c(n) / au(#)dt+

to—1
3
/ / ‘pFe — st B(z0,2) | dxdt) ( / ( )dtl> -+
to—1 B(x0,2)
to 1
+c<n)( / / FE [FE]B(xog)dedt)Q( / / 02 |V *dadt'+ (6.3.5)
to—1 B(zo,2) to—1R™

t

1
+ / aa(t’)dt’>2, to— 1<t <t
to—1

Next, since |F¢| < ¢(n), we find two estimates

/ / Bao2) | dzdt < c(n)

to— 1BZ’02

and

[ [ 1o = oraa ot < c)llpe . ciaioy
to—1 B(x0,2)
IR g0, < ).
The latter estimates, together with (6.3.5), imply the inequalities
t
(1) < en) (1 + / o)), t-1<t<t,
to—1

and
O

xigﬁn/ / Vo dadt < c(n )( / 6(t)dt>.

to—1 B(xzo,1) to—1
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Usual arguments allows us to conclude that:

to
sup a.(t) + sup / / |Vus|?dxdt < c(n). (6.3.6)
to—1<t<to zo€ER™
to—1 B(xzo,1)

It should be emphasised that the right hand size in (6.3.6) is independent of
to. In particular, estimate (6.3.6) gives:

sup  be, (t) < c(n).
to—1<t<tg

Now, let us see what happens if € — 0. Selecting a subsequence if neces-
sary and taking the limit as ¢ — 0, we have the following facts:

*

bety— by, in Loo(to — 1,t0; R™);

the estimate

to

[P / / Vulfdzdt < c(n) < 400 (6.3.7)

xoER™
to—1 B(Io,l)

is valid for all t, < 0;
the system

o +divu @u— Au=—-Vp—u®u, divu =0

holds in @ in the sense of distributions.
The case ty = 0 can be treated by passing to the limit as ¢y — 0.
STEP 2, BOOTSTRAP ARGUMENTS By (6.3.7),

f=divF =u-Vu e L3(Q_;R").
Then Lemma 3.3 in combination with shifts shows that
VDugu € L2(Q—;R™).

Next, obviously, the function u’® satisfies the system of equations

O’ — Au® = —u - Vu — Vpugu € Lo(Q_;R™).
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Using the invariance with respect to shifts and Lemma 3.4, one can conclude
that
u € Wy (Q(a0, )i RY),  1/2<m<m=1,

and, moreover, the estimate
HUtOHW;J(Q(zO,TQ)) < ¢(n,m)

holds for any zy = (xg,ty), where g € R" and ¢ty < 0. According to the
embedding theorem, see [33], we can state that

Vul* = Vu € ern’g(Q(Zoﬁz);Rn)

for
1 1 1 5
—_ = m; = 2.
mes my; n+2 !

By lemma 3.3, by shifts, and by scaling, for 1/2 < 7i < 7, we have the
following estimate

| 19pen s < comr)[ [ 9ut oo 1],

B(zo,73) B(wo,74)
In turn, Lemma 3.4 provides to two statements:
u' € WT%{;(Q(ZOJ?,);Rn), 1/2<m3 <14
and

[|uto ||W%21(Q(ZO,T3)) < c(n,73,75).

Then, again, by the embedding theorem, we find
Vu' = Vu € W (Q(2,7); R")

for
1 1 1

ms me n+2

Now, let us take an arbitrary large number m > 2 and fix it. Find « as
an unique solution to the equation
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Next, we let ky = [a] + 1, where [a] is the entire part of the number ov. And
then we determine the number my,; satisfying the identity

1 1 ko

Miy+1 5 n—+ 2

Obviously, mg,+1 > m. Setting

11

Tk+1:7—k_12_k7 7—1:17 k:172777

and repeating our previous arguments kq times, we conclude that:

uto € W271 (Q(207Tk0+1);Rn)

MEy+1

and

t
[ °”w3,;,10+1<cz<zo,%+1>> < ¢(n,m).

Thanks to the inequality 7, > 1/2 for any natural numbers k, we complete
the proof of Theorem 3.5. [J

PROOF OF THEOREM 3.9 Let us consider the case n = 3. The case n = 2
is in fact easier. So, we have

Ow—Aw=w-Vu—u-Vw=f.

Take an arbitrary number m > 2 and fix it. By Theorem 3.5, the right hand
side has the following property

[f| < e(n)(IV?u] + [Vul*) € Lin(Q(2,2))

and the norm of f in L,,(Q(z,2)) is dominated by a constant depending
only on m and being independent of zy. It remains to apply Lemma 3.4 and
complete the proof of Theorem 3.9. [

6.4 Mild Bounded Ancient Solutions

In this section, we assume that z = 0 is a singular point. Making use of
the space-time shift and the Navier-Stokes scaling, we can reduce the general
problem of local regularity to a particular one that in a sense mimics the first
time singularity.
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Proposition 4.1. Let v and q be a suitable weak solution to the Nawvier-
Stokes equations in QQ and z = 0 be a singular point of v. There exist two
functions v and q having the following properties:

(1) v € L3(Q) and q € L%(Q) obey the Navier-Stokes equations in @ in
the sense of distributions;

(ii) U € Loo(Bx] — 1, —a?|) for all a €]0,1];

(11i) there exists a number 0 < r; < 1 such that v € Loo({(z,t) : 11 <
lz] <1, =1 <t <0}).

Moreover, functions v and q are obtained from v and q with the help of
the space-times shift and the Navier-Stokes scaling and the origin remains to
be a singular point of v.

We recall z = 0 is a regular point of v if there exists a positive number
r such that v is Holder continuous in the closure Q(r). A point z = 0 is a
singular point if it is not a regular one.

ProOOF Consider now an arbitrary suitable weak solution v and ¢ in Q.
Let S C Bx] —1,0] be a set of singular points of v. It is closed in Q. As
it was shown in [2], P'(S) = 0, where P! is the one-dimensional parabolic
Hausdorff measure. By assumptions, S # (. We can choose number R;
and Ry satisfying 0 < Ry < R; < 1 such that SNQ(R;) \ Q(Rz) = 0 and
SN B(Ry)x| — R%,0] # 0. We put

to = inf{t : (z,¢) € SN B(Rs)x]| — B2, 0]}.

Clearly, (xo,tg) € S for some xy € B(R3). In a sense, ty is the instant of time
when singularity of our suitable weak solution v and ¢ appears in Q(R;).
Next, the one-dimensional Hausdorff measure of the set

S, = {x« € B(R2) : (x4,1p) is a singular point }

is zero as well. Therefore, given xzy € S, we can find sufficiently small
0 < r < v/R%+t such that B(zg,r) € B(Ry) and dB(xg,7) N S, = 0.
Since the velocity field v is Holder continuous at regular points, we can ensure
that all statements of Proposition 4.1 hold in the parabolic ball Q(zo, ) with
20 = (g, to). We may shift and re-scale our solution if zy # 0 and r # 1. O

In what follows, it is always deemed that such a replacement of v and ¢
with v and ¢ has been already made. Coming back to the original notation, we
assume that functions v and ¢ satisfy all the properties listed in Proposition
4.1 and z = 0 is a singular point of v.
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One of the most powerful methods to study potential singularities is a
blowup technique based on the Navier-Stokes scaling

uP(y,s) = Mol t),  pP(y,s) = Na(z,1)
with
=% 4+ Ay, T =1ty + \is,

where 2(®) € R, —1 < t;, <0, and A, > 0 are parameters of the scaling and
A — 0 as k — +o00. It is supposed that functions v and g are extended by
zero to the whole R? x R. A particular selection of scaling parameters z*)
tr, and A\, depends upon a problem under consideration.

Now, our goal is to describe a universal method that makes it possible to
reformulate the local regularity problem as a classical Liouville type problem
for the Navier-Stokes equations. To see how things work, let us introduce
the function

M(t): sup “U('7T>Hoo,§(r)

—1<7<t

for some r €]ry, 1[. It tends to infinity as time t goes to zero from the left
since the origin is a singular point of v. Thanks to the obvious properties of
the function M, one can choose parameters of the scaling in a particular way
letting A\, = 1/Mj,, where a sequence My, is defined as

My = [[v(, te)l o B0y = (™, )|

with 2®) € B(ry) for sufficiently large k. Before discussing what happens if
k tends to infinity, let us introduce a subclass of bounded ancient (backward)
solutions playing an important role in the regularity theory of the Navier-
Stokes equations.

Definition 4.2. A bounded vector field u, defined on R3*x] — oo, 0], is called
a mild bounded ancient solution to the Navier-Stokes equation if there exists
a function p in Ly (—00,0; BMO(R?)) such that u and p satisfy the Navier-
Stokes system

ou+divu®@u—Au+ Vp= 0,
divu= 0

in R3x] — oo, 0[ in the sense of distributions.
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The notion of mild bounded ancient solutions has been introduced in
[27]. It has been proved there that u has continuous derivatives of any order
in both spatial and time variables. Actually, the definition accepted in the
present paper is different but equivalent to the one given in [27]. Here, we
follow [59].

The statement below proved in [59] shows how mild bounded ancient
solutions occur in the regularity theory of the Navier-Stokes equations.

Proposition 4.3. There exist a subsequence of u*) (still denoted by u®)
and a mild bounded ancient solution u such that, for any a > 0, the sequence
u® converges uniformly to u on the closure of the set Q(a) = B(a)x]—a?,0].
The function u has the additional properties: |u| < 1 in R3x]| — oo, 0[ and
[u(0)] = 1.

PROOF OF PROPOSITION 4.3 Our solution v and ¢ has good properties
inside Q1 = By x| — 1,0[ with By = {r; < |z| < 1}. Let us list them. Let
Q2 = Bax| —74,0[, where 0 < 75 < 1, By = {r; <13 < |z| < ag < 1}. Then,
for any natural k,

z = (x,t) = V*u(2) is Holder continuous in Qy;
q € Ly(=73,0;C*(By)).

The corresponding norms are estimated by constants depending on ||v||s3.q,
gl g, IV]loo,q:» and numbers k, 71, 72, az, 7o. In particular, we have
2 ’

r€B>o
—73

0
max / |Vq(x,t)|%dt < < 0. (6.4.1)
2

Proof of the first statement can be done by induction and found in [13], [31],
and [40]. The second statement follows directly from the first one and the
pressure equation: Ag = —v; ;vj;.

Now, let us decompose the pressure ¢ = q; + ¢2. For ¢, we have

Aq(z,t) = —divdiv [XB(x)v(x,t) ® v(x,t)}, reR} —1<7<0,

where xp(xz) =1if x € B and xp(x) =0 if x ¢ B. Obviously, the estimate

0

//|q1(x,t)|gdxdt§ c/|v|3dz
Q
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holds and it is a starting point for local regularity of ¢;. Using differentiability
properties of v, we can show

r€B3

0
max / ]Vql(x,t)\%dt < ¢y < 00, (6.4.2)
2

T

where By = {ry < r3 < |z| < az < az}. From (6.4.1) and (6.4.2), it follows

that
0

max / |Vq2(:v,t)|%dt < 3 < 0. (6.4.3)
rE€B3

However, g» is a harmonic function in B, and thus, by the maximum principle,

we have
0

max / V()| 2dt < ¢35 < oo, (6.4.4)
z€B(r4) )
r2

where 74 = (r3 + a3)/2.
Let us re-scale each part of the pressure separately, i.e.,

Py, s) = Nailw, 1), i=1.2,
so that p* = p& + pk. As it follows from (6.4.4), for p4, we have

0
sup / IV, 05 (y, s)|%d5 < 03)\2. (6.4.5)

B(—xk /Ap,ra/X
yEB(—a* [ Ag,ra/ k)—(rg—tk)/Ai

The first component of the pressure satisfies the equation

Ayt (y, 8) = —divydivy (Xt jre1yng @) uP (y,8) @ u® (y,5)),  yeR?,

for all possible values of s. For such a function, we have the standard estimate
195 8)l mavos) < ¢ (6.4.6)

for all s €] —(1—t4)/A2,0[. Tt is valid since [u®| < 1in B(—2* /A, 1/Ae) %] —
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We slightly change p¥ and p§ setting
Pi(y:s) =iy, s) — iley(s)  Bay.s) =p3(y. s) — 5]y (s)

so that [pf]a)(s) = 0 and [p5]pa)(s) = 0.
Now, we pick up an arbitrary positive number a and fix it. Then from
(6.4.5) and (6.4.6) it follows that for sufficiently large k we have

[ e+ [ ipblide < cufencaa).
Q(a) Q(a)
Using the same bootstrap arguments, we can show that the following estimate
is valid:
Hu(k)HCO‘(@(a/Q) < 05(027637 C4va)
for some positive number o < 1/3. Indeed, the norm Hu(k)HCa@(a/Q)) is
estimated with the help of norms |[u®||1_(0w@)) and |||z, Qe)), Where
2

pF = p¥ + ph. Hence, using the diagonal Cantor procedure, we can select
subsequences such that for some positive o and for any positive a

ut) — in C%(Q(a)),

pi =P, inLi(Q),  [Bils(s) =0,

ﬁg — D in L%(Q(a)), [P2]B1y(5) = 0.

So, |u] < 1in @_ and v and p = p,; + P, satisfy the Navier-Stokes system
in _ in the sense of distributions. Moreover, at it is follows from (6.4.6),
Py € Loo(—00,0; BMO(RR?)).

Next, for sufficiently large k, we get from (6.4.5) that

/ V(g ) 3ds < esAb.
Q(a)

Hence, Vp, = 0 in Q(a) for any a > 0. So, Py(y, s) is identically zero. This
allows us to conclude that the pair u and P, is a solution to the Navier-Stokes
equations in the sense of distributions and thus u is a nontrivial mild bounded
ancient solution satisfying the condition |u(0,0)| = 1 and the estimate |u| < 1
in@Q_. O
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It is worthy to notice that the trivial bounded ancient solution of the
form

u(z,t) = c(t), p(x,t) == (t) -z,

with arbitrary bounded function ¢(t), is going to be a mild bounded ancient
solution if and only if ¢(t) = constant. This allows us to make the following
plausible conjecture, see [59].

Conjecture Any mild bounded ancient solution is a constant.

To explain what consequences of the conjecture could be for regularity
theory of the Navier-Stokes equations, let us formulate a question which can
be raised in connection with the e-regularity theory: what happens if we
drop the condition on smallness of scale-invariant quantities, assuming their
uniform boundedness only, i.e, supy.,., F'(v,r) < +00. For Ladyzheskaya-
Prodi-Serrin type quantities with s > 3, the answer is still positive, i.e.,
z = 0 is a regular point. It follows from scale-invariance and the fact that
the assumption M ;(v;1) = supg, <1 Ms,;(v;r) < 400 implies M (v;r) — 0
as r — 0 if s > 3. Although in the marginal case s = 3 and [ = +o0, the
answer remains positive, the known proof is more complicated and will be
outlined later.

Let us recall certain definitions and make some general remarks about
relationships between some scale-invariant quantities. Boundedness of

sup Ga(v;r) = Ga(v,1) = Goy < +00
0<r<1

can be rewritten in the form

GQO
N

for all z = (z,t) € Q. If v satisfies the above inequality and z = 0 is still a
singular point of v, we say that a singularity of Type I or Type I blowup takes
place at t = 0. All other singularities are of Type II. The main feature of
Type I singularities is that they have the same rate as potential self-similar
solutions. The important properties connected with possible singularities of
Type I have been proved in [48], [61], and [59] and are as follows.

0(2)] <

Proposition 4.4. Let functions v and q be a suitable weak solution to the
Navier-Stokes equations in ().
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(1) If min{G;(v; 1), Go(v; 1)} < 400, then

g = sup {A(v;r) + C(v;r) + D(q;r) + E(v;r)} < +oc.
0<r<1

(ii) If

¢ = min{ sup A(v;r), sup C(v;r), sup E(v;r)} < +oo,
0<r<1 0<r<1 0<r<1

then g < +00.

This proposition admits many obvious generalizations.

If we assume that v possesses uniformly bounded energy scale-invariant
quantities, then, by Proposition 4.3, the same type of quantities will be
bounded for the ancient solution, which is not trivial if z = 0 is a singular
point of v. However, by the conjecture, the above ancient solution must be
zero. So, the origin z = 0 cannot be a singular point of v. This would be a
positive answer to the question formulated above. In particular, according
to Proposition 4.4, validity of the conjecture would rule out Type I blowups.

6.5 Liouville Type Theorems

6.5.1 LPS Quantities
Theorem 5.1. Let u be a mild bounded ancient solution to the Navier-Stokes

equations, i.e., u € Lo (Q_) is divergence free and satisfies the identity

/(u-@tw+u®u:Vw+u-Aw)dz:0 (6.5.7)
Q-

for any divergence free function w from C§°(Q_). Assume that

0

z
sup M (u;r) = / (/]u(@t)ﬁdz)s < 0
0<r<oo

—00 RS

with 3/s+2/l=1andl < oco. Thenu=0 in Q_.
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PROOF Let us consider the simplest case of the regular LPS quantity
M5 5. By the pressure equation, we may assume

0
//mm+m%wﬁ<+m

oo R3

Given € > 0, we can find 7' < 0 such that

T
//m&+m%@ﬁ<a

oo R3

Then, by Holder inequality, we have

/ / (Jul® + |p| Ydxdt < ce

—R2 B(zo,R)

for any zo € R3, any R > 0, and any t, < T with some universal constant c.
In turn, the e-regularity theory ensures the inequality

C
|U(ZL’0, t0)| < }—%

with another universal constant c. Tending R — oo, we get u(-,t) = 0 as
t < T. One can repeat more or less the same arguments in order to show
that in fact u is identically zero on R?*x] — oo, 0].

6.5.2 2D case

In two-dimensional case, we have the following Liouville type theorem.

Theorem 5.2. Assume that n = 2 and u is an arbitrary bounded ancient
solution. Then u(x,t) = b(t) for any v € R

To prove the above statement, we start with an auxiliary lemma.

Lemma 5.3. Let functions

w e Wil (Q-) = {u € Wy (Q-): $m\WMw1m%uy<m}

20€Q—
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with m > 3, and u € Lo (Q_) satisfy the equation
Ow+u-Vw—Aw =0 in Q_

and the inequality
lu| <1 in Q_.

Then, for any positive numbers € and R, there exists a point zy = (o, o),
xo € R? and ty <0, such that

W(Z> > M — g, z € Q(Z()aR)?
where M = sup w(z).
z€Q_
Remark 5.4. By the embedding theorem, M < +o0.

