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Abstract

The goal of the present work is three-fold. The first goal is to set foundational results on opti-
mal transport in Lorentzian synthetic spaces, including cyclical monotonicity, stability of optimal
couplings and Kantorovich duality (several results are new even for smooth Lorentzian manifolds).
The second one is to give a synthetic notion of “timelike Ricci curvature bounded below and
dimension bounded above” for a Lorentzian space using optimal transport. The key idea being
to analyse convexity properties of Entropy functionals along future directed timelike geodesics of
probability measures. Such a notion is proved to be stable under a suitable weak convergence
of Lorentzian synthetic spaces. The third goal is to draw applications, most notably extending
volume comparisons and Hawking singularity Theorem (in sharp form) to the synthetic setting.
The framework of Lorentzian synthetic spaces includes as remarkable classes of examples: space-
times endowed with a causally plain (or, more strongly, locally Lipschitz) continuous Lorentzian
metric, closed cone structures, some approaches to quantum gravity (e.g. causal Fermion systems).
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Introduction

As the title suggests, the goal of the present work is three-fold. The first goal is to set foundational
results on optimal transport in Lorentzian synthetic spaces. The second one is to use optimal transport
to give a notion of “timelike Ricci curvature bounded below and dimension bounded above” for a
Lorentzian synthetic space. The third goal is to draw applications, most notably extending volume
comparisons and Hawking singularity Theorem (in sharp form) to the synthetic framework.

The Lorentzian synthetic framework adopted in the paper is the one of Lorentzian pre-legth (and
geodesic) spaces introduced by Kunzinger and Sämann in [50] (see also an independent approach by
Sormani and Vega [69]). The basic idea is that Lorentzian pre-length (resp. geodesic) spaces are the
non-smooth analog of Lorentzian manifolds, in the same spirit as classical metric (resp. geodesic)
spaces are the non-smooth analog of Riemannian manifolds (see Section 1.1 for the precise notions).

In the metric (measured) framework, the celebrated work of Sturm [72, 73] and Lott-Villani [54]
laid the foundations for a theory of metric measure spaces satisfying Ricci curvature lower bounds and
dimension upper bounds in a synthetic sense via optimal transport, the so-called CD(K,N) spaces. The
theory of CD(K,N) spaces flourished in the last years with strong connections with analysis, geometry
and probability. The ambition of the present paper is to lay the foundations for a parallel theory in
the Lorentzian setting, which is the natural geometric framework for general relativity.

Motivations

Before discussing the main results, let us motivate the questions that we address. Apart from the
intrinsic interest in a Lorentzian analog of Lott-Sturm-Villani CD(K,N) spaces, a main motivation for
this work is the need to consider Lorentzian metrics/spaces of low regularity. Such a necessity is clear
both from the PDE point of view in general relativity (i.e. the Cauchy initial value problem for the
Einstein equations) and from physically relevant models.

From the PDE point of view, the standard local existence results for the vacuum Einstein equations
assume the metric to be of Sobolev regularity Hs

loc, with s > 5
2 (see for instance [66]). The Sobolev

regularity of the metric has been lowered even further (e.g. [49]). Related to the initial value problem
for the Einstein equations, one of the main open problems in the field is the so called (weak/strong)
censorship conjecture (see e.g. [23, 25]). Such a conjecture (strong form) states roughly that the max-
imal globally hyperbolic development of generic initial data for the Einstein equations is inextendible
as a suitably regular Lorentzian manifold. Formulating a precise statement of the conjecture is itself
non-trivial since one needs to give a precise meaning to “generic initial data” and “suitably regular
Lorentzian manifold”. Understanding the latter is where Lorentzian metrics of low regularity and
related inextendibility results become significant. The strongest form of the conjecture would prove
inextendibility for a C0 metric. As pointed out by Chrusciel-Grant [24], causality theory for C0 metrics
departs significantly from classical theory (e.g. the lightlike curves emanating from a point may span a
set with non-empty interior, a phenomenon called “bubbling”). Nevertheless, Sbierski [68] gave a clever
proof of C0-inextendibility of Schwarzschild, [60] showed C0-inextendibility for timelike geodesically
complete spacetimes, and [39] pushed the inextendibility to Lorentzian length spaces.
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From the point of view of physically relevant models, several types of matter in a spacetime may give
a discontinuous energy-momentum tensor and thus, via the Einstein’s equations, lead to a Lorentzian
metric of regularity lower than C2 (e.g. [52]). Examples of such a behaviour are spacetimes that model
the inside and outside of a star, matched spacetimes [56], self-gravitating compressible fluids [12], or
shock waves. Some physically relevant models require even lower regularity, for instance: spacetimes
with conical singularities [76], cosmic strings [75] and (impulsive) gravitational waves (see for instance
[65], [40, Chapter 20]).