In order to prove Lemma 5.3, we need the strong maximum principle.
Here, it is.

Theorem 5.5. STRONG MAXIMUM PRINCIPLE Let functions
w € W2HQ(20, R)) with m > n+1 and a € Loo(Q(20, R); R") satisfy the
equation
ow+a-Vw—Aw =0 in  Q(z0, R).
Let, in addition,

w(zp) = sup w(z).
zGQ(Zo,R)

Then
w(z) = w(z) in Q(z0, R).

PrROOF OF LEMMA 5.3 ( [27]) In fact, we shall prove even a stronger
result. Let z; be a sequence of points in (J_ such that

w(zx) = M.

We state that

inf w(z) » M.
z€Q(zk,R)

Indeed, assume that this statement is false. Then, we can find a number
e > 0 and a sequence of points z;, € Q(zx, R) such that

w(z,) <M —e.
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Now, let us consider shifted functions
WM t) = wlzk + b+ 1), uF(@t) = u(ar + o, 4 + 1),

for 2 = (x,t) € Q(R). By the definition of the space W%(Q_), these new
functions are subject to the estimates

oz ey < €

W <1 in Q(R),
with a constant ¢ that is independent of k. Moreover, we have
Ok +uF - Vb — Awk =0 in Q(R),
e <M - eQR),
)< M zeQ(R).
Using standard compactness arguments, we show
W ow i WRNQR)),
ukF oy in Lo (Q(R);R?),

] in C(Q(R)),

G(z) <w(0)=M  2€QR), (6.5.8)
W(z) < M —e, (6.5.9)

where 2, € Q(R). Clearly, w € W3(Q(R)) and
Ow+u-Vwo—Aw =0 in Q(R).
By (6.5.8) and by the strong maximum principle,
Wz)=M 2€Q(R),

which is in a contradiction with (6.5.9). O
Proor or THEOREM 5.2 We are going to apply Lemma 5.3 to the
vorticity equation. Let us show first that

sup w(z) = M <0.
z€Q_
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To this end, assume that the latter statement is wrong and in fact
M > 0.

Take a cut-off function ¢ € C§°(B(R)) with the following properties:

0<p<l, |Vo|<¢/R in B(R),

p=1 in B(R/2).
By Lemma 5.3, for an arbitrary number R > 0, there exists a point zpp =
(ZEOR,tOR) with tOR S 0 such that
lw(z)| > M — M/2=M/2 >0, z € Q(zor, R).

If we let g, (7) = @(x — xoR), then

A(R) = / Ouon(T)w(2)dz > %RZIB(%R, R)| = %WR‘L. (6.5.10)

Q(zor,R)

On the other hand, since w = uy; — u; 2, we have after integration by parts

A(R) = / (Prop,2U1 = Pagpitiz)dz <
Q(ZOR7R)

< cR?,

where ¢ is a universal constant. The latter inequality contradicts (6.5.10) for
sufficiently large R. So, M < 0. In the same way, one can show that m > 0,
where
—o0o <m = inf w(z).
ZEQ_

So, w=01in Q_. Since u(+,t) is a divergence free function in R?, we can state
that u(-,t) is a bounded harmonic function in R?. Therefore, u(x,t) = b(t),
x € R%. Theorem 5.2 is proved.
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6.5.3 Axially symmetric case with no swirl

In the case of axial symmetry, it is convenient to introduce the cylindrical
coordinates o, @, x3 so that x1 = pcos p, xo = psiny, r3 = x3. The velocity
components are going to be u,, u,, uz. By the definition of axial symmetry,

Ugp = 8“9/690 =0, Upp=0, uzp,=0, p,=0.
For the vorticity components, we have simple formulae
Wo = Up3z, Wy =1Up3 = U3y, W3=lUpgt us@/Q'

Now, assume that vector field u is an arbitrary axially symmetric bounded
ancient solution with zero swirl, i.e., u, = 0. This, in particular, leads to the
representation

1
Vw = —Ewweg ® €y + Wy 0€p @ €, + Wy 36, @ €3.
We know that |Vw| is a bounded function, which implies boundedness of

functions wy, 5, W, 3, and éww. Regarding VZw, we can state

0

3
/ / [|W¢,gg|2 + 2|wso,w|2 + |W<P,33|2 + 2|(W¢/Q),g|2 + 2|(“@/Q>,3|2] ododp <
—T C(a)

< c(a,T,p) < 400,
where a > 0, for any T > 0, and for any m > 1. Here, we recall that:
Cla) ={x = (2 23) €R®: |2| <a, |v3]<a}
and 2’ = (x1,x2) so that |2/| = p.

Theorem 5.6. Let u be an arbitrary axially symmetric bounded ancient so-
lution with zero swirl. Then u(z,t) = b(t) for any x € R and for any t < 0.
Moreover, uy(z,t) = 0 and uz(x,t) = 0 for the same x and t or, equivalently,
up(0, 3,t) =0 for any 0 > 0, for any x5 € R, and for any t < 0.

PrROOF We let n = w,/p. It is not difficult to verify that n satisfies the
equation

2
On + upn,, + usns — (An + En,g) =0, >0, —00o<x3<+00,t<0,
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where
1

1
Aﬁ = 5(@77,9),9 + 133 = 100 + N33+ 577,9-

Let us make the change of variables

Yy = (ylayf)) € R57 Z// = (1/173/2711373/4)7

o=l= \/y%+y5+y§+yi, Ys = T3.
Then after simple calculations, we see that a new function
F.t) = f (1, vz, y3: 94, 95, 1) = n(e, ¢, 1)

obeys the equation

Oif +U -Vsf—Asf =0 (6.5.11)

in Q° = R°x] — 00,0[. Here, V5 and Aj are usual gradient and Laplacian
with respect to the Cartesian coordinates in R® and

U(yv t) = (Ul(y’ t)? UQ(yv t)? US(y7 t)u U4<y’ t)a U5(y7 t))?
where

U y L at .
Uz(y7t) = %yu = 1727374a U5(yat) = 'LL3(Q, T3, )

Obviously, the function U is bounded in Q°. However, previous arguments
show that V5U is a bounded function as well. Indeed,we have
IVsU(y, t)| < c(|Vulz,t)] + |up(o, 3, t)|/0) < ¢|Vu(z,t)| < c < 400
for any y € R® and any ¢ <. So,
U, [VsU| € Lo (Q2).
For bounded f, weak solution to (6.5.11) can be defined as follows
/ [0+ JU - Vsg + fgdivsU + fAsg| dydt =0
Q>

for any g € C§°(Q”). In the way, explained in the previous section, one can
show that, for any m > 1,

fewil@Q)
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and the norm can be dominated by a positive constant, depending on m,
supgs | f|, and supgs (JU| + |VsU|) only.
We let

M = sup sup f(y,t) = sup supn(|2’|, z3,t).
yeRS t<0 z€R3 t<0

We wish to show that M < 0. Assume that it is not so, i.e., M > 0, and we
can apply Lemma 5.3 in our five-dimensional setting. Then, for any R > 0,
there exists a point yx in R® and a moment of time ¢tz < 0 such that

fly.t) = M/2,  (y,t) € Q((yr. tr), R) = Blyr. R)X]tr — R* tg],

where B(ygr, R) = {|ly — yr| < R}.
By our assumptions,

0<My= sup wy(|z'],z3,t) < +oo.
z€eR3,t<0

We may choose a number R so big that

2M,
R > 100——
M

and then let

2M,
Yo = W ysr)s e =501+ gy
where
I eRY, =1, (Lyr) = g + layzr + lsysr + layar = 0.
It is not difficult to check that y, € B(yg, R) and, moreover,
2M,
' > 50——.
sl 2 50—~

Then we find

My My M
< Flyatp— R?/2) < =0 « 0 7

This means that in fact M < 0. In the same way, one can show that m > 0
and then conclude that f = 0 in @Q°, which in turn implies

wy (||, z3,t) =0, V(z,t) € Q_,

M
2

and therefore
w=0 in Q_.

The rest of the proof is the same as in Theorem 5.2.
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6.5.4 Axially Symmetric Case

We are going to prove the following statement.

Theorem 5.7. Let u be an arbitrary axially symmetric bounded ancient so-
lution satisfying assumption

A
lu(z,t)| < T = (2,23) €ER?} —00 <t <0, (6.5.12)

where A is a positive constant independent of x and t. Then u =0 in Q)_.

PROOF Let us explain our strategy. First, we are going to show that,
under condition (6.5.12), the swirl is zero, ie., u, = 0. Then we apply
Theorem 5.6 and state that u(z,t) = b(t). But condition (6.5.12) says b(t) =
0 for all ¢ < 0. So, our aim now is to show that u, =0 in Q_.

Let us introduce the additional notation:

@:R+XR7 R+:{Q€Ru Q>0}7 @_:]ﬁX]—O0,0L

(o1, 02; b1, ho) = {o1 < 0 < 02, h1 < x5 < ha},
Q(01, 02; h1, hosty, ta) = (o1, 02; ha, ho) X[t1, Lo,
Now, our aim is to show that
M = sup ou, < 0.
Q-

Assume that it is false, i.e., M > 0, and let

g = ou,/M.

The new scaled function g satisfies the equation

Org + upg,, +usgs — (Ag —2g,/0) =0 n Q-
By the assumptions,
supg = 1, JuR+ud < Afo, gl <A/M in Q. (6.5.13)
o

and N
(0u,) o+ (0u3) 3 =0 in @Q_.

To formulate the lemma below, we abbreviate

II = II( 01, 02; h1, ha), @:HX]E—%E[-
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Lemma 5.8. For any € > 0, there exists a positive number
0 =01t t;, A, M,e) <e

such that if

supg(x,t) > 1 -9,
z€ell

then
inf g(2) > 1—e¢.
z2€Q

PROOF If we assume that the statement of the lemma is false, then there
must exist a number g9 > 0 such that, for any natural k, one can find
sequences with the following properties:

6k > Op1, Ox — 0, supg®(w, 1) >1—6, infg"(z)<1—¢g, (6.5.14)
zell z2€Q

functions u* and ¢* satisfy the equations
(oup) o+ (0u5) s =0, Oug" + upgh, + uigh — (Ag* — 245, /0) = 0

in CNQ_ and the relations
supgt =1, yJlublP+[ub2 < Afo, |gF|<A/M i Q-
Q-

By (6.5.14), there are points (o, 23, t), with (ox, zx3) € II, and (g}, }3, t},) €
@ such that

9" (or Ths, 1) > 1= 20k, ¢" (0}, Thsy th) < 1 —£0/2. (6.5.15)

Weak form of the equations for u* and ¢* is as follows:

/ [gkﬁtf + gk(u’;f,g +ubf3) + g"(Af +2f,/0)| ododrsdt = 0

Q-

for any f € C§°(Q-). Routine arguments show

WP AT in Lo (Q_;R?),
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gk - g n Wg?jl(QZ)a
where Qg = Iy x|t — t9, 7], Iy = I1(02%, 02; h2,h2) D 11, t, > t;, and m >> 1.

Then we have

¢F =7 in CQ) (6.5.16)
and
supg <1, /[P + [us2 < Alo, [g<A/M in Q, (6.5.17)
G-
and

g+ (U +1/0)7, + TGy ~ T~ T3 =0 i Qo
According to (6.5.15) and (6.5.16),

E(QO, 5603,%) = 17 §(967 $63,t6) S - 80/27 t6 S z’ (6518)
where
(Qk’al‘k&f) — (Q07x037%)7 (Q;c’x;gi‘})t;c) — (Q67I637t6)

and points (0o, Zos, ) and (0}, 2}s, th) belong to the closure of the set Q.
Clearly, by (6.5.17),

G(00,%03,) = sup g(z) = 1.
2€Q2

By the strong maximum principle, g = 1 in @2. But this contradicts (6.5.18).
O

Now, we proceed with the proof of Theorem 5.7. Take arbitrary positive
numbers R, L, T, and 0 < € < 1/2. We can always assume that

l—e<g<1l on Q=Ilyx]—T,0] (6.5.19)

where Iy = II(1, R; — L, L). To explain this, we let §, = 6(Ily, 0, =T, A, M, ¢).
Obviously, there exists a point (gg, Zos, to) € Q— such that

1 — g(00, To3,t0) < 0, < e <1/2.
It is easy to see

1/2 < gouy,(00, Tos, to) /M = g(00, Tos, to) < 00/M
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and, therefore, o9 > M /2 > 0. Then one can scale our functions so that
9a(r,ys, 8) = g(Ar, Zos + Ay, to + A%s), A = 0o,

u?(n Y3, S) = )\uQ(Ara Zo3 + )\y?n Z50 + )\23)7
uy(r,ys, s) = Aug(Ar, oz + Ays, to + A%s).

For scaled functions, we have
1-— gA(l,0,0) < 5*,

Osgx + udgrr +uzgrs — (Agx — 2gx,/7) =0 n Q_,
(rud), + (ru3)s =0 in Q-

supgr =1, P+ [P <A/, gl <A/M i Q-

Q-

By Lemma 5.8, B
l—e<g<1 on Qo

It is always deemed that this operation has been already made and script A
is dropped. It is important to note two things. Numbers R, L, T, and ¢ are
in our hands and we cannot use the fact |u| < 1 any more since after scaling
lu| < 0o(R, T, L, A, M,e).

We choose a cut-off function

O(g, w3, t) = P(e)n(zs)x(t),

where functions v, 1, and y have the following properties:
Pe)=1 0<o<R-1, P(@=0 0>R,

[ (o) + [ (0)| S 0< o< +oo;
n(zs) =1 |z <L—1,  nlxs) =0 |as) > L,
0 (@3)| + In"(23)] < ¢ o] < +oo;
xt)=1 —-T+1<t< -1, xXt)=0 t<-T,
O =t+T —T<t<-T+1,
xt)=—t —1<t<O.
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So, we have

I, = / <8tg + Upg o+ Usgs — Ag)@gd@dxgdt =1, =

Q-

— 9 / 92 & pdodsdt (6.5.20)
0
Q-
We replace g with g— 1 in the left hand side of (6.5.20) and, after integration
by parts, have

1
Iy=+ / (atcp +up®, + us® g+ A<I>> (1— g)dudt.
Q-

We know that 1 — g < e in CNQO. Then, by 6.5.13,

0 L 1
IO Z / / /(1 — g) <6tq) —+ U3(I)73 + @733> ngdl'gdt + €Co(R, T, L, A, M)

~T-L 0
—(L+T)C1 (A, M) +eCo(R,T,L, A, M). (6.5.21)
Next, let us evaluate the right hand side in (6.5.20). Integration by parts

gives:
0 L 0 L R
—2//9 (0, z3,t)P(0, x3,t d:cgdt—l—Q///(I),gngda:gdt.
~T-L “T-L 0

The first term on the right hand side of the latter identity is equal to zero.

The second one is estimated from above
0 L R L R
:2///<I>7gdgdx3dt+2 //(I)gg—l dodxsdt <
~T-L 0 ~-L 0
R
/<I>7ngdx3dt +eCy(R, T, L, A, M) =
0

0
=/
-1 —

“\h
’ﬂ\o
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0 L
= —2//@(0,[E3,t>dl’3dt+€0&(R, T,L,A, M) <
1L

< —2(L—1)(T —2) +eC4(R, T, L, A, M).

The latter, together with identity (6.5.20) and (6.5.21), implies the following
inequality

2L — 1)(T — 2) < (L +T)Cy(A, M) + CI(R, T, L, A, M).

This leads to contradiction for large L and T and sufficiently small e.
So, the assumption M > 0 is wrong. In the same way, one shows that

inf ou, = m > 0.
Q

This means that the swirl is zero. O

6.6 Axially Symmetric Suitable Weak
Solutions

In this section, just for convenience, we replace balls B(r) with cylinders
Clr) = {z = (2/,x3), 2 = (x1,22), || < 7, |x3] < r} and then Q(r) =
C(r)x] —r?,0[. As usual, let us set

U = Vy€, + V3€3 UV = Vy€y

for v = v,e, + Vo€, + Ve,
Here, we follow paper [59], where results are stated for the canonical
domain () = Q(1). The general case can be deduced by re-scaling.

Theorem 6.1. Assume that functions v € L3(Q) and q € L%(Q) are an
axially symmetric weak solution to the Navier-Stokes equations in Q. Let, in
addition, a positive constant C' exists such that

[o(x,t)| < (6.6.1)

i

for almost all points z = (x,t) € Q. Then z =0 is a reqular point of v.
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Theorem 6.2. Assume that functions v € L3(Q) and q € L%(Q) are an
axially symmetric weak solution to the Navier-Stokes equations in Q). Let, in
addition,

v € Loo(Cx] —1,—a?) (6.6.2)

for each 0 < a <1 and
_ C

for almost all points z = (x,t) € Q) with some positive constant C'. Then
z =0 1is a reqular point of v.

According to the Caffarelli-Kohn-Nirenberg theorem if v and ¢ are an
axially symmetric suitable weak solution and z = (z,t) is singular (i.e., not
regular) point of v, then there must be 2 = 0. In other words, all singular
points must seat on the axis of symmetry, which in our case is the axis x3.

The following estimate is obtained with help of Mozer’s iterations. Its
proof is not complicated, see, for example, [59].

Lemma 6.3. Assume that functions v € L3(Q) and q € L%(Q) are an
axially symmetric weak solution to the Navier-Stokes equations in (). Let, in
addition, condition (6.6.2) hold. Then following estimate is valid:

3
ess s Jov (2 <COD( [ lev¥a2)" 66
2€Q(1/2)
Q(3/4)
where ,
M:( / wﬁdz)”ﬂ
Q(3/4)

Remark 6.4. Under the assumptions of Lemma 6.3, the pair v and q is a
suitable weak solution to the Navier-Stokes equations in ). Hence, the right

hand side of (6.6.4) is bounded from above.

With some additional notation
Clawo, B) = {o € B || 2 = (¢',35), @' = (w1, 2),
|z — x| < R, |x3 — xo3| < R}, C(R)=C(0, R), C=C(1);
Q(z0, R) = C(zo, R)xJto — B*, 1o,  Q(R) = Q(0,R), Q= Q(1),
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we recall the definition of certain scaled energy quantities:

1
A(zo,m;v) =ess  sup  — / |v(z,t)*dx,

to—r2<t<to r

C(zo,r)
1 , 1 ,
E(zo,m0) = — [Vofidz,  D(x,139) = 5 lq|2dz,
Q(z0,7) Q(zo0,m)
Clzo,riv) = ~ Sz, H(zpriv) = 2q
(207T7U) - T_Q ‘U’ Z, (20’7471}) - ﬁ ’U’ Z,
Q(z0,7) Q(z0,7)

to
1 s
Ms,l(zo,r;v)zr—ﬂ / ( / |v]3dx) dt,
to—r2  C(zo,r)

where k =[(2+2 —1)and s > 1,1 > 1.
The following statement is proven in a similar way as Proposition 4.4, see
details in [59].

Lemma 6.5. Under assumptions of Theorem 6.1, we have the estimate
Az, r3v) + E(zp,150) + C(2,750) + D(2,739) < C1 < 400 (6.6.5)

for all z, and for all v satisfying conditions

1
0<r< 7 (6.6.6)
A constant Cy depends only on the constant C' in (6.6.1), ||v||L,0), and

lgllz, @)-
2

zp = (bes,0), beR, b <

o |

To prove Theorem 6.2, we need an analogue of Lemma 6.5. Here, it is.

Lemma 6.6. Under assumptions of Theorem 6.2, estimate (6.6.5) is valid as
well with constant Cy depending only on the constant C in (6.6.3), ||| L,)

and ||Q||L%(Q)'

Lemma 6.6 is proved along the same lines as Lemma 6.5.

As it follows from conditions of Theorem 6.2 and the statement of Lemma
6.3, the module of the velocity field grows not faster than C'/|2’| as |2/| — 0.
Moreover, the corresponding estimate is uniform in time. However, it turns
out that the same is true under conditions of Theorem 6.1. More precisely,
we have the following.
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Proposition 6.7. Assume that all conditions of Theorem 6.1 hold. Then
lv(z,t)] < — (6.6.7)

for all z = (z,t) € Q(1/8). A constant Cy depends only on the constant C
in (6.6.1), |[vllzo@; and [lgzy @)

PROOF In view of (6.5), we can argue essentially as in [62].
Let us fix a pomt zo € C(1/8) and put ry = |xp|, by = xe3. So, we have
ro < 3 and |b| < . Further, we introduce the following cylinders:

737}0 = {ro < |2'| < 2rq, |x3] < 1o}, 7330 = {ro/4 < |2'| < 3ro, |z3] < 2ro}.
P (bo) =Py + boes, Pz (bo) = P + boes,
ro(b0) = P, (b0) x] = 15,0[, Q7 (bo) = Pr(bo)x] — (2r9)?, 0[.
Now, let us scale our functions so that
T =roy+boes, t=rps, uly,s)=rov(z,t), ply,s)=riqlz,t).
As it was shown in [62], there exists a continuous nondecreasing function

dR, - R,, R, ={s> 0}, such that

sup Ju(u, )|+ (Vuly. )] < 0 sw [ July )Py
(,5)€Q1(0) —2225<0
P2(0)
+ / \Vul?dy ds + / |ulPdy ds + / |p|%dyds>. (6.6.8)
Q1(0) Q1(0) Q1(0)
After making inverse scaling in (6.6.8), we find

sup  rolu(z,t)] + g |Vu(z, t)| < @(cA(zbO, 3ro;v) + cE(2p,, 3ro; v)+
z€Q}, (bo)

+cC(zpy, 3r0; v) + cD(zp,, 370; q)) < ®<4cCl>.

It remains to apply Lemma 6.5 and complete the proof of the proposition. [
Now, we proceed with proof of Theorems 6.1 and 6.2. Using Lemmata 6.3,
6.5, 6.6, Remark 6.4, Proposition 6.7 and scaling arguments, we may assume
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(without loss of generality) that our solution v and ¢ have the following
properties:

sup (A(O, rv) + E(0,r;v) + C(0,7;v) + D(0, 75 q)) = A; < +o0, (6.6.9)

0<r<1

ess sup |2||v(z,t)| = Ay < +o0. (6.6.10)
z=(z,t)eQ

We may also assume that the function v is Holder continuous in the closure
of the set Cx] — 1, —a?[ for any 0 < a < 1.
Introducing functions

H(t) =sup|v(x,t)|, h(t)= sup H(1),

zeC —1<7<t

let us suppose that our statement is wrong, i.e., z = 0 is a singular point.
Then there are sequences x; € C and —1 < ¢, < 0, having the following
properties:

h(ty) = H(ty) = My, = |v(zg, tx)| = +00 as k — +oo.

We scale our functions v and ¢ so that scaled functions keeps axial symmetry:

uk(y, S) = Akv()\ky'7 T3k + )\kyg, tr + )\zs), A = M’

Py, ) = MNea(Aey/s mar + Akys, tr + Aps).
These functions satisfy the Navier-Stokes equations in Q(Mj). Moreover,
[u"(y,,0,0)| =1,  yj. = Myx,. (6.6.11)

According to (6.6.10),
il < Ay

for all £ € N. Thus, without loss of generality, we may assume that
Y — Y. as k — +oo. (6.6.12)
Now, let us see what happens as & — +o00. By the identity

sup  |uf(e)| =1 (6.6.13)
e=(y,5)€C(My)
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and by (6.6.9), we can select subsequences (still denote as the entire sequence)
such that

*

u Sy in Leo(Q(a)), (6.6.14)

and
p'—=p in Li(Q(a))

for any a > 0. Functions u and p are defined on Q_ = R3x] — oo,0].
Obviously, they possess the following properties:

ess sup |u(e)] <1,
ecQ—

sup (A(O; ryu) + E(0,7;u) + C(0,7;u) + D(0, T;p)) < Ay,

0<r<+oo

ess  sup |y ||u(y, s)| < As. (6.6.15)
e=(y,5)€Q-

Now, our aim is to show that u and p satisfy the Navier-Stokes equations
@ and u is smooth enough to obey the identity

lu(y.,0,0)| = 1. (6.6.16)

To this end, we fix an arbitrary positive number a > 0 and consider numbers
k so big that a < M}, /4. We know that u* satisfies the nonhomogeneous heat
equation of the form

ouf — AuF = —div F* in Q4a),
where F* = u* @ uF + p*I and
HFkH%,QMa) < ci(a) < 0.
This is implies the following fact, see [33],
IV ) < eafa) < oo,

Now, we can interpret the pair «* and p* as a solution to the nonhomogeneous
Stokes system

ot — AuF +Vp¥ = fF dive* =0 in Q(3a), (6.6.17)
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where f*¥ = —u* . Vu* is the right hand side having the property

174113 0oy < c2(a).

Then, according to the local regularity theory for the Stokes system, see
Chapter IV, we can state that

||atuk||g,Q(2a) + ||V2uk||%,Q(2a) + ||Vpk||g,Q(2a) < cz(a).
The latter, together with the embedding theorem, implies

IVu*lls 2 (oeay + I1P*1ls.2 0ea < cala).

In turn, this improves integrability of the right hand side in (6.6.17)

1£51s,2

1

02a) < ca(a).

Therefore, by the local regularity theory,

100" 13

LRl

Q(2a) T ||V2 k||3 3.Q(2q) + ||VP ||3,2,Q(2 < cs(a).
Applying the imbedding theorem once more, we find

IVu*llg, 2

LRl

Qea) T Ip"* |6,2,Q(2a) < cs(a).

The local regularity theory leads then to the estimate

10" l6.2.0a) + V24" 6.2 0@ + V2" [l6.2.0a) < cr(a)-

LR

By the embedding theorem sequence u* is uniformly bounded in the parabo-

lic Hélder space C2 2(Q(a/2)). Hence, without loss of generality, one may
assume that
uf — in C4( (a/2)).

This means that the pair u and p obeys the Navier-Stokes system and (6.6.16)
holds. So, the function u is the so-called bounded ancient solution to the
Navier-Stokes system which is, in addition, axially symmetric and satisfies
the decay estimate (6.6.15). As it was shown in Section 5 of this chapter, such
a solution must be identically zero. But this contradicts (6.2.43). Theorems
(6.1) and (6.2) are proved.
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6.7 Backward Uniqueness for Navier-Stokes
Equations

In this section, we deal with another subclass of ancient solutions u possessing
the following property: there exists a function p defined on R3x] — 0o, 0]
such that functions u and p are a suitable weak solution to the Navier-Stokes
equations i R3x] — oo, 0|, i.e., they are a suitable weak solution on each
parabolic ball of the form Q(a) = B(a)x]| — a?,0[ with < a < +o00. We call
u a local energy ancient solution. Certainly, mild bounded ancient solutions
belong to this subclass.

Local energy ancient solutions can be obtained from a given suitable weak
solution v and ¢ defined in ) with the help of the scaling mentioned in the
previous section provided boundedness of ¢’ takes place, see the definition of
¢’ in Proposition 4.4.

Proposition 7.1. Let v and q be a suitable weak solution to the Navier-
Stokes equations in Q with g’ < +oo and let u®(y, s) = \w(\y, A?s) and
PP (y,s) = Nq(\ey, \2s) with A\, — 0 as k — +oco. Then there exist sub-
sequences of u®) and p®) still denoted by u® and p*) such that, for each
a> 0,

u®) 5y

in L3(Q(a)) N C([—a? 0]; Le(B(a))) and

9
8

(k)ép

in L%(Q(a)), where u is a local energy ancient solution with the corresponding
pressure p. For them, the scaled energy quantities are uniformly bounded, i.e.,

sup {A(usa) + Clusa) + D(p;a) + E(usa)} < +oc.
0<a<+oo

Moreover, if z =0 is a singular point of the velocity field v, then
/ ufbdz > ¢ (6.7.1)
QE3/4)

with a positive universal constant c, 1.e., u is not identically equal to zero.
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A proof of this proposition and similar facts can be found in [13], [54],
[59], and [55]. Let us comment the last statement of Proposition 7.1. Indeed,
if 2 = 0 is a singular point of v, the e-regularity theory gives us

1 .
[ ez > < >0
Q(r)

for all 0 < r < 1 and for some universal constant €. Making the inverse
change of variables, we find

L[ (uWP + [p®)]2)dyds =

Q(a)
2 [ (P + Jg]?)dads > e > 0
" Q)

for each fixed radius a > 0 and for sufficiently large natural number k. We
cannot simply pass to the limit in the latter identity since it is not clear
whether the pressure p*) converges strongly. This is quite typical issue when
one works with sequences of weak solutions to the Navier-Stokes equations.
In order to treat this case, let us split the pressure p into two parts. The
first part is completely controlled by the velocity field u® while the second
one is a harmonic function with respect to the spatial variables. This, to-
gether with a certain boundedness of the sequence p®, implies (6.7.1). For
more details, we recommend papers [54] and [55].

We do not know whether local energy ancient solutions with bounded
scaled energy quantities are identically equal to zero. However, there are
some interesting cases for which the answer is positive. Let us describe them.

Our additional standing assumption of this section can be interpreted as
a restriction on the blowup profile of v and has the form

1
— / v(z, 0)|fdz — 0 (6.7.2)
rs
B(r)
as 7 — 0. The most important consequence of (6.7.2) is that

u(-,0) =0, (6.7.3)

where v is a local energy ancient solution that is generated by the scaling
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described by Proposition 7.1. Indeed, for any a > 0, we have

“% Bla)
ctx [ fuly,0) —u®(y,0)[5dy + 5 [ |uM(y,0)[5dy =
% B(a) “® B(a)
1 9
ag(a) T [ |v(z,0)[sdx

Now, by Proposition 7.1 and by (6.7.2), the right hand side of the latter
inequality tends to zero and this completes the proof of (6.7.3).

In a view of (6.7.3), one could expect that our local energy ancient solution
is identically equal to zero. We call this phenomenon a backward uniqueness
for the Navier-Stokes equations. So, if the backward uniqueness takes place
or at least our ancient solution is zero on the time interval | — 3/4,0[, then
(6.7.1) cannot be true and thus, by Proposition 7.1, the origin z = 0 is not a
singular point of the velocity field v.

The crucial point for understanding the backward uniqueness for the
Navier-Stokes equations is a similar phenomenon for the heat operator with
lower order terms. The corresponding statement for the partial differential
inequality involving the backward heat operator with lower order terms has
been proved in [13] and reads:

Theorem 7.2. Assume that we are given a function w defined on R’ x]0, 1],
where R}y = {x = (x;) € R", z, > 0}. Suppose further that they have the
properties:

w and the generalized derivatives Vw, 0w, and V3w are square integrable
over any bounded subdomain of R% x]0,1[;

|Ow + Aw| < e(Jw| + |Vw|) (6.7.4)
on R} x]0, 1] with a positive constant c;
()] < exp{M][?) (6.7.5)
forall x € R, for all 0 <t <1, and for some M > 0;
w(z,0)=0 (6.7.6)

for all x € RY.
Then w is identically zero in R’ x]0, 1[.
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The interesting feature of Theorem 7.2 is that there has been made no
assumption on w on the boundary x, = 0. In order to prove the theorem,
two Carleman’s inequalities have been established, see details in [13] and
[12] and the appendix. For the further improvements of the above backward
uniqueness result, we refer to the interesting paper [10].

Theorem 7.2 clearly indicates what one should add to (6.7.3) in order
to get the backward uniqueness for ancient solutions to the Navier-Stokes
equations. Obviously, we need more regularity for sufficiently large » and
a right decay at infinity. One can hope then to apply Theorem 7.2 to the
vorticity equation

Ow—Aw=w--Vu—u-Vuw, w=V Au,

which could be interpreted as a perturbation of the heat equation by lower
order terms. To make it possible, it is sufficient to show boundedness of «
and Vu outside of the Cartesian product of some spatial ball and some time
interval. The rest of the section will be devoted to a certain situation, for
which it is really true.

Let us assume that

lu(z,t)] + |Vu(z,t)] <c < 400 (6.7.7)

for all |z] > R, for all =1 < ¢ < 0, and for some constant ¢ and try to
figure out what follows from (6.7.7). It is not difficult to see that (6.7.3) and
(6.7.7) implies (6.7.6) and (6.7.4), (6.7.5), respectively. At last, the linear
theory ensures the validity of first condition in Theorem 7.2, see details in
[47]. So, Theorem 7.2 is applicable and by it, w(z,t) = 0 for all || > R and
for —1 < t < 0. Using unique continuation across spatial boundaries, see,
for instance, [13], we deduce w(z,t) = V Au(z,t) = 0 for all z € R?® and,
say, for —=5/6 <t < 0. Since u is divergence free, it is a harmonic function in
R? depending on ¢ €] — 5/6,0[ as a parameter. Therefore, for any a > /5/6
and for any xy € R3, by the mean value theorem for harmonic functions, we
have

1
o a0 e s o [ G0
—5/6<t<0 —5/6<t<0 @
B(zo,a)
1
<c sup — / |U(I,t>|2dl‘SCLLIMA(U,CL—FMZ()D.
—-5/6<t<0 @

B(lzo|+a)
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Thanks to boundedness of scaled energy quantities stated in Proposition 7.1,
the right hand side of the latter inequality tends to zero as a goes to infinity.
By arbitrariness of xy, we conclude that u(x,t) = 0 for all z € R® and for
—5/6 <t < 0, which contradicts (6.7.1). Hence, the origin z = 0 cannot be
a singular point of v.

Coming back to a marginal case of Ladyzhenskaya-Prodi-Serrin condition,
which is called L3 .-case, and show that it can be completely embedded into
the above scheme. So, we assume that functions v and ¢ are a suitable
weak solution to the Navier-Stokes equations in () and satisfy the additional
condition

1vl]3,00.0 < +00. (6.7.8)

With the help of Proposition 4.4, it is not so difficult to show that ¢’ < +o0.
So, for v, all the assumptions of Proposition 7.1 hold and thus our blowup
procedure produces a local energy ancient solution u with the properties
listed in that proposition. Exploited the e-regularity theory once more, we
can show further that v(-,0) € L3(B(2/3)), which in turn implies (6.7.2).
Now, in order to prove regularity of the velocity v at the point z = 0, it is
sufficient to verify the validity of (6.7.7). Indeed, by scale-invariance,

2] 3,008 x]—o0,0] < +00.

Applying Proposition 7.1 once again and taking into account properties of
harmonic functions, one can conclude that

HpH %,OO,RSX]—OO,O[ < +00.

Combining the latter estimates, we show that for any 7" > 0

[ [ ul* oot < +oc. (6.7.9)

—T R3

Our further arguments rely upon the e-regularity theory. Indeed, letting,
say, T'= 4, one can find R > 4 so that

0
/ / (lul? + |p|?)dadt < e.

—4R3\B(R/2)

The rest of the proof of (6.7.7) is easy.
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6.8 Comments

The section is essentially the context of my lectures on the local regularity
theory given in Summer School, Cetraro, Italy, 2010, see [58]. It contains
an introduction to the so-called e-regularity theory in the spirit of the paper
[13], see also [50] for some generalizations. A big part of this section is
an alternative approach to derivation of mild bounded ancient solutions and
Liouville type theorems for them presented in [27]. Here, we follow the paper
[59] although proofs of Liouville type theorems is essentially the same as in

27].



Chapter 7

Behaviour of L3-Norm

7.1 Main Result

Let us consider the Cauchy problem for the classical Navier-Stokes system

oww+v-Vu—Av=—-Vg, dive =0 (7.1.1)
with the initial condition
U|t:0 = Vo (712)
in R3. For simplicity, assume
vy € Coo(R?) = {v € CF(R?) : dive = 0} (7.1.3)

In 1934, J. Leray proved certain necessary conditions for 7" to be a blow
up time. They can be stated as follows. Suppose that T is a blow up time,
then, for any 3 < m < oo, there exists a constant ¢,,, depending on m only,
such that

10 )l = 108 ls = / |mt|mdx (14

_( —t)

forall0 <t <T.
However, for the scale-invariant Ls-norm, a weaker statement

limsup |Jv(-, 1)|[3 = oo (7.1.5)

t—1T—-0

has been proven in the previous chapter. The aim of this chapter is to
improve (7.1.5). At the moment, the best improvement of (7.1.5) is given by
the following theorem.

211
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Theorem 1.1. Let v be an energy solution to the Cauchy problem (7.1.1)
and (7.1.2) with the initial data satisfying (7.1.3). Suppose that T > 0 is a
finite blow up time. Then

Jim o )]s = oo (7.1.6)

holds true.