Finally, a long term motivation for studying non-regular Lorentzian spaces is the desire of under-
standing the ultimate nature of spacetime. The rough picture is that at the quantum level (and thus
in extreme physical conditions e.g. gravitational collapse, origin of the universe), the spacetime may
be very singular and possibly not approximable by smooth structures (see Remark 1.13).

In case of a metric of low regularity, the approach to curvature used so far is distributional, taking
advantage that the underline spacetime is a differentiable manifold. This permits [34] (see also [71]) to
define distributional curvature tensors for W 1,2

loc -Lorentzian metrics satisfying a suitable non-degeneracy
condition (satisfied for instance when the metric is C1, see [37]). One of the goals of the present work
is to address the question of (timelike Ricci) curvature when not only the the metric tensor, but the
space itself is singular.

A lower bound on the timelike Ricci curvature of a spacetime (Mn, g), i.e.

There exists K ∈ R such that Ricg ≥ −Kg(v, v) for all timelike vectors v ∈ TM , (0.1)

is quite a natural assumption in general relativity. Of course, for a C2-metric g, (0.1) is satisfied on
compact subsets of the space-time. Recalling that the Einstein’s equations postulate proportionality of
Ricg and T− 1

n−2 trg(T )g (where T is the so-called energy-momentum tensor), for a general cosmological
constant Λ ∈ R, (0.1) is equivalent to require that

T (v, v) ≥ − 1

n− 2
trg(T ) +

1

8π

(
K − 2Λ

n− 2

)
, for all v ∈ TM with g(v, v) = −1.

In particular, if infM trg(T ) > −∞ (or, equivalently, infM Rg > −∞ where Rg is the scalar curvature
of g), then the weak energy condition T (v, v) ≥ 0 for all timelike v (which is believed to hold for most
physically reasonable T , according to [79, pag. 218]) implies (0.1).
The case K = 0 in (0.1) corresponds to the strong energy condition of Hawking and Penrose [64, 42, 44].
Even if the dominant energy condition or the (more general) weak energy condition have a wider
physical range of validity (see e.g. [13, Chap. 4.6]), the strong energy condition plays an important
role in gravitational theory: for instance, it typically appears as an assumption in singularity theorems
and it is interpreted to be responsible for the attractive nature of gravity [13, 79].

Outline of the content of the paper

General synthetic setting

We now pass to discuss the content of the paper. The synthetic framework is the one of measured
Lorentzian pre-length spaces (X, d,m,�,≤, τ) where X is a set endowed with a proper metric d (i.e.
closed and bounded subsets are compact), a preorder ≤ (playing the role of causal relation) and
a transitive relation � contained in ≤ (playing the role of chronological/timelike relation), a lower
semicontinuous function τ : X×X → [0,∞] (called time-separation function) with {τ > 0} = {(x, y) ∈
X2 : x� y} and satisfying reverse triangle inequality (1.1), and a non-negative Radon measure m with
suppm = X.
The subset of causal pairs is denoted with X2

≤ := {(x, y) ∈ X2 : x ≤ y}.
A curve γ : [0, 1]→ R is causal if for every t0 ≤ t1 it holds γt0 ≤ γt1 . One can naturally associate a

τ -length to γ, denoted by Lτ (γ) (see Definition 1.4). A causal curve is a geodesic if it maximises the
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τ -length, i.e. if Lτ (γ) = τ(γ0, γ1). The space X is said to be geodesic if for all (x, y) ∈ X2
≤ there is a

geodesic γ from x to y.
Important classes of examples entering the framework of measured Lorentzian pre-length/geodesic

spaces are spacetimes with a causally plain (or, more strongly, locally Lipschitz) C0-metric (see Remark
1.12), closed cone structures as well as some approaches to quantum gravity (see Remark 1.13).