Let us briefly outline our proof of Theorem 1.1 that relays upon ideas
developed in [54]-[56]. In particular, in [54], a certain type of scaling has
been invented, which, after passing to the limit, gives a special non-trivial
solution to the Navier-Stokes equations provided there is a finite time blow
up. In [55] and [56], it has been shown that the same type of scaling and
blowing-up can produce the so-called Lemarie-Rieusset local energy solutions,
introduced and carefully studied in the monograph [35], see Appendix B for
details. It turns out to be that the backward uniqueness technique is still
applicable to those solutions. Although the theory of backward uniqueness
itself is relatively well understood, its realization is not an easy task and based
on delicate regularity results for the Navier-Stokes equations. Actually, there
are two main points to verify: solutions, produced by scaling and blowing-up,
vanish at the last moment of time and have a certain spatial decay. The first
property is easy when working with Lz-norm while the second one is harder.
However, under certain restrictions, the required decay is a consequence of the
Lemarie-Rieusset theory. So, the main technical part of the whole procedure
is to show that scaling and blowing-up lead to local energy solutions. On that
way, a lack of compactness of initial data of scaled solutions in Lgj.. is the
main obstruction. This is why the same theorem for a stronger scale-invariant
norm of the space H 2 is easier. The reason for that is a compactness of the
corresponding embedding, see [41] and [55].

In this chapter, we are going to show that, despite of a lack of compactness
in Ls-case, the limit of the sequence of scaled solutions is still a local energy
solution, for which a spatial decay takes place. Technically, this can be done
by splitting each scaled solution into two parts. The first one is a solution
to a non-linear problem but with zero initial data while the second one is a
solution of a linear problem with weakly converging nonhomogeneous initial
data.

We also prove (7.1.4) as a by-product of the proof of Theorem 1.1, see
Section 4.
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7.2 Estimates of Scaled Solutions

Assume that our statement is false and there exists an increasing sequence
tr converging to T" as k — oo such that

sup ||Jv(, tg)|]s = M < oc. (7.2.1)
keN

By the definition of a blow up time for energy solutions, there exists at
least one singular point at time 7. Without loss of generality, we may assume
that it is (0,7). Moreover, the blow-up profile has the finite Ls-norm, i.e.,

lo(-, T)|s < oc. (7.2.2)

Let us scale v and ¢ so that
Wy, s) = Mo 1), pP(y,5) = Aq(a, 1), (7.2.3)
for (y,s) € R3x] — A>T, 0], where
T = MY, t=T4+ \s,

T —t
S

and a positive parameter S < 10 will be defined later.
By the scale invariance of Lz-norm, u®)(-, —S) is uniformly bounded in

L3(R3), i.e.,

A =

sup [|[u® (-, =S)||s = M < oco. (7.2.4)
keN

Let us decompose our scaled solution «®) into two parts: u®) = v*) 4k
Here, w®) is a solution to the Cauchy problem for the Stokes system:

ow® — Aw® = —vr®  dive®™ =0 in R3x] - S,0],
wh (-, —8) =u® (., =5). (7.2.5)
Obviously, (7.2.5) can be reduced to the Cauchy problem for the heat equa-
tion so that the pressure 7*) = 0 and w®) can be worked out with the help

of the heat potential. The estimate below is well-known, see, for example
[24],

S%P{Hw(k)HLs(Wx]—w[ + [y o @ox—s0} < (M) < oo. (7.2.6)
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It is worthy to note that, by the scale invariance, ¢(M) in (7.2.6) is indepen-
dent of S.

As to v™®)_ it is a solution to the Cauchy problem for the following per-
turbed Navier-Stokes system

8™ + div(e® 4+ w®) @ (® 4 w®) = Ap® = _gp®),
dive® =0 in R3x]—S,0[,  (7.2.7)
oM (., =8) =0.

Now, our aim is to show that, for a suitable choice of —S, we can prove
unform estimates of v® and p®) in certain spaces, pass to the limit as k — oo,
and conclude that the limit functions u and p are a local energy solution to the
Cauchy problem for the Navier-Stokes system in R3x] — 5, 0 associated with
the initial data, generated by the weak Ls3-limit of the sequence u(k)(-, -9).

Let us start with estimates of solution to (7.2.7). First of all, we know
the formula for the pressure:

1

1
P9, t) = — [ @, O+ / K(z—y) : u® (y, ) 2u(y. H)dy, (7.238)
RS

where K (z) = V2(1/|x]).
Next, we may decompose the pressure in the same way as it has been
done in [25], see Appendix B. For xy € R? and for € B(zg,3/2), we let
) (x,t) = pW(a,t) — L) (8) = pi (1) + p2 (2, 1), (7.2.9)

where

1 1
PO = 0P+ [ K ) a0 @ u, ay
B($072)

P (x,t) = f / (K(z —y) — K(zo — y)) : u® (y, ) @ u™ (y, t)dy,

7
Rg\B(x()ﬂZ)
1
) = o K(zo—y) : u™(y.t) @ ™ (y, t)dy.

R3\ B(z0,2)
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Using the similar arguments as in [35], see also Appendix B, one can
derive estimates of p;gk) and p?;gk). Here, they are:

12" (Dl (Bwo.s2) < e U0® AL (w2 + 1), (7.2.10)
sup [t (1) < (M) ([0 (D)1, + 1 (7.2.11)
B(xz0,3/2)

where

||g||L2,unif = Sup ||g||L2(B(90071))‘
zoER?’

We further let

Oé(S) - OC(S;I{J,S) - ||U(k)('7s)”§,unif7

B(s) = B(s;k,S) = Sup/ / (Vo) 2dydr.

z€R3
—S B(z,1)

From (7.2.10), (7.2.11), we find the estimate of the scaled pressure

5(0) < (M) [7(0)—1—/(1—1— as(s ))ds} (7.2.12)
s

with some positive constant ¢(M) independent of k and S. Here, v and ¢ are
defined as

s

W(S)ZZW(S;kas)Z:SUPt/‘L/1|U“OQAT)dedT
2ER3
er —S B(z,1)

and
S

() =8k S) = sup [ [ o) = L]y
v g B(z,3/2)

respectively. It is known that an upper bound for v can be given by the
known multiplicative inequality

s s
1 3

~(s) < c(/a3(7)d7>4<ﬁ(3) + /oz(7’)dr)4. (7.2.13)

-5 -5
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Fix 29 € R? and a smooth non-negative function ¢ such that
=1 in B(1), spt C B(3/2)

and let ¢, (z) = ¢(x — 0).
Since the function v is smooth on [~S,0[, we may write down the
following energy identity

/ P2y () V™ (2, 5)*da + 2 / / o2 |Vo® 2dzdr =

R3 —S R3

= [ [ [Pag, + o Vi, (o0 + 2p18)] dndr+

+ // [w(k) V2 02 4202 w® @ (w® +o®)) Vo4
S R3
+2uwk) ™) (®) )y . Vgoio] dedr =1, + I,.

The first term [; is estimated with the help of the Holder inequality,
multiplicative inequality (7.2.13), and bounds (7.2.10), (7.2.11). So, we find

s

I < (M) / (1+a(r) +ad(r))dr+

+</8a3(7)d7>i<6(5)+/804(7)d7)i}

Now, let us evaluate the second term

I, < C/ ||U(k)('aT)H%S(B(zo,g/z))ﬂw(k)('aT)||L3(B(xo,3/2))d7+
-5

s

1 4
+c/( / Pz ( / 0190 Fdr) " dr+

—S  B(z0,3/2) B(20,3/2)
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+cﬁ / / |w® 4d:z;d7') dr+

—S B(x0,3/2)

/|lv('“ ) atseo32) 10" (T (520,572 4T

Taking into account (7.2.6) and applying Holder inequality several times, we
find

I < e(M)yi (s)(s + )i+
S l l
e [
—S  B(z0,3/2) B(z0,3/2)

><< / |v(k)|130d:v>%d7+0(M)6()(s+S)10

B(z0,3/2)

Fe(M)yi(s)(s+ 9)5.

It remains to use another known multiplicative inequality

( / ’U(k)(mas)‘?d:l?)ﬁ) < c( / \v(k)(x,s)Ide>é><

B(x0,3/2) B(x0,3/2)

3
><< / (Vo8 (2, 8))? + [v®) (, 5)] dx) v
B(w0,3/2)

and to conclude that

win

I <c(M)y

Od\l\')

(5)(s + S)3 + c(M)B2(s)(s + S) 10 + c(M)73(s)(s + S)i+
+e(Bs) + / a(r)dr)) " x ( / (), G, )
-S -S
Finally, we find
a(s) + B(s) < (M) (s + )3+
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S

+ [ (e + 0B, + 0¥0) dr), 721)
s
which is valid for any s € [—=S,0[ and for some positive constant ¢(M) inde-
pendent of k, s, and S.

It is not so difficult to show that there is a positive constant S(M) such
that

as) < 75 (7.2.15)
for any s €] — S(M),0[. In turn, the latter will also imply that
a(s) <c(M)(s+ S)é (7.2.16)
for any s €] — S(M),0[.
To see how this can be worked out, let us assume
a(s) <1 (7.2.17)
for =S < s < sy <0. Then (7.2.14) yields
als) < (M) ((s + S)5 +y(s)) (7.2.18)
for the same s. Here,
y(s) = /Oé(T)(2 +g(r)dr,  g(s) = WP 8)II, e
=5
The function y(s) obeys the differential inequality
Y (s) < o(M)(2+ g()((s + 5)7 +y(s)) (7.2.19)
for —S < s < sg < 0. After integrating (7.2.19), we find
y(s) < (M) / ((7+8)3 2+ g(r) exp { (M) / (2+ g(9)) bdv )dr (72.20)
-5 T

for =S < s < 59 < 0. Taking into account estimate (7.2.6), we derive from
(7.2.20) the following bound

ot

y(s) < e (M)(s+S) (7.2.21)
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for —5 < s < 59 <0 and thus
y(s) < ¢ (M)Ss (7.2.22)

for the same s.
Now, let us pick up S(M) > 0 so small that

1
= 55
We claim that, for such a choice of S(M), statement (7.2.15) holds true.
Indeed, assume that it is false. Then since a(s) is a continuous function on
[—5,0[ and «(0) = 0, there exists sy €] — S, 0[ such that 0 < a(s) < & for
all s €] — 5, so[ and a(sy) = 5. In this case, we may use first (7.2.22) and
then (7.2.18), (7.2.23) to get

c(M)(1 + ¢1(M))S5 (M) (7.2.23)

(M) = 5

for s €] — S, so[. This leads to a contradiction and, hence, (7.2.15) has been

proven. It remains to use (7.2.18) and (7.2.21) with so = 0 in order to
establish (7.2.16).

[

a(s) < c(M)(1+ e (M))S

7.3 Limiting Procedure

As to w® | it is defined by the solution formula

T S DR et | A WS
(%) (47r(5—|—5))3R[ p( 4(S+S)> (y, =5)dy.

Moreover, by standard localization arguments, the following estimate can be
derived:

sup sup ||w(k)(78)|’%2(3(m071))+
—5<s<0 zoeR3

0
+ sup / / \Vw™™ (y, s)2dyds < ¢(M) < oo.

$0€R3
—S B(zo,1)

Obviously, w™® and all its derivatives converge to w and to its correspond-
ing derivatives uniformly in sets of the form B(R) x [4, 0] for any R > 0 and
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for any 6 €] —S,0[. The limit function satisfies the same representation
formula

exp ( — M)wo(y)dy,

wiw,t) = 4(s+9)

in which wy is the weak L3(R?)-limit of the sequence u® (-, —S). The function
w satisfies the uniform local energy estimate

sup sup Hw<'75>HQL2(B(xo,1))+
—S5<s<0 2g€eR3

zo€ER3

0
+ sup / / |Vw(y, s)|*dyds < ¢(M) < .
—S B(wo,1)

0,1

The important fact, coming from the solution formula, is as follows:
w € C([-5,0]; L3(R?)) N Ls(R?x] — 5, 0]). (7.3.1)

Next, the uniform local energy estimate for the sequence u*) (with respect
to k) can be deduced from the estimates above. This allows us to exploit
the limiting procedure explained in [25], see Appendix B, in details. As a
result, one can selected a subsequence, still denoted by u*), with the following
properties:

for any a > 0,

u®) =y (7.3.2)

weakly-star in Lo (—S,0; Lo(B(a))) and strongly in L3(B(a)x] — S,0[) and
in C([r,0]; L%(B(a))) for any —5 <7 < 0;

Vu® = Vu (7.3.3)
weakly in Ly(B(a)x] — S, 0[);
t— / u (z,t) - w(z)de — t — / u(z,t) - w(zr)de (7.3.4)
B(a) B(a)

strongly in C([—95,0]) for any w € Ly(B(a)). The corresponding sequences
v®) and w®) converge to their limits v and w in the same sense and of course
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u = v + w. For the pressure p, we have the following convergence: for any
n € N, there exists a sequences cif) € L3( S,0) such that

P =p® - —p (7.3.5)

in L%(—S,O; L%(B(n)))
So, arguing in the same way as in [25], see Appendix B, one can show
that u and p satisfy the following conditions:

sup_ sup (-, )3 (e + 51D / | Vuty )P dyds < o (7.30)

—S<s<0 zgeR3 zoER3

—5 B(z0,1)
p € Ls(=5,0;Ls 10c(R?); (7.3.7)
the function
s /u(y, s) - w(y)dy (7.3.8)
5

is continuous on [—S, 0] for any compactly supported w € Lo(R?);
ou+u-Vu—Au=—-Vp, divu=0 (7.3.9)

in R3x] — 5,0 in the sense of distributions;
for any zy € R3, there exists a function ¢,, € L%(—S, 0) such that

(1) = cao(t) = Pl . 8) + 7, () (7.3.10)
for all z € B(xo,3/2), where
1 1
Prat) = —glule 0P + 1 [ K- a0 @y,

B(z0,2)

1
Rt = [ @)= Ko ) sy ) 9 (. 0y
R3\ B(z0,2)

for any s €] — S, 0[ and for p € C°(R3*x] — S, 9|),

/ Sy, 9)uly, )2y + 2 / / S| Vuldydr <

—S R3

R3
< // (|U|2(A902 +0¢?) +u- V2 (Jul® + 2p)>dyd7'. (7.3.11)
—S R3
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Passing to the limit in (7.2.16), we find

1
sup [0+, 8) |7, o1y < ¢(M)(s + S)3

zo€R3
for all s € [-S,0]. And thus
v(+,8) =0 in L2710C(R3)
as s | —S. Then, taking into account (7.3.1), we can conclude that
u(+, 8) = wo in LQ,IOC(Rg’). (7.3.12)

as s | —S.

By definition accepted in [25], see Apendix B, the pair u and p, satisfying
(7.3.6)—(7.3.12), is a local energy solution to the Cauchy problem for the
Navier-Stokes equations in R3x] — S, 0[ associated with the initial velocity
wo-

Now, our aim is to show that u is not identically zero. Using the inverse
scaling, we observe that the following identity takes place:

1 1 - :
(WO 4 P9 dyds = g [ (ol la = 0
k

CL2
Q(a) Q(zT,aMk)

for all 0 < a < a, = inf{l,1/5/10,+/7T/10} and for all A\, < 1. Here,
zr = (0,T), p¥) = 13(;), and b (t) = A,;chk)(s). Since the pair v and g — b(¥)
is a suitable weak solution to the Navier-Stokes equations in Q(z7, A\gax), we

find

1
— / ([P + [pM]2)dy ds > (7.3.13)

for all 0 < a < a, with a positive universal constant e.

Now, by (7.3.2) and (7.3.5),

- / ul® |dyd8—>—/|u| dy ds (7.3.14)

for all 0 < a < a, and

3
2

sup — (Ju®]? 4 1p%™|2)dy ds = M, < oo. (7.3.15)

keN a2

Q(ax)
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To treat the pressure p*), we do the usual decomposition of it into two
parts, see similar arguments in [55]. The first one is completely controlled
by the pressure while the second one is a harmonic function in B(a,) for all
admissible t. In other words, we have

k
P = pi™ 4 pi

where p1 obeys the estimate

k
1P )3 gy < ellt® (913 o) (7.3.16)
For the harmonic counterpart of the pressure, we have
k 3
sup o)l <ela) [ w0l Hy
/2) )

yEB(ax
B(ax

< e(a,) / (T, )]} + [u® (g, )*)dy (7.3.17)

B(ax)

for all —a? < s < 0.
For any 0 < a < a,/2,

1
a2

e < /| 7+ [u® ) dy ds <
Qo)

1 k)3 k), 3
<o [0 4101 + 1) yas <
Q(a)

1
<cop [ U1 + 1) ayas
Q(a)

+ca —/ sup |p2 s)|%ds.

yEB(a«/2)

From (7.3.15)—(7.3.17), it follows that

0
1 3
FEa / |u<k>r3dyds+°’a/ “ / (PP . )17 + [u® (g, 5))dy <

Q(ax) —a? B(ax)
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1 .
<c— / \U"“)I3dyds+ca/(|ﬁ<k>yi+yu<’f)\3)dydsg
a
Q(a*) Q(a*)

1
<c— / [u® Bdy ds + cMyaa?
a
Q(ax)

for all 0 < a < a,/2. After passing to the limit and picking up sufficiently
small a, we find

0 < cea® < / lu|*dy ds (7.3.18)
Q(ax)

for some positive 0 < a < a,/2. So, the limit function u is non-trivial.
ProOOF THEOREM 1.1 The limit function wy € L3 and, hence,

lwoll2,B(ze,1) — O

as |xg| — oo. The latter, together with Theorem 1.4 from Appendix B, and
e-regularity theory for the Navier-Stokes equations, gives a required decay at
infinity. To be more precise, there are positive numbers R, T' €]a,, S|, and
cr with £ = 0,1, ... such that

IVFu(z,t)] < e (7.3.19)

for any z € R*\ B(R/2) and for any t €] — T, 0].
The second thing to be noticed is that the following important property
holds true:
u(-,0) = 0. (7.3.20)

This follows from (7.2.2) and (7.3.2), see the last statement in (7.3.2). Since
vorticity w = V A u vanishes at ¢t = 0 as well, we can apply the backward
uniqueness result from Appendix A to the vorticity equation and conclude
that w = 0 in (R*\ B(R/2))x] — T,0[. Now, our aim is to show that in
fact w = 0 in R3x] — T,0[. If so, u(-,t) is going to be a bounded harmonic
function with the additional property ||u(-, )| ro(B(zo1)) — 0 as |xo| — o0
and thus we may conclude that v = 0 in (R*\ B(R/2))x] —T,0[. The latter
contradicts (7.3.18) and, hence, z7 is not a singular point.

The idea of the proof of the above claim is more or less the same as in
paper [13]. However, in the present case, we have less regularity and no
global finite norm for the pressure. The way out is to use decomposition
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(7.3.10) in order to get better estimates for the pressure, say, in the domain
(R3\ B(R))x]| — T,0[. Indeed, using estimates of type (7.2.10) and (7.2.11)
for the parts of the pressure p} and p2 in (7.3.10), we show

[P(18) = Cao (D)l Ly o (Bo03/2) < €

provided B(zg,2) € R*\ B(R/2). Here, a constant ¢ is independent of
xo and t. Then, local regularity theory, applied to the pressure equation
Ap = —divdivu ® u, together with estimate (7.3.19), implies

[VEp(z,1)] < ¢,

for any x € R3\ B(R), any ¢t €]0,T[, and any k = 1,2,.... If we replace
the pressure p with p — [p]pur)\B(r), then from Poincare’s inequality, from
previous estimates, and from the equation dyu + u - Vu = —Vp, it follows
that

\VEu(z, t)] + |Vip(z, t)| + |VFOu(x,t)| < ¢ (7.3.21)

for all z € B(4R) \ B(R), for all t €] — T',0], and for all £ =0,1, ...
Next, we pick up a smooth cut-off function ¢ such that ¢ = 0 out of B(3R)
and ¢ = 1 in B(2R) and introduce auxiliary functions w and 7 obeying the

equations
Aw = Vr, divio = u - Vo

in B(4R) and the additional conditions
”LT)|33(4R) = O, / rdx = 0.
B(4R)

In a view of (7.3.19), the regularity theory for the stationary Stokes system
gives the estimates

\VEw (2, )| + |V (z, t)| + |VFO,w (2, t)| < ch (7.3.22)

being valid for all + € B(4R), for all t €] — T,0[, and for all £ = 0,1, ....
Letting U = w — w and P = r — 7, where w = ¢u and r = ¢p, we find

(U +div(URU)— AU+ VP =F = —-divilU® @+ 0 ®U) + G,

divU =0
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in Q. = B(4R)x] — T, 0],
Ulapar)x)-1.00 = 0.
Here, G = —div(w ® w) + g — dyw and
g=(¢* = p)div(u @ u) +uu - Vo? + pVy — 2V - Vu — ulp.

Since u and p are a local energy solution, it follows from its definition that
there exists a set ¥ C] — T, 0] of full measure, i.e., |X| = T, such that U is a
weak Leray-Hopf solution to initial boundary problem for the above system in
B(4R)x]to, 0] for each ty € X. The rest of the proof is based upon estimates
(7.3.21) and (7.3.22) and unique continuation across spatial boundaries for
parabolic differential inequalities and goes along lines of arguments in the
last section of Chapter 6. Theorem 1.1 is proved.

Let us outline the proof of (7.1.4), which is much easier than the proof
of Theorem 1.1. Indeed, arguing as in the main case, we find a sequence
tr — 1T — 0 such that

-3

k—o0

The scaling implies ||u® (-, —=S)||,, — 0 and thus

[u® (-, =S) £ — 0. (7.3.23)

||2,uni

For solutions u*), we may use local energy estimates proved in Appendix B.
In particular, the y give the estimate

1 COIE ymis < 26l G =9 it

for any ¢ €] — S,0[. And S should be chosen independently of & so that
In2
C(l + (2CH’U,(k)<~, _S)”27unif)2)

for all k£ € N. It is possible because of (7.3.23).
So, we can claim that

0<S<

0
—5S B(zo,1)
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as k — oo. This means that the limit solution must be identically zero.
However, using the same arguments as in the previous section, we can show
that the limit solution is not a trivial one provided that the original solution
blows up at time 7.

7.4 Comments

This section is essentially based on my paper [57], which in turn summarizes
all previous attempts made in [54]-[56] to solve the problem about behaviour
of Ls-norm of the velocity field as time approaches possible blow up time.
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Appendix A

Backward Uniqueness and
Unique Continuation

A.1 Carleman-Type Inequalities

We start with the first Carleman type inequality which has been already used
n [11] and [12] (see also [9], [14], and [67]).

Proposition 1.1. For any function u € C§°(R"x]0,2[;R™) and for any
positive number a, the inequality

z 2
[ h2e()e 5 (%W + |vu|2) drdt
R7x]0,2[

(A.1.1)

- 2
<co [ (eI |Ou+ Aul? dudt.
R" x]0,2]

1-t

is valid with an absolute positive constant ¢y and a function h(t) =te’s .

PROOF OF PROPOSITION 1.1 Our approach is based on the Lo-theory of
Carleman inequalities developed essentially in [21], see also [67].
Let u be an arbitrary function from C§°(R"x]0,2[; R™). We let ¢(x,t) =

_|aé_|: — (a+1)Inh(t) and v = e®u. Then, we have

Lv = e?(Opu + Au) = 0w — div(v ® V) — VoVe + Av + (Vo> — di¢)v.

229
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The main step in the above approach is the decomposition of operator tL
into symmetric and skew symmetric parts, i.e.,

tL =5+ A, (A.1.2)
where 1
Sv = t(Av + (V| — dip)v) — 3¢ (A.1.3)
and 1
Av = 5(815(751)) + tow) — t(div(v ® Vo) + VoVe). (A.1.4)
Obviously,

[ t?e**|0pu + Aul? dudt = [ ¢*|Lv|* dzdt
(A.1.5)
= [|Sv*dzdt + [ |Av|*dzdt + [[S, Alv - v dudt,

where [S, A] = SA — AS is the commutator of S and A. Simple calculations

show that
I:= [[S, Alv-vdzdt =

= 4ft2 [(b,ijvﬂ- . U,j + Qb,ij(b,in‘UP dzdt
(A.1.6)

+ [ (076 — 20,|Vo|* — A2¢) dzdt
+ [¢| V|2 dzdt — [t]o]2(]VP|* — 0,¢) dzdt.

Given choice of function ¢, we have

1:<a+1)/t2{—(Z/((g)/—};;fz;}wdxdt: a—gl/t\vﬁdmdt. (A.17)

By the simple identity
1
[Vol* = 50 + A)fof* = v - (9w + Aw), (A.1.8)

we find

JB|Vo?dedt = — [ t|o]? dedt — [ 0 - Lv dadt
(A.1.9)
+ [P (|Vo]* = 0i¢) dudt.
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In our case,
W(t)
h(t)

The latter relation (together with (A.1.7)) implies the bound

Vo> —0p = —|Vo|* + (a+ 1)

[E(|Vo]? + [0]?|V|?) dedt

(A.1.10)
< 3I — [t*v- Lvdadt < by [ t*|Lv|* dudt
with an absolute positive constant b;. Since
e?|Vul < |Vl + |v|| V4, (A.1.11)

it follows from (A.1.5)—(A.1.10) that

[uf?

/ W20 (0)? (0 + 1) 4 V)5 drdr

< b, / B2 () (th ™ (£)) |0y + Aule5 dadt.

Here, by is an absolute positive constant. Inequality (A.1.1) is proved.
The second Carleman-type inequality is, in a sense, an anisotropic one.

Proposition 1.2. Let
o =0V +¢,

where ¢M (x,t) = —% and ¢ (x,t) = a(l — t)%, v = (v1,29, ..., 70 1)
so that x = (2/,x,), and e, = (0,0,...,0,1). Then, for any function u €
CP (R + €,)x]0,1[;R™) and for any number a > ao(c), the following in-

equality 1s valid:

2e20(x:t) (a'?—f + —Wf'Q) dzdt
(R +0)x]0,1]

(A.1.12)

< e, f t2e20@D| 9,y + Aul? dwdt.
(R7 +en) x]0,1[

Here, ¢, = c,(a) is a positive constant and o €]1/2,1] is fived.
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PROOF Let u € C3°(QL; R™), where Q1 = (R" +¢,,)x]0,1[. We are going
to use formulae (A.1.2)—(A.1.6) for new functions u, v, and ¢. All integrals
in those formulae are taken now over Q.

First, we observe that

Vo= Vol + Vol

(A.1.13)
Vol (z,t) = L, Vo (z,t) = 20a a2 e,
Therefore,
Vol - Ve =0, Ve[ = [VeD + V@], (A1.14)
Moreover,
Vg = V2¢(1) + v2¢(2)
3ii . .o
_ %ij < <y _
" " if 1<4,7<n—-1
¢,ij )
0 if i=n or j=n (A.1.15)
0 if i#n or j#n
62 —
7ZJ
20020 — 1)a a2 if i=n and j=n
In particular, (A.1.15) implies
1—1¢
00, = ——|v¢ P+ 2020 — 1)a—— i Vol |? >
¢y > —Lll (A.1.16)

Using (A.1.14)—(A.1.16), we present integral / in (A.1.6) in the following
way:

where
I, —4ft2[ v, —i—qb f)¢fj)|v|2] dxdt
+ [ 2o (8261 — 20| Vo2 — A2

—LVe@? + %a@@)) dedt,  s=1,2.
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Direct calculations give us
I = —/t(|Vv|2 — |v,|?) dzdt

and, therefore,

I= /t]vm\zdxdt—i—[g. (A.1.18)

Now, our aim is to estimate /5 from below. Since o €]1/2, 1], we can drop
the fist integral in the expression for I5. As a result, we have

I > /t2]v]2(A1 + As + A3) dxdt, (A.1.19)
where
Ay = —0,|Vo@ 2,

1
Ay = Ay — A% — ;|V¢(2)\2,

1
Ay = 9202 + Zﬁtqﬁ@).
For Ay, we find

1—t 5, 4o’ aziot?
Ay > ——a2 " a(20 ~ 1) [taT — 2a(2a — 2)(2a — 3)|.

Since z,, > 1 and 0 < t < 1, we see that Ay > 0 for all @ > 2. Hence, it
follows from (A.1.18) and (A.1.19) that

I> /t2|v|2(A1 + A3) dxdt. (A.1.20)

It is not difficult to check the following inequality

2a

Az > a(2a — 1);12. (A.1.21)

On the other hand,

1-t
{2a+1

1
—OVeI = S [VeP* = (20 1)

4a2a2:17721(20‘_1) >0
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and thus ]
A > ¥|V¢(2)\2. (A.1.22)

Combining (A.1.20)—(A.1.22), we deduce from (A.1.5) the estimate
[ Lv*dzdt > 1

> a(20 — 1) [ 22 o2 dadt + [ to]?| V@2 dadt (A.1.23)

> a2a — 1) [ |o>dzdt + [ t|v]*|VoP|? dadt.
Using (A.1.8), we can find the following analog of (A.1.9)

[tV dwdt = =3 [ v dwdt — [tv - Lv dudt
(A.1.24)
+ [tP(|Vo|* — 0,¢) dzdt.

Due to special structure of ¢, we have
Vo[ — 016 = [V P — 0,0 + VoD |? — 5,61
= — VO + [V - 0,0
and, therefore, (A.1.24) can be reduced to the form

J (75|W|2 + o] (IVo]? + |v¢<2>|2)> drdt
= ft(!VvP + IvPqubP) drdt = —1 [ |o|? dadt (A.1.25)

— [tv- Lodadt + 2 [ t|v|?|VeP |2 dadt — [ t|v]|?0,0 dadt.
But

2c
—tat¢(2) < a%

and, by (A.1.11) and (A.1.25),

2 [te*|Vul* < — [v- (tLv) dxdt
(A.1.26)
+2 [ t|Ve® |2 dwdt + a [ L[| dadt.

The classical Cauchy-Scwartz inequality, (A.1.23), and (A.1.26) yield re-
quired inequality (A.1.12). O
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A.2 Unique Continuation Across Spatial
Boundaries

We will work with the backward heat operator 0, + A rather than the more
usual heat operator 9; — A since this will save us writing some minus signs in
many formulae. In the space-time cylinder Q(R,T) = B(R)x]0, T[C R"xR!,
we consider a vector-valued function v = (u;) = (ug,ug, ..., u,), satisfying
three conditions:

ue Wy (Q(R,T);R™); (A2.1)
|0vu + Au| < ¢y (Ju] + |Vul) a.e. in Q(R,T) (A.2.2)

for some positive constant c;;
Ju(z, )] < Cr(lz] + VH)* (A.2.3)

for all £ = 0,1,..., for all (z,t) € Q(R,T), and for some positive constants
C). Here,

Wy (Q(R, T R™) = {lul + [V ul + [V?u| + |0pu| € Ly(Q(R. T))}-

Condition (A.2.3) means that the origin is zero of infinite order for the func-
tion wu.

Theorem 2.1. Assume that a function u obeys conditions (A.2.1)-(A.2.3).
Then, u(x,0) =0 for all x € B(R).

Without loss of generality, we may assume that 7" < 1. Theorem 2.1 is
an easy consequence of the following lemma.

Lemma 2.2. Suppose that all conditions of Theorem 2.1 hold. Then, there
exist a constant v = y(c1) €]0,3/16] and absolute constants 51 and Py such
that

- 2
lu(z, )] < ea(cr) Ao(R, T)e™ it (A.2.4)
for all (xz,t) € Q(R,T) satisfying the following restrictions:
0<t<AT, |o|<BR, ot <[z
Here,
Ap=  max  |u(z,t)| + VT|Vu(z,t)].

(z)EQ(3R,3T)
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Remark 2.3. According to the statement of Lemma 2.2, u(x,0) = 0 if |z| <
AiR.

Remark 2.4. From the regularity theory for parabolic equations (see [33]),
it follows that

1
Ao < cz(ar, R, T)( / ’U‘2d2> g
Q(RT)

PROOF OF LEMMA 2.2 We let A = /2t and ¢ = 2|z|/\. Suppose that
t<AT <7, |z| < %R, and 8t < |z|>. Then, as it is easy to verify, we have
0>4 and

My € B(3R/4) if y € B(o); s €]0,3/4] if s €]0,2]

under the condition 0 < v < 3/16. Thus the function v(y, s) = u(Ay, A%s) is
well defined on Q(p,2) = B(0)x]0,2[. This function satisfies the conditions:

1050 + Av| < e M(Jv] + [V v|) (A.2.5)

in Q(o,2);
[o(y, s)] < Cr(lyl +V/s)" (A.2.6)
for all k= 0,1, ... and for all (y,s) € Q(p,2). Here, C}, = CpA\".
Given € > 0, we introduce two smooth cut-off functions such that:

5 (7S)EQ< _173/2>
0@(9’5):{0, (.5) & Blo)x] 2,20 <1

1 s €]2¢,2]
< — b 9 < .
0= eels) { 0, seloe =7
We let w = v and w. = p.w. Obviously, (A.2.5) implies the following
inequality:
|Oswe + Aw:| < erA(Jwe| + [V we|)
(A.2.7)
+ea([Vel Vol + [Vello| + A el +[9selv]) + calezl]v]-
The crucial point is the application of the following Carleman-type inequality,
see Proposition 1.1, to the function w,

2
[yl

[ a7 (s)e” 5 (IV we| + we])? dyds
Q(0,2)

(A.2.8)

ly|?

<c¢ [ hTP(s)e s
Q(e,2)

Dsw. + A w,|? dyds.
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Here, c5 is anlabsolute positive constant, a is an arbitrary positive number,
and h(t) =te’s . We let

A= max folys)|+ Vol s)|
(4,5)€Q(2,2)\Q(e—1,2)

and choose ~ sufficiently small in order to provide the condition
1
10c5ciA? < 20cs¢7y < 7 (A.2.9)

Condition (A.2.9) makes it possible to hide the strongest term in the right
hand side of (A.2.8) into the left hand side of (A.2.8). So, we derive from
(A.2.7)-(A.2.9) the following relation

[ h(s)e 5 1V w] + ) dyds
Q(e:2)
2
<A [ hT(s)e i x(y, ) dyds (A.2.10)
Q(e:2)

tegl [ hT(s)e o dyds,
Q(0:2¢)
Here, x is the characteristic function of the set Q(o,2)\ Q(0 — 1,3/2). We

fix a and take into account (A.2.6). As a result of the passage to the limit
as ¢ — 0, we find from (A.2.10)

D= [ h2(s)e” (|Vv|+|v|)2dyds
Q(Q_1)3/2)
ly 2
< A2 [ h2(s)e i x(y, s) dyds (A.2.11)
Q(e)2)

< C6A2(h 20(3/2) + p= 1fh 2(g)e- O3 ds).

Since g > 4, it follows from (A.2.11) that:
2
2
D§c7A2< T2(3/2) + p"” 1/h 2(s)e %ds) (A.2.12)

0
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In (A.2.12), the constant ¢; depends on n and ¢; only.
Given positive number 3, we can take a number a in the following way

Bo?

e TV (A.2.13)

This is legal, since h(3/2) > 1. Hence, by (A.2.13), inequality (A.2.12) can
be reduced to the form

2
2
D < C7A26_’8p2 <1 + p”_16_592 /h_Z“(s)e%QQ—gs ds).
0

We fix 5 €]0,1/64], say, § = 1/100. Then, the latter relation implies the
estimate

2
2

D < di(cr,n)A%e™P¢ (1 + / h2(s)e" 16 ds). (A.2.14)
0

It is easy to check that g < % and therefore ¢'(s) > 0 if s €]0, 2[, where

g(s) = h™*(s)e"1& and a and p satisfy condition (A.2.13). So, we have
D < cs(cy,n)A%e P2 (A.2.15)

where [ is an absolute positive constant.
By the choice of ¢ and A, we have B(u5,1) C B(o — 1) for any u €]0, 1].
Then, setting @ = B(uy,1)x]1/2,1[, we find

D> /e_y2|v|2 dyds. (A.2.16)

Q

Observing that |y|? < 2;1J2|§—‘22 + 2 if y € B(ug,1) and letting u = /23, we
derive from (A.2.15) and (A.2.16) the following bound
2 z 2 - 2

/|U\2 dyds < chQG(_QﬁJ“%)% = chZe_ﬁ%. (A.2.17)

Q
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On the other hand, the regularity theory for linear parabolic equations give
us:

(/A 1/2) < CQ(CI,n)/\deyds. (A.2.18)
g
Combining (A.2.17) and (A.2.18), we show

_gle®
ju(v/2Ba, )2 = [z, ) = lo(ua/A, 1/2) 2 < chate 5
Changing variables T = y/25x, we have
212
[u(Z, )] < \/dpde™ i
for |7] < 81 R and |Z|? > Bot with 8; = 3/8y/283 and S5 = 16(. It remains to
note that A < /27 and

A< max |u(z,t)| + AV u(z,t)].
(z,0)€Q(§R,5T)

Lemma 2.2 is proved.