Optimal transport in Lorentzian pre-length spaces

Our approach to synthetic timelike Ricci curvature lower bounds is via optimal transport of causally
related probability measures. To this aim, in Section 2 we throughly analyse optimal transport in
Lorentz pre-length spaces. A key object is the space of Borel probability measures P(X) on X, and
the subspace Pc(X) of Borel probability measures with compact support. In order to lift the causal
structure of X to P(X), it is useful to consider the set of causal couplings between two probability
measures µ, ν ∈ P(X):

Π≤(µ, ν) := {π ∈ P(X2) : π(X2
≤) = 1, (P1)]π = µ, (P2)]π = ν},

where Pi : X×X → X is the projection on the ith factor, and (Pi)] : P(X2)→ P(X) is the associated
push-forward map defined as ((Pi)]π) (B) := π

(
P−1
i (B)

)
for every Borel subset B ⊂ X. We say that

(µ, ν) are causally related if Π≤(µ, ν) 6= ∅. The rough picture is that µ and ν represent some Random
distribution of events in the spacetime X, and the two are causally related if it is possible to causally
match events described by µ with events described by ν (possibly in a multi-valued way) via the casual
coupling π. We endow P(X) with the p-Lorentz-Wasserstein distance defined by

`p(µ, ν) := sup
π∈Π≤(µ,ν)

(∫
X×X

τ(x, y)p π(dxdy)

)1/p

, p ∈ (0, 1]. (0.2)

When Π≤(µ, ν) = ∅ we set `p(µ, ν) := −∞. The name p-Lorentz-Wasserstein distance is motivated by
the fact that `p satisfies a reversed triangle inequality (see Proposition 2.5).
Note that (0.2) extends to Lorentzian pre-length spaces the corresponding notion given in the smooth
Lorentzian setting in [26] (see also [58, 61], and [74] for p = 1). A coupling π ∈ Π≤(µ, ν) maximising
in (0.2) is said `p-optimal. The set of `p-optimal couplings from µ to ν is denoted by Πp-opt

≤ (µ, ν).
Maximising over causal couplings Π≤(µ, ν) instead of all the couplings can be modelled with an

auxiliary cost (denoted with `p) taking value −∞ outside of X2
≤ (see Remark 2.2); this complicates

the associated optimal transport properties, and several fundamental results (see e.g. [2, 77, 78]) need
to be re-established in the present setting. These include: cyclical monotonicity, stability of optimal
couplings, Kantorovich duality. Indeed, this is the goal of Section 2. It is beyond the scopes of the
introduction to give a detailed account of the results (several are new even in the smooth Lorentzian
setting), we only mention few notions (in a slightly simplified form) that will be useful for analysing
timelike Ricci curvature bounds.

We say that (µ, ν) ∈ Pc(X)2 is timelike p-dualisable (by π ∈ Π≤(µ, ν)) if `p(µ, ν) ∈ (0,∞), π ∈
Πp-opt
≤ (µ, ν) and suppπ ⊂ {τ > 0}. The pair (µ, ν) ∈ Pc(X)2 is strongly timelike p-dualisable if in

addition there exists a subset Γ ⊂ {τ > 0} ⊂ X2 such that every p-optimal coupling π′ ∈ Πp-opt
≤ (µ, ν)

is concentrated on Γ, i.e. π′(Γ) = 1 (see Definitions 2.18 and 2.27 for the precise notions).
Let us also mention that if X is geodesic (plus a compactness condition that we call K-global

hyperbolicity, satisfied for globally hyperbolic Lorentzian C0-metrics) then (Pc(X), `p) is geodesic as
well, for p ∈ (0, 1). More precisely (see Proposition 2.32), if (µ0, µ1) ∈ Pc(X)2 is timelike p-dualisable,
then there exists an `p-geodesic (µt)t∈[0,1] ⊂ Pc(X) joining them, i.e.

`p(µ0, µt) = t`p(µ0, µ1), ∀