A.3 Backward Uniqueness for Heat Operator
in Half Space

In this section, we deal with a backward uniqueness problem for the heat
operator. Our approach is due to [12], see also [11].

Let R} = {z = (;) € R" : z, > 0} and Q4 = R’ x]0,1[. We consider
a vector-valued function v : Q. — R™, which is "sufficiently regular” and

satisfies
|0iu 4+ Aul < ¢ (|Vu| + |u]) in Qf (A.3.1)

for some ¢; > 0 and
u(-,0) =0 in R]. (A.3.2)

Do (A.3.1) and (A.3.2) imply v = 0 in @7 We prove that the answer is
positive if we impose natural restrictions on the growth of the function u at
infinity. For example, we can assume

u(z, t)| < M’ (A.3.3)
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for all (x,t) € Q4 and for some M > 0. Natural regularity assumptions,
under which (A.3.1)-(A.3.3) may be considered are, for example, as follows:

(A.3.4)

wand weak derivatives 9,u, Vu,and V2u are square
integrable over bounded subdomains of ) .

We can formulate the main result result of this section.

Theorem 3.1. Using the above notation introduced, assume that u satisfies
conditions (A.53.1)—-(A.3.4). Then u=0 in Q.

This extends the main result of [11] and [12], where an analogue of Theo-
rem 3.1 was proved for (R™\ B(R))x]0, T instead of Q4. Similarly to those
papers, the proof of Theorem 3.1 is based on two Carleman-type inequalities,
see (A.1.1) and (A.1.12).

We start with proofs of several lemmas. The first of them plays the crucial
role in our approach. It enables us to apply powerful technique of Carleman’s
inequalities.

Lemma 3.2. Suppose that conditions (A.3.1), (A.3.2), and (A.3.4) hold.
There exists an absolute positive constant Ay < 1/32 with the following prop-
erties. If

u(z, t)| < e’ (A.3.5)

for all (z,t) € Q4 and for some A € [0, Ay|, then there are constants f(A) >
0, v(c1) €]0,1/12[, and cy(c1, A) > 0 such that

u(x, )] < cpet Mo Fe 8 (A.3.6)
for all (x,t) € (R} + 2e,)x]0, 7.

PROOF In what follows, we always assume that the function u is extended
by zero to negative values of t.

According to the regularity theory of solutions to parabolic equations, see
[33], we may assume

lu(z,t)| + |Vu(z, )] < cze?d’ (A.3.7)

for all (z,t) € (R +e,)x]0,1/2[.
We fix z,, > 2 and ¢ €]0,~[ and introduce the new function v by usual
parabolic scaling
v(y, s) = u(x + Ay, \%s — t/2).
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The function v is well defined on the set @), = B(p)x]0,2[, where p =
(z, — 1)/X and A = /3t €]0,1/2[. Then, relations (A.3.1), (A.3.2), and
(A.3.7) take the form:

1050+ Av| < e M|V + [v])  ae in Q) (A.3.8)
[0y, )] + [Vo(y, s)] < eget Al et (A.3.9)

for (y,s) € Qp;
v(y,s) =0 (A.3.10)

for y € B(p) and for s €]0,1/6].
To apply inequality (A.1.1), we pick up two smooth cut-off functions:

_J 0 Jyl>p—1/2
¢P<y)—{ 1 yl<p—1 "

0 T/4<s<2
d)t(s):{ 1 0<s<3/2°

These functions take values in [0,1]. In addition, function ¢, obeys the
inequalities: |[V*¢,| < Cy, k =1,2. We let n(y, s) = ¢,(y)¢:(s) and w = nu.
It follows from (A.3.8) that

|0sw + Aw| < et A(|Vw| + |w|) + xea(|Vo| + |v]).

Here, ¢4 is a positive constant depending on ¢; and Cj only, x(y,s) = 1 if
(yys) ew={p—1<|y <p, 0<s<2bU{ly <p—-1, 3/2<s<2}
and x(y,s) = 0if (y, s) ¢ w. Obviously, function w has the compact support
in R"x]0,2[ and we may use inequality (A.1.1), see Proposition 1.1. As a
result, we have

2
I = f h_Qa(S)ei‘ZL (‘w|2 + |V'w’2) dyds < 6010(0%)\2[ + 0311)7 (A311)
Qp
where 2
Il _ /X(y7 S)h_m(S)eJZL (|U|2 —|— |VU|2> dyds
Qp

Choosing v = v(¢;) sufficiently small, we may assume that the inequality
co10c2A? < 1/2 holds and then (A.3.11) implies

I S 65(01)[1.
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On the other hand, if A < 1/32, then

1 1
8AN? — L% (A.3.12)

for s €]0,2]. By (A.3.9) and (A.3.12), we have

ly|2

ss dyds

2

I < B [ [ x(y, s)h=2(s)e”
0 B(p)

(A.3.13)

_(p-1)?

2
< cgedAlel [h*2a(3/2) + [ h2(s)e” s ds].
0

Now, taking into account (A.3.13), we deduce the bound

1 1
D= / /\w\Qdyd:s: / /|v|2dyds
B0 3 :

B(1)

y2
< c7/h2“(s)e4s (Jw]? + |[Vw|?) dyds
Q@p

2
< au(en)e P [ (3/2) + [ 1o (s)e i ds
0

2
= 08«38‘4“‘”‘2’25'”2 [h’Q“(ZS/Q)eZB”2 + /hza(s)em’ﬁ?fjs ds} )
0

We can take f = 8A < 1/256 and then choose
a=Bp*/Inh(3/2).

Since p > z,, such a choice leads to the estimate

2
D < cge®Al P ehp? [1 + /g(s) ds},
0
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Where g(s) ~20(g)e~ i, It is easy to check that ¢'(s) > 0 for s €]0,2[ if
B< g h(3/2) So, we have
/|2 2 Al |2 By
D < 2¢5®AT B < 9084 e (A.3.14)
On the other hand, the regularity theory implies
1v(0,1/2)* = |u(z,t))* < &D. (A.3.15)

Combining (A.3.14) and (A.3.15), we complete the proof of the lemma. [J
Next lemma is a consequence of Lemma 3.2 and the second Carleman
inequality (see (A.1.12)).

Lemma 3.3. Suppose that the function u obeys conditions (A.53.1), (A.5.2),
(A.3.4), and (A.3.5). There exists a number v,(c1,c.) €]0,7v/2] such that
u(x,t) =0 for all x € R and for all t €]0, 7]

PROOF As usual, by Lemma 3.2 and by the regularity theory, we may
assume

=2
u(z, t)| + |Vu(z, t)] < co(er, AN Fe=5E (A.3.16)

for all x € R%} + 3e, and for all t €]0,v/2].
By scaling, we define function v(y,s) = u(Ay, \>s — 1) for (y,s) € Q4
with A = 1/2v,. This function satisfies the relations:

|0sv + Av| < g A(|[Vo| + |v])  ae in Qg (A.3.17)

v(y,s) =0 (A.3.18)
for all y € R} and for all s €]0,1/2[;

2,2

e —_PXun , 2
Vo(y, )| + [v(y, s)| < cge VWP 207 < o8N W P75 (A.3.19)

for all 1/2 < s < 1 and for all y € R} + 2¢,. Since A < 1/32 and A < /7 <
1/4/12, (A.3.19) can be reduced to the form

lv'|2

IVuly, )| + [v(y, s)| < crpe ™ e P2

S N

N

: (A.3.20)

for the same y and s as in (A.3.19).
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Let us fix two smooth cut-off functions:

0 yn<§+1
1 yn>§+%’

(0 (yn) =

and . 12
r>—
valr) = { 0 r<-3/4°

We set (see Proposition 1.2 for the definition of ¢ and ¢®)

2c
Yn
S

- B

Y

1
¢B(yn>s) = a¢(2)(yn> S) - B= (1 - 3)
where o €]1/2,1[ is fixed, B = 2¢?(2 +2,1/2), and

N(Yns $) = V1(Yn)V2(0B(Yn, )/ B),  w(y,s) = 1n(Yn, s)v(y, 5).

Although function w is not compactly supported in Q1 = (R% + e,)x]0, 1],
but, by the statement of Lemma 3.2 and by the special structure of the weight
in (A.1.12), we can claim validity of (A.1.12) for w. As a result, we have

/3262¢(1>e2“¢3(|w|2 + | Vwl|?) dyds
Q%

<, / §2e20" 2008 |0sw + Aw|? dyds.
QY

Arguing as in the proof of Lemma 3.2, we can select v;(c1, ¢i) so small that

1,2
I= /3262“@53(|w|2 + |Vw|2)e_% dyds
Q%

. W
< crofer, c) / X(ns ) (5ya) 8 (0] + | Vol)e™ 5 dyds,
(R (3 +T)en) 11/2,1]

where x(yn, s) = 1 if (yn,s) € w, x(yn,s) = 0 if (y,, s) ¢ w, and

W={(Yn,8): yn>1, 1/2<s<1, o¢p(yn,s) <—D/2},
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where D = —2¢B(§ + %, %) > 0. Now, we wish to estimate the right hand
side of the last inequality with the help of (A.3.20). We find

+oo 1
2
I < ¢pePe / /(yns)%ﬁyg dy,ds / e 1)W1 dy'.
2411/2 Rn—1

Passing to the limit as a — 400, we see that v(y,s) =0if 1/2 < s < 1 and
®5(Yn, s) > 0. Using unique continuation across spatial boundaries, we show
that v(y,s) =0if y e RT and 0 < s < 1. [

Now, Theorem 3.1 follows from Lemmas 3.2 and 3.3 with the help of more
or less standard arguments. We shall demonstrate them just for complete-
ness.

Lemma 3.4. Suppose that the function u meets all conditions of Lemma 3.3.
Then u =0 in Q..

PRrROOF By Lemma 3.3, u(x,t) = 0 for + € R’ and for t €]0,v[. By
scaling, we introduce the function u"(y, s) = u(v/T — 1y, (1 — v1)s + 7).
It easy to check that function u(") is well-defined in @, and satisfies all
conditions of Lemma 3.3 with the same constants ¢; and A. Therefore,
uD(y, s) = 0 for 3, > 0 and for 0 < s < ;. The latter means that u(z,t) = 0
for x, > 0 and for 0 < t < 75 = 9 + (1 — 7 )71. Then, we introduce the
function

u@(y, s) = u(y/1 — 72y, (1 —72)s + 72), (y,s) € Q,

and apply Lemma 3.3. After k steps we shall see that u(z,t) = 0 for z, > 0
and for 0 < t < Y41, where Y1 =Y+ (1 — %)y — 1. O

PrROOF OF THEOREM 3.1 Assume that Ay < M. Then \? = QA—J& <
5. Introducing function v(y, s) = u(Ay, A%s), (y,s) € Q4, we see that this
function satisfies all conditions of Lemma 3.4 with constants ¢; and A = %AO.
Therefore, u(z,t) = 0 for x, > 0 and for 0 < t < 2‘4—]\04. Now, we repeat
arguments of Lemma 3.4, replacing 71 to 22 and A to M, and end up with

2M
the proof of the theorem. [

A.4 Comments

The whole chapter is essentially due to a part of the paper [13]
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Appendix B

Lemarie-Riesset Local Energy
Solutions

B.1 Introduction

In this Chapter, we deal with the the Cauchy problem for the 3D Navier-
Stokes equations with initial data belonging to the special Morrey class
Ly unis- In contrast to the space Lo, this class does not exclude, for example,
interesting homogeneous functions of order minus one. The main goal is to
show the existence of weak solutions that satisfy the local energy inequality.
Since the global energy inequality, which is the crucial point in the defini-
tion of weak Leray-Hopf solutions, is not valid any more, we are forced to
work with local energy estimates only. However, local estimates involve the
pressure, while, in the global Lo-case, the pressure does not appear at all.
For the Cauchy problem, one would hope to use a nice solution formula for
the pressure in terms of singular integrals. This formula is well-defined for
weak Leray-Hopf solutions, but it should be modified somehow in order to be
useful for functions with very weak decay at the spatial infinity. The problem
of the existence of weak solutions for the initial data from Ls ., has been
essentially solved by P. G. Lemarie-Riesset [35] and our aim is to give our
interpretation of his interesting and important results.

Let us consider the classical Cauchy problem for the Navier-Stokes equa-
tions:

247
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Ow(x,t) + divo(z, t) @ v(z, t) — Av(z,t) = g(x, t) — Vp(z, t),

(B.1.1)
divo(z,t) =0
for (z,t) € Q7 = R3x]0, T'| together with the initial condition
v(z,0) = a(x), z € R (B.1.2)
It is supposed that
a €EFs, g € G2(0,T). (B.1.3)

Here, spaces Lo?m and Colm(O, T) with m > 1 are defined as follows:
Em= {u€ E,: divu=0 in R%},
CGn(0,T) = {u € G(0,T) : divu=0 in Qr=R*x]0,T[},

Fn= {0 € Lnais: [ 1u()"de 50 2 [zo] > +o}

B(zo,1)

T
Gm(0,T) = {u € Ly unir(0,T) : / / lu(z, t)|™dzdt — 0

0 B(x071)

as |zo| — +oo},

1/m
Lonanis =10 € gt s = 50 ([ Julw)az) ™" < oc),

xo€ER3
B(zo,1)

Lm,umf(OvT) = {U € Lm,loc(QT) : HUHLm,um-f(O,T) =

As it has been shown in [35] (see also references there), the space onm is in
fact the closure of the set

58°(R3) ={ueCPR?: divu=0 in R®}



B.1. INTRODUCTION 249

with respect to the norm of the space Ly, unif. For the readers’ convenience,
we give the proof of this fact in the last section of this chapter, see Lemma
6.1.

In monograph [35], P. G. Lemarie-Riesset proved that, for ¢ = 0, problem
(B.1.1)—(B.1.3) has at least one weak solution v with the following properties
(see Definition 32.1 in [35]): for any 7" > 0,

roER3

v € Loo(0, T Lo ynig), sup / / |V v|?dzdt < +oo0,
B(zo,1)

lo(t) = a() im0 as - 10,
v is a suitable weak solution in the sense of Caffarelli-Kohn-Nirenberg
in Qr = R*x)0,T|.

This definition seems to be a bit weak and admits trivial non-uniqueness.
Indeed, let a smooth vector-valued function c(t) satisfy ¢(0) = 0. Then
v(x,t) = ¢(t) and p(z,t) = —(t) - = is also a weak solution for zero initial
data. To avoid such type of uniqueness, one may add more restrictions on
the velocity or on the pressure. Our definition involves the pressure in more
explicit way and is follows.

Definition 1.1. We call a pair of functions v and p defined in the space-time
cylinder Qr = R3x]0,T[ a local energy weak Leray-Hopf solution or just a
local energy solution to the Cauchy problem (B.1.1)-(B.1.3) if they satisfy
the following conditions:

V€ Loo(0, T Lounig); VU € Lounig(0,T), p € Ls (0, T Ls 1, (R?)); (B.1.4)
v and p meet (B.1.1) in the sense of distributions; (B.1.5)

the function t — /v(x,t) ~w(x)dzis continuous on [0,T] (B.1.6)

for any compactly supported function w € Lo(R3);
for any compact K,

lv(-,t) —a()|lLoxy = 0 as t— +0; (B.1.7)
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t t
[etoopase [ [evitai< [ [(1oP@e+a0)
0 R3 0 R3

R3
+v - Vo([v]* + 2p) + 29 - v) dzdt (B.1.8)

for a.a. t €]0,T| and for nonnegative smooth functions ¢ vanishing in a
neighborhood of the parabolic boundary of the space-time cylinder R3x]0,T;
for any xo € R3, there exists a function c,, € L%(O,T) such that

Do (T, 1) = pla,t) — () = pglﬁ0 (z,t) —I—pio(x, t), (B.1.9)

for (x,t) € B(xg,3/2)x]0,T[, where

1 1
pio('r7t) = _§|U<x7t)|2+ﬂ / K(l‘—y) :U(y7t)®v(y7t)dya

B(z0,2)

1

Rt = [ =) - Ko=) o) @ out) dy
R3\ B(x0,2)

and K(z) = V2(1/|x]).

Remark 1.2. [t is easy to see that (B.1.4), (B.1.6)-(B.1.8) imply the fol-

lowing inequality:

/gp(x)|v(:1;,t)|2dx+Q/t/go|Vv|2dxds < /g@(m)|v(x,t0)|2dx

R3 to R3 R3

t
+// [|v|2Acp +Vep- v<|v|2 + 2p> + 2pg - v} dxds. (B.1.10)
to R3

It is valid for any t € [0,T)], for a.a. tg € [0,T], including to = 0, and for
any nonnegative function p € C3°(R?).

Remark 1.3. In turn, from (B.1.4), (B.1.6), and (B.1.10), it follows that if
v and p are a local energy solution on the set R3x]0,T|, then they are a local
energy solution on the set R3x|ty, T[ for a.a. ty € [0,T], including to = 0.
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We are going to prove the followings statements. The first of them shows
that our information about pressure is sufficient to prove decay for both
velocity v and p.

Theorem 1.4. Assume that conditions (B.1.3) hold. Let v and p be a local
energy solution to the Cauchy problem (B.1.1), (B.1.2). Thenv and p satisfy
the following additional properties:

(- t) €Ey (B.1.11)
for allt € 10,T];
(-, t) €E3 (B.1.12)
for a.a. t € [0,T7;
[0(-,t) = a(|zguny — O as t— +0; (B.1.13)

sup / / — Cap (t)|% dxdt < +o0,
zo€ER3

B(z0,3/2)

T
sup / / Lije|>ry [p(2, 1) — ca (t)\% dxdt — 0 (B.1.14)
0

zo€ER3
B(z0,3/2)

as R — +oo, where Ijjz~ry is the characteristic function of the set {x € R3 :
|z| > R}.

The main theorem of the chapter is Theorem 1.5 below.

Theorem 1.5. Assume that conditions (B.1.3) hold. There exists at least
one local energy solution to the Cauchy problem (B.1.1), (B.1.2).

The substantial counterpart of the proof of Theorem 1.5 is the statement
on the local in time existence of local energy weak solutions.

Proposition 1.6. (local in time solvability) Assume that conditions (B.1.3)
hold.  There exist a number Ty €]0,T], depending on |allr, ., and on
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91| Ly, unis0,7) ONly, and two functions v and p, being a local energy solution
to the Cauchy problem:

O (x,t) + divv(x,t) @v(x,t) — Av(z,t) = gz, t) — Vp(z, t),
(B.1.15)
divv(z,t) =0

forz € R? and 0 < t < Ty,

v(z,0) = a(x), r € R3 (B.1.16)

B.2 Proof of Theorem 1.4
Let us introduce the following decomposition:
piO(I,t) :pwo,R(IJ) —i—ﬁme(ZL’,t) (:L‘,t) < B(C(IO,3/2)X]0,T[, (B.Q.l)

where

_ 1
pronlet) = = [ (K@) = Koo~ 9)) s o(0.6) © v(s.0)dy.
R3\ B(z0,2R)

Lemma 2.1. For any zo € R3, for any t €]0,T[, and for any R > 1, the
following estimate is valid:

_ c
SUp  |Pag,r(2,1)] < EHU('J)”%Q,mf (B.2.2)
B(x0,3/2)

PROOF By our assumptions,

|z — 2]
2o — yl*

for z € B(z9,3/2) and for y € R*\ B(zy,2R). And then

[K(z —y) = K(zo —y)| < ¢

1
px,R xyt SC / —Uyat Qdy
[P, R (2, 1) \xo—yl‘*’( )|
R3\ B(z0,2R)

> 1
= CZ / E—T vy, t)|*dy
=0 B(20,21+2 R)\ B(x0,2i+ 1 R)
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o0

1
< sz / o(y, t)* dy
i=0

B(xo,21+2R)

Lemma 2.1 is proved.

We let

t

at) = (02, .., Bt)= sup / / 1V of? dads,
' roER3
0 B(wo,1)
t
() = sup/ / lv]® dxds.
zo€ER3
0 B(xo,1)
By the known multiplicative inequality, we have

t t
1

() < c</a3(s) als)Z

0 0

3

From our assumptions and from (B.2.3), it follows that:

253

(6(15) +/a(5) ds) gy (B.2.3)

ess sup a(t) + B(T) + Vg(T) <A < 4o0. (B.2.4)

0<t<T

Next, fix a smooth cut-off function x so that
x(x)=0, z€B(1), x(x)=1 z¢B(2),

and then, for yg(z) = x(z/R), let

t

an() = a3, ... Brlt) = sup / / R ol drds,

zo€ER3
0 B(zo,1)

t

Tr(t) = Sup/ / Ixrvl’ deds, Ggr= sup/ / IXrgl* drds
zoER3 ro€ER3

0 B(zo,1) 0 B(zo,1)
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t

Or(t) = sup / / |XRme|%dxds.

zo€ER3
0 B(z0,3/2)

An analogue of (B.2.3) is available with the form

t t t
3

va(t) < c< / 0 ds>i</83(t) + / aR(s)dH% a(s)ds)? (B.2.5)

0 0

Lemma 2.2. Assume that v and p are a local energy weak Leray-Hopf solu-
tion to the Cauchy problem (B.1.1)-(B.1.8) on the space-time cylinder Qr.
Then we have the estimate

sup_an(t) + Br(T) +74(T) + 03(T) < C(T, A)|[xrall,.,.,

o<t<T

1
+GR+ W]‘ (B.2.6)

Proor. To simplify our notation, we let p = p,,.
We fix 2y € R? and a smooth nonnegative function ¢ such that

=1 in B(1), spty C B(3/2)

and let @, () = ¢(z—1x0). For ¥ = x%¢u,, we find from inequality (B.1.10):

t 5
L= [ @)z t)de + 2 Y|V olPdeds = T, (B.2.7)
/ [ oty

where
t

L :/w|al2dx, I ://|v\2Awdxds,
R3 0 R3

t t

13://V2/J-v]v]2dxds, [4:2//Vz/wvﬁd:cds,
0 R3 R3

0
t

1522//wg~vda:d5.
0 RS
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Obviously,
I < ¢|xrali, .., (B.2.8)
t
Qgc/aﬂﬁd&+CUL®%, (B.2.9)
0
t
I5 < C(/CYR(S) ds + GR)- (B.2.10)

0

The term I3 is evaluated with the help of Holder inequality in the following
way:
Iy < oy ) (70 + 1),

So, by (B.2.4),

I < C(T, A)( 231 + %) (B.2.11)

Next, we let
ILi=I+1",

where
t

I":4/ / XRPzV XR - vpdxds.
0 B(z0,3/2)

The term I” can be estimated with the help of Holder inequality

[”<c / / \v\3da:ds § / / 5|2 dads g.

0 B(z0,3/2) 0 B(z0,3/2)

From Lemma 2.1 and the theory of singular integrals, we find

/ / 9|2 dzds < c/ / |v|3dxds+c/a2( ) ds. (B.2.12)

B(z0,3/2)

Now, (B.2.4) and (B.2.12) give us

ﬂgaﬂm%. (B.2.13)
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I’ can be estimated with the help of Holder inequality as follows:

I' < edvyi(t), (B.2.14)

J— / / |XrD|2 dxds)g.

0 B(z0,3/2)

where

Obviously, J < J; + Jo + J3, where

/ / xrDh, |2 dl‘dS ; / / !xRpxode:cds),

0 B(z0,3/2) 0 B(z0,3/2)

Jy = / / |XRDx0.p2 dmds) ,

0 B(z0,3/2)

where p = v/R. We start with evaluation of J;. Letting

XRPi«O =q + qo,

where ]
0(w,t) = —3xa(e)lofe, )

/ K (e — ) (en(@) — xaly)) : vly.t) @ v(y, 1) dy,

B(z0,2)

vt = [ K- p)xat) o) @ ot dy

B(z0,2)
we use the theory of singular integrals and find the estimate for g:

t

g2 dxd3<c/ / IXr|2 |v|3d$ds

0 B(z0,3/2) B(z0,2)

< O(T, Ay (t). (B.2.15)
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Since .
(1) = s xal)lo(e, )P
| K@ = 5)n(o) = xalin)) : 0(0,6) 9 (0.6 dy
B(z0,2)
| K@) calon) = xnw) vl )@ vl )y,
B(z0,2)
the same arguments lead to the estimate
/ / a| dwds < ey () (¢ R3/2/ / ol dads
0 B(z0,3/2) B(xz0,2)
t
se [ [ ieaao) = xa@) oo, ) deds
0 B(z0,2)
<o, A)<R3/2 A2 )).
Combining the latter estimate with (B.2.15), we find
1
J, < O(T, A)( + 7;/3(t)). (B.2.16)
R
Next, we let
XRPzo,p = 43 + q4,
where
1
a(2,t) = (K(z —y) — K(zo — y)) (xr(7)
B(x0,2p)\B(x0,2)
—xr(Y)) 1 v(y.t) @ v(y,t) dy,
1
wet) =5 [ (K@)~ Koo p)xel) o t) @ oly.0) dy.

B(xo ,Qp)\B(wo 72)
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For x € B(x,3/2), we have
=Y
[ = - K== ok ay

|gs(, )] < ¢
B(Io,Qp)\B(xo,Q)
p
<cp K (z —y) — K(zo — y)llv(y, )| dy
R3\ B(z0,2)
The same arguments as in the proof of Lemma 2.1 show that
1

) <C(T,A)—, B.2.17
(0 <Cm ) (B.2.17)

P _
lgz3(x, t)] < cﬁa(t) = Cﬁa

where we used p = v/R. Similar arguments work for ¢4:
lqu(z, )] < cap®(H)a?(t) < O(T, A)ajl*(t), = € Blxo,3/2).

(B.2.18)

From (B.2.17) and (B.2.18), it follows that
t

ns o+ ( [af'ea)]
/ 1 (B.2.19)

gcqﬂﬂ§§+(/ayg@Y]

The term J3 can be estimated with the help of (B.2.2):
1 1
J3<c—alt) <C(T,A)—. B.2.20

So, by (B.2.14), (B.2.16), (B.2.19), and (B.2.20), we have
¢
1
(B.2.21)

r<ctnagyesioe (o)

and

(B.2.22)
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Now, we can derive from (B.2.7) —(B.2.11), (B.2.13), and (B.2.22):
t

ar(t) + Br(t) < CHXRGHQLQ,HW +cGR+ c/aR(s) ds
0

+C(T, A) |4°(8) + % + (/O‘gR(S) dsﬂ

and, by (B.2.3) and Young inequality, we find the main inequality

an(t) + Br(t) < clxaally, ., +cGr
+O(T, A) [%+ / ar(s)ds + ( / a3 (s) dsﬂ. (B.2.23)

0 0
The important consequence of (B.2.23) is as follows:

t

1
o (t) < clxrall}, ., +cGr3+ C(T, A) [ﬁ + / a3 (s) ds] .
0

The latter implies

onlt) < O, A)[Ixwal,.,., +Gat 5
which, together with (B.2.23), (B.2.21), and (B.2.3), proves (B.2.6). Lemma
2.2 is proved.

PROOF OF THEOREM 1.4 Now, the proof of Theorem 1.4 is easy. In par-
ticular, (B.1.11) follows from (B.1.4) and (B.1.6), while (B.1.12) is deduced
from (B.2.4) and (B.2.6). In turn, (B.1.7) and (B.2.6) imply (B.1.13).

Regarding the pressure, we see, by known results for singular integrals,
that

[ weofda<e [ peopds
B(x0,3/2) B(x0,2)
So, the first estimate in (B.1.14) follows from (B.2.2) and from (B.2.6). Fi-

nally, the second estimate in (B.1.14) is one of the statements of Lemma
B.2.2, see (B.2.6). Theorem 1.4 is proved.
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B.3 Regularized Problem

Assume that condition (B.1.3) holds. Then according to Lemma B.1.3, we
can consider the following regularised problem:

O + F.(v°) - VvF — Av® = ¢° — V&,

dive® =0 (B.3.1)
in R*x]0, +-o00[ with
g° € Ly(Qr), divg® =0, (B.3.2)
v¥)i—0 = a° € CF(R?) (B.3.3)
in R3. Here,
F.(u)(z,t) = /gg(x — x)u(z,t) dz,
R3
0- is a standard smoothing kernel,
la® —allzy iy = 0, 9" = 9llLs 0y =0 (B.3.4)
as € — 0. And, we may assume that
||a’6||L2,unif S 2||a’||L2,unif7 ||g€||L2,unif(07T) S 2||g||L2,uni,f(07T) (B35)

for all e. Moreover, we may assume also that ¢° is a function of class C**° in
Q7 and, for each € > 0, there exists R. > 0 such that the support of g°(-, )
lies in B(R.) for all t €]0,T7.

It is known that problem (B.3.1)-(B.3.3) has a unique very smooth solu-
tion v® which has the finite energy and we can fix the pressure in the following
way:

Pz, t) = %/lel - div(vé(f,t) ® Fs(vf)(y’c,t)> d7

_ —%ve(x,t) E()(xt)  (B.3.6)

1
- K(zx —z):v°(7,t) ® F.(v°)(z,t) dz,
m
R3
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where K (z) = V2(1/|z|).

Our aim is to find estimates of v and p® which are uniform with respect
to €.

In what follows, we shall use the following decomposition of the pressure.
For any zy € R? and for any 0 < r < R, we let

Popr(@ t) = p7(x, ) = p5, () = pac (2, 8) + 02 g, 1) + 025 (2, t), (B.3.7)

where
1
Poor(t) = . K(xg —z) 1 v°(2,t) ® F.(v°)(z,t) dz,
R3\ B(xo,r)
Pag (1) = =20 (2,8) - FL(v%) (2, )+
1
yym / K(x — ) :v°(Z,t) @ F.(v°)(Z,t) dz,
m
B(zo,r)
2e —
pmo,r,R(‘r7 t) -
1
= / (K@~ 3) ~ Kz~ ) :05(2.0) ® R (7.1) .
m
B(z0,2R)\B(z0,r)
pii,R(xv t) =
1
e / (K(x — ) — K(wo — :z»)) 0*(2,1) ® FL(0°) (7, 1)dz.
T

R3\ B(z0,2R)

Using the same arguments as in the proof of Lemma B.2.1, we prove

Lemma 3.1. For any xo € R® and for any R > 1, we have the following
estimate

5] cr g g
sup [P p(@, 1)) < S0 Co Dm0 D i (B38)

z€B(zo,r)

Assuming that 0 < € < 1, we observe that

() ¢ O msy < V7 O 2 i (B.3.9)
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Taking into account the standard estimates for singular integrals, Lemma
3.1, and inequality (B.3.9), we find:

||p9€0 7’( ) )”L%(B(IOW)) S CHUE('?t)”%;a((B(xoa))v (B310)
sup ‘pzo TR(:B?t)‘ S 01(7", R)H/UE('at)H%lunif, (Bgll)
z€B(z0,3r/4)
sup |65 (a0 < e of (1), (B.3.12)
z€B(zo,r)

We let

t

0®) = e )= sup [ [ V0P dsas

zo€ER3
0 B(zo,1)
¢ T
Ye(t) = sup / / [v°|? dads, = sup / / (z,1)|? dadt.
zo€ER3 zoER3
0 B(zo,1) 0 B(zo,1)

By the known multiplicative inequality, we have

t t
3

(1) < o / o3(s) ds)i(@(tw / 0c(s)ds) " (B.3.13)

0 0
Now, we can derive the energy estimate.

Lemma 3.2. For any t > 0, the following energy estimate is valid:

t

ac(t) + Ba(t) < c[||a|\iwf +G+ /(aa(s) +ad(s)) ds]. (B.3.14)

0

PROOF We fix x5 € R? and a smooth nonnegative function ¢ such that
=1 in B(1), spt e C B(3/2)

and let ¢, (z) = p(x — x0).
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From the system (B.3.1) and (B.3.2), it is easy to derive the identity

t
EE/gpio(x)|v£(a:,t)|2da:+2//gpio|VUa|2d:ﬁd$:/gpio|a5]2das

R3 0 R3 R3
t
+//[Iv5!2moio+vsoio- F.(v )(|U€|2+2px0 2913.3.15)
0 R3

+2¢2 9" - "UE] dxds.

By Hoélder inequality and by (B.3.5), we show
t

t
Egc[HaH%Q’uW—l—G—l—/aE(s) ds+'yg(t)+/ / \ﬁiovg\%da;ds} (B.3.16)

0 0 B(z0,3/2)

On the other hand, (B.3.10)—(B.3.12) imply

/ | altdeds < e+ / Hsyds). (B.3.17)

0 B(z0,3/2)

Taking into account (B.3.13), we derive from (B.3.16) and (B.3.17) the fol-
lowing estimate

t t
3

a:(t) + B(t) < C[HaH%Z}uW +G+ /ae(s) ds + /ozg(s) ds
0 0
t t

_1_(/@2(3) d8>i<5a(t)+/a5<s)d8> i]'

0 0

Applying Young’s inequality twice, we complete the proof of the lemma.
Lemma 3.2 is proved.
A simple consequence of Lemma 3.2 is the following statement.

Lemma 3.3. There exist positive constants A and Ty < T depending on

@l Ly, iy and G only such that

sup ac(t) + Ao(T) + 12 (To) + 62 (Th) < A, (B.3.18)

0<t<Top
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where .
d:(t) = sup / / |ﬁ;072|%dxds.
zo€ER3
0 B(z0,3/2)
Indeed, let
In2
T, := min {T, 1 } (B.3.19)

(1 + (2c(llallg, .., +G))?)

We claim that if 0 < ¢ < Ty, then a(t) < 2¢([lal|7, ., +G). Otherwise, there
should exist 77 < Tj such that

ac(t) < 2¢(|lal3,,..,) + G

for 0 <t < T’ and
a.(T") = 2¢(||all7, .., + G).

The main inequality implies the following estimate

t
au®) < (ol + G+ 1+ 2flalf, .., + )P [ardr)
0

for 0 <t < T’. In turn, this inequality implies
a:(t) < c(lalz,,,., + G)exp{c(l + 2c([alL,,,,, +G))*)t}
for the same t. And thus we find
2¢(|lallZ,.,,,, +G) < cllalz, ., +G)exp{e(l + (2c([al,,,,, + G)*)T'}.

But this is possible only if 77 > T; and contradicts the above assumption.

B.4 Passing to Limit and Proof of Proposi-
tion 1.6

First, we fix n € N. From Lemma 3.3, it follows that the following estimate
is valid:

To
sup /|U5(x,t)\2dx—|—/ / |VvE |2 dadt < en®A. (B.4.1)

0<t<Top
B(n) 0 B(n)
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Using the known multiplicative inequality, we find from (B.4.1)

To
// \Uﬂ% dxdt <
0 B(n)
2 T 1
c( sup /\va(x,t)|2da:)3// <|VU€|2+—2|U€|2> dxdt
0<t<Top n
B(n) 0 B(n)
and thus
To
/ / |v‘5|% dzdt < en’As. (B.4.2)
0 B(n)

To estimate the pressure, we use (B.3.10)-(B.3.12) with xy = 0 and r =
R = 2n. So, we have

pi(SE, t) = ﬁ(g),Zn(Iﬂ t)?
where ]567%(36, t) =p(x,t) — paQn(t), and
To

/ / P52 dadt < C(n, Ty, A). (B.4.3)
0 B(n)
Next, we are going to use the Navier-Stokes equations in the following

way:
To

/ / 0° - wdxdt

0 B(n)

To
= / / (vE ® F.(v°) : Vw — Vv© : Vw + pidivw + ¢° - w) dxdt

0 B(n)

To LT oo 1
g(/ / yv€\3dxdt)3(/ / ]Fg(vs)\?’dxdt)s(/ / Vol dudt)’
0 B(n) 0 B(n) 0 B(n)
To L To )
+(/ / |Vv5|2dxdt>2<//|Vw|2dxdt>2
D Bln)

0 B(n)
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//|pn|2dxdt //|Vw|3dxdt

0 B(n)

//]g |2d:vdt //|w|2dxdt

0 B(n)

for any w € C§°(B(n)). Since

To
//| |3d:vdt</ / |v°|? dadt,

(n) 0 B(2n)

we have

To To 1
//8tva-wdxdt§0(n,To,A,G)(//|Vw|3d:cdt>3

0 B(n) 0 B(n)
for any w € C§°(B(n)). The latter estimates implies

|00% |2, < C(n, Ty, A, G), (B.4.4)

where X, is the space dual to L3(0,Ty; Wi (B(n))) and W3 (B(n)) is the
closure of C5°(B(n)) in Wy (B(n)).

Now, we argue by induction in n. Let n = 1. Estimates (B.4.1)—(B.4.4)
make it possible to apply the known compactness arguments and to find
sequences v'* and p* such that

phF Sl in  Le(0,To; Lo(B(1))),
bk ! in Ly (0,To; Wy (B(1))),
oY ot in Ly(0, To; Ls(B(1))),
Fip(') =o' in Ls(0,Tp; Ls(B(0))), V6 <1,
p}’k — in L%(O,Tde( (1))

as k — +o00. We let v = v! and p = p; in B(1)x]0, Ty[. Obviously, the pair
v and p satisfies the the Navier-Stokes equations in the sense of distributions
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and the local energy inequality in B(1)x]0,Ty[. The latter means that

¢ ¢
/ o(x,t)|v(z, t)? dx+2/ / ©|Vo|? dedt S/ / <|v|2(3tg0+Acp)
B(1) 0 B(1) 0 B(1)

+v - Vo(|v|* + 2p) + 2¢g - v) dxdt

for a.a. ¢ €]0,T,] and for nonnegative smooth functions ¢ vanishing in a

neighbourhood of the parabolic boundary of space-time cylinder Bx]0, Tp|.
Now, let n = 2. By the same arguments as above, we assert that there

exists sequences v?*, which is a subsequence of v'*, and pg’k such that

LN in  Loo(0,T0; L2(B(2))),
LN in Ly(0,Ty; W5 (B(2)))
vk )2 in  L3(0,To; L3(B(2))),
By (v — 02 in  L3(0, To; Ls(B(9))), Vo <2,
py* = pe in Ls(0,Tp; Ly(B(2)).

Y

The functions v? and p, satisfy the Navier-Stokes equations and the local
energy inequality in the space-time cylinder B(2)x]0,Ty[. Obviously, that
v? = v on Bx|0,Ty[. So, we may extend v by letting v = v? on B(2)x]0, Tp|.
As to the function ps, it follows from the Navier-Stokes equations that Vpy =
Vp on Bx]0,Ty[. This means that ps(x,t) — he(t) = p(z,t) for x € B and
for ¢t €]0,Ty[. Since both ps and p belong to L%(O,To; L%(B)), we conclude
the hy € L%(O,TO). This allows to extend the function p to B(2)x]0, Ty[ so
that p = py — he on B(2)x]0,Ty[. Clearly, p € L%(O,TO; L%(B(Z))) and the
functions v and p satisfies the Navier-Stokes equations and the local energy
inequality on the space-time cylinder B(2)x]0, Tp|.

In the case n = 3, we repeat the above arguments choosing a subsequence
of the sequence v** and replacing balls B and B(2) with balls B(2) and B(3),
respectively. Continuing this process, we arrive at the following result. There
exist two functions v and p defined on R3x]0, Ty[ such that

v e LOO(07 TO; L2,lOC(R3)) N L2(O TO; W;loc(Rg))a
p € L3(0, To; Ls 1, (R%)). (B.4.5)
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Next, letting v!¥ = v** we observe that vt%} is a subsequence of the
sequence {v™*}%° .., there exists a sequence of natural numbers {r;}2
having the following properties:

k K —_— P—
ok = ok k=nn+1,.., rn, =N, Ty — 00

as k — oo. Then we may let

{k}

TL’I’k

_pn

Obviously, pik} is a subsequence of the sequence {p™*}2 . For these new
sequences and for any n € N, we have

o S in Loo(0,Ty; La(B(n))),
o vy in Ly (0, Top; VV2 (B(n))),
ot 5w in Ls(0,Ty; Ls(B(n))), (B.4.6)
Fiy (v {k}) - in  L3(0,Ty; L3(B(9))), Vo < n,

P = p.in Ly(0.Ty; Ls(B(n))

and
||at'U||Xn S C(n;T())Aa G); (B47)

pu(z,t) = p(z,t) — cn(t), x € B(n), te€]0,Tof (B.4.8)

for some ¢, € Lg(O,TO). From (B.3.18) and (B.4.6), it is easy to derive the
estimate

ess sup (- DI, + sup / / Voldedt < 24, (B.A9)

0<t<Ty zoER3
0 B(zo,1)

Now, by (B.4.7) and (B.4.9), we see that, for each n € N,

the function t — / v(z,t) - w(x)dzis continuous on [0,Ty]  (B.4.10)

B(n)

for any w € Ly(B(n)).
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Next, we note that for the solution of the regularised problem we have
the following identity:

/ (@)™ (2, 1)| d:c+2//g0|Vv{k}]2dxds—/@\a{k}\ iz

R3 R3 R3

+//[|v{k}|2Ago+Vgo-F{k}(v{k})<|v{k}|2+2p,{lk}> (B.4.11)

0 R3
+2pgtk v{k}] dxds,

which is valid for any function ¢ € C§°(R3). Taking into account (B.3.4),
(B.4.6)-(B.4.8), and (B.4.10), we deduce from (B.4.11) the inequality

[ @letappds+2 / / oIV ofdrds < [ plafds

R3 R3
+//[|v]2Ago+Vg0-v<\v\2+2p> (B.4.12)
0 R

+2¢f - v} dzds.

The latter holds for any ¢ € [0,7,] and for any nonnegative function ¢ €
C5°(R3). On the other hand, from (B.4.10) and from (B.4.12) it follows that

/gp]v(:r;,t) —a(x)]Pdr =0 as t— +0 (B.4.13)

R3

for all p € C§°(R?). So, v meets (B.1.7). The validity of (B.1.8) follows from
(B.4.6). It remains to establish decomposition (B.1.9).
Thanks to (B.3.18), we have

/ / 5%, 2| 2 dxdt < A. (B.4.14)

0 B(z0,3/2)

We would like to emphasize that the constant on the right hand sides of
(B.4.14) is independent of £ and x. Let pzo be the sequence generated by
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v!*} via (B.3.7). For each zp € R® we can find subsequences ﬁiﬁ}éwo and

vi*hro guch that

pUE™ = pay i Ly(Bxo, 3/2)x]0, Ty).
So, it follows from (B.4.14) that
To
|Pag|? dadt < A (B.4.15)
0 B(x0,3/2)

for each zy € R3. Passing to the limit in the Navier-Stokes equations on the
set B(zo,3/2)x%]0,Ty[, we show that

V(p - p:r:o) =0
on B(zg,3/2)x%]0,Ty| in the sense of distributions. So, we state that, for any
ro € R3, there exists a function c¢,, € L% (0, Ty) having the property

P, 1) — g (X,1) = (1) (B.4.16)
for x € B(xo,3/2) and t €]0,Tp[. Now, let us show the validity of (B.1.9).
Using decomposition (B.3.7) and the theory of singular integrals, we observe

P Bl i Ly(Ble3/2)X0. T

Obviously,
PSR =Pl in Ls(B(xo,3/2)x]0, Ty,
where
1
Polet) =1 [ K-y - Ko=) o) ool d

B(z0,2R)\B(z0,2)
By (B.3.12), we also have
p 1
sup |l 5" ()] < 5C(A, Ty)
z€B(x0,3/2)

on |0, Tp[. On the other hand, the integral in the definition of pio, R converges
to pio as R — +o0co. This follows from the Lemma 3.1 and the inequality

/ K (2 = y) = K(zo = y)llv(y, )] de < cllo(- 1)1, ..,
B(z0,2R)\B(z0,2)
which is valid on B(zg,3/2)x]0,Ty[. Passing to the limit as R — +oo, we
show (B.1.11). Proposition 1.6 is proved.
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B.5 Proof of Theorem 1.5

The idea of the proof of the main theorem is the same in [35]. It is based on
the theory of solvability of the Cauchy problems for the Stokes and Navier-

Stokes systems with initial data from E3. We shall formulate corresponding
results below and their proofs will be given elsewhere. We start with the
most important part: linear theory. Consider the Cauchy problem for the
Stokes system:

atv(x7t> o Av(xat) + VP(xvt) = —din(.Z',t) + g(x,t),

(B.5.1)
divo(z,t) =0
forreR3and 0 <t < T,
v(z,0) = a(x), T € R (B.5.2)
It is supposed that
a€Es  ge@OT),  feC;(0,T). (B.5.3)

Theorem 5.1. Assume that conditions (B.5.3) hold. There exists a unique
pair of functions v and p having the following properties:

V& LOO(O,T; Lg’um'f), (1 + \/ |UD|VU| - Lz,um'f(o,T),
p € L3(0,T; Ls 1,.(R%));
v and p satisfy (B.5.1) in the sense of distributions;

100 L) < €[l 02 + 190 s 07) + a2y |

,unzf(

the t — /v(ﬂc,t) ~u(x) dx is continuous on [0,T] for any compactly
R3

supportedfunctions u € L% (R?);

UNS 55(0,T), v(+,t) efvg, Vit € [0,T7];
|v(-,t) = v t0) || Ly wniy — 0 ast—tyg+0, Vto € [0,T],

v(:,0) = a();
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for any xo € R3, there exists Cxy € Lg(O,T) such that
p(x, t) - Cmo(t> = pio(xv t) —l—pi()(I, t)

for any x € B(xo,3/2) and for any t €]0,T|, where

1
palco(xat) ——tTf ZL’t / K ZL'— ( Y, )dy’

B(z0,2)

Pt =g [ e - Ko=) futdy

s
R3\ B(x0,2)
and
e / / — 5y ()]? dadt < +o0,
zoER3
0 B(z0,3/2)
T
5
SUPS/ / H{|x\>R}‘p($,t) — Cqp (t)|2 drdt — 0
ro€ER 0 B(z0,3/2)
as R — +o0.

Using Theorem 5.1 and successive approximations, see, for example, [13]
and [17], we can prove the following theorems about solvability of the Cauchy
problem:

Ow(x,t) +divo(x,t) @ v(x,t) — Av(z,t) + Vp(z,t) = g(z, t),

(B.5.4)
divo(z,t) =0
forr e R®and 0 <t < T,
v(x,0) = a(x), r € R3 (B.5.5)

under assumptions that

a€Es, g€ qs0,T). (B.5.6)
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Theorem 5.2. Suppose that conditions (B.5.6) hold. There exists a number
To €)0,T[ with the following property. Given a and g, there exists a pair of

functions v and p, forming a local energy solutions in the space-time cylinder
Qr, = R*x]0, Tp[, such that

NS C([O, T()], E?)) N é5<0a TO)a

VIIVO] € Lowis(0.T0),  p € Ls(0,Th: Ly, (BY)):
0

T
sup / / (2, ) — 2o ()|} ddt < +o00,
zoER3

0 B(z0,3/2)

To
sup [ [ Lo lplaont) = oy (00 dode -5 0

zo€ER3
0 B(z0,3/2)

as R — +o00.

Moreover, assume that a pair v and q is a local energy solution to the
Cauchy problem

Owu(z,t) + divu(x,t) @ u(z,t) — Au(x,t) + Vq(z,t) = g(x, t),
(B.5.7)
divu(x,t) =0
forz € R® and 0 < t < Ty,
u(z,0) = a(z), r € R (B.5.8)

Then, u = v.

Theorem 5.3. Suppose that conditions (B.5.6) hold. Given T > 0, there
exists a constant e(T) with the following property. If

”gHLS,unif(OvT) + ||a||L3,unif < €(T)7

then there exists a pair of functions v and p, forming a local energy solutions
in the space-time cylinder Qr, such that:

v e C([0,T]; Lo?s) N és(OaT)7
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V|||[Vo] € Loamif (0, T), pE Lo(O T;Lsy, L(R);

2

sup / / c$0(t)|g dxdt < +o0,
ZL‘OGRB

0 B(z0,3/2)

sup / / Lfje|>ry [P(2, 1) — cg (t)|% dxdt — 0

zo€ER3
0 B(z0,3/2)

as R — 4o0.
Moreover, assume that a pair u and q is a local energy solution to the
Cauchy problem (B.5.4), (B.5.5). Then, u = v.

Now, let us outline the proof of Theorem 1.5.

So, according to Proposition 1.6, we can find a number T, €]0,7] and a
pair of functions v and p that are a local energy solution in the space-time
cylinder Qr,. If Ty = T, then we are done. Assume that it is not. By
Theorem 1.4, we can find ¢y €]0, Ty[ so that

U('7 tO) EE137
v and p are a local energy solution in R*x]ty, Ty|.

Next, there exist 77 and a pair of functions u and ¢ which is a local

energy solution in R®x|ty, T1[ and u € C([to, T1]; _é’g) with u(-,tg) = v(-, to)-
However, we know that there must be v = u in R3x]ty, Ty[. Without loss of
generality, we may assume that 77 < T'. Using density of smooth functions,
let us decompose v(+,tg) = a; + as and g = g; + g2 so that

911 Lo nss 07) + 101l 2y 0y < (T — to),

a € 080 (R3)7
and gy is a function of class C*° in Q7 and there exists Ry > 0 such that the
support of go(-, ) lies in B(Rz) for all ¢t €]ty, T[. According to Theorem 5.3,
there exists a pair u; and ¢; which is a local energy solutions to the Cauchy
problem:

Oyuy (z,t) + divuy(z,t) @ uy(z,t) — Aug(z,t) + Vg (z,t) = g1(x, 1),

divuy (z,t) =0
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forr e R3and ty <t <T,
ui(x,tg) = ay(z), r € R®.

Moreover,
||u1||Loo(t07T§L3,unif) < C€(T - tU)‘ (B59)

We seek functions us and gs, solving the following Cauchy problem:

Oyus(x,t) + div (ug(z, t) @ ug(z,t) + uq (z,t) ® us(z, t)+

ug(x,t) @ uy(x,t)) — Aug(x,t) + Vgo(x,t) = go(x, t), divug(z,t) =0
forr e R3and ty <t <T,
us(x,tg) = as(x), r € R®.

We state that this problem has a weak Leray-Hopf solution with the finite
global energy satisfying the local energy inequality. To see that it is really
possible, let us comment the crucial term in proving a priori global energy
estimate. This term has the form

t
Iy = //(UQ ® U1 + Uy @ ug) : Vusdzds.

to R3
So, we need to estimate the integral

t

I://\u1]2|u2|2dxds.

to R3

To this end, we fix 7o € R? and apply successively Holder’s and Gagliardo’s
inequalities, and estimate (B.5.9):

t

t
2 1
// ]u1|2]u2|2da:ds§/< / |u1\3d:c)3( / ]u2|6da:)3ds
)

to B(xo,l to B(Z‘Q,l) B(:C(),l)

t
< CHulH%oo(to,T;Le;,umf)/ / <|VU2|2 + |U2|2>d17d3

to B(mo,l)
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t
< ce*(T - to)/ / (|Vuz|2 + \uz|2> dxds.

to B(wo,1)

Using Besicovitch covering lemma, we can easily show

t
I< ch(T—tO)// <|Vu2|2+ |u2|2>dxds

to R3

and therefore

t
Iy < ce(T — to)// <|Vuz|2 + |u2|2>d$ds.

to R3

This latter allows us to hide I into the left hand side of the global energy
inequality by choosing (T — t,) sufficiently small and to find

¢ t
/|u2(:v,t)|2dx+//|Vu2|2da:ds§/|a2(x)|2dx+2//gg-uzdxds.

R3 to R3 R3 to R3

Using this estimate and suitable approximations, we can easily prove our
statements about us. In addition, all above arguments show that pressure ¢
may be taken in the form

1
q2:EK*(U2®U2+UI®U2+U2®UI)

and, moreover,
@ € Ls (R x]t, 7))

and we have representation:
G2(2,) = Cang(£) = Qo (T,) + G5 (2, 1)
for xg € B(xg,3/2) and t €]ty, T, where

Lt OF + 20000 v )+

1
q2x0 -

1
—|—E / K(z—y): (us ® ug + u1 ® ug + ug ® uy)(y, t)dy,

B(z0,2)
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1
B= g [ K@) K@n—0)  (outn©ntneu) . 0.
R3\ B(z0,2)
1
Cazy () = 1~ / K(zo—y) : (ug @ up + 11 @ ug + ug ® uq)(y, t)dy.
R3\ B(z0,2)

Now, we let
U = Uy + Uz, q=q+q-

Our task is to verify that this new pair forms a local energy solution to the
Cauchy problem:

Owu(z,t) +divu(z,t) @ u(z, t) — Au(z,t) + Vq(z,t) = g(z, t),
divu(z,t) =0
forx € R®and ty <t < T,
u(z, ty) = a(x), z € R®.

The most difficult part of this task is to show that v and ¢ satisfy the local
energy inequality. It can be done essentially in the same way as the corre-
sponding part of the proof of the uniqueness for C'([0, 7; Eg)—SOlutiOHS. And
this immediately implies that u = v in the R3x|to, T1[. Since p(x,t)—q(z,t) =
c(t) € L s (to,T1), we can change function ¢,, in a suitable way and assume
that ¢ = p in the R3®x]t, Ti[. So, the pair u and ¢ can be regarded as a
required extension of v and p to the whole space-time cylinder ()7. Theorem
1.5 is proved.

B.6 Density

Lemma 6.1. For any f Eém and for any € > 0, there exists f. € (078"(]1%3)
such that

PROOF Let
Bk = B(l’k, 2), Ty € ZS.
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Clearly |J By = R3. Moreover, there is a universal constant N, with the
k
following property:
for any xy € R®, the ball B(w,1) is covered by not more

than Ny balls By,

For this covering, we can find a partition of unity such that

k

Now, given R > 0, we introduce two smooth cut-off functions
x(x)=1, x¢€ B(1), spt x C B(2), xr(x) = x(z/R).

We fix a ball By.. There exists a functions v* €JI" }(By; R?) that is a solution
of the equation

. 1
leUk:f'VXRSDk—W/f'vxm%fm
By,

and satisfies the estimate
c c
[0*] 5, < EHfHBk < EWHLM,M

with a universal constant c. Extending v* by zero to the whole R?, we set
N
k

and observe that, for each R > 0, the function v® has a compact support
and, moreover,
divef = -V xr in R,

cN-:
10 B0y < D 10" B0y < foHLm,um-f’ Vo € R,
k

Next, we let

uft = fygp — o
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Obviously, we have
divul® =0 in R,

and u® has a compact support. Since f € E,, we see that, for an arbitrary
g€ > 0, we can find R > 0 such that

CN2
R

To complete the proof of the lemma, it is enough to smooth u® which is
easy. Lemma 6.1 is proved.

B.7 Comments

The main source for the content of Appendix B is the monograph of P.-
G. Lemarie-Riesset [35]. Our interpretation of his results is given in the
paper [25] and we follow it here. We wish to emphasize that the Lemarie-
Riesset conception of local energy weak Leray-Hopf solution® is heavily used
in Chapter 7.

'In fact, G.-P. Lemarie-Riesset himself calls them simply local Leray solutions
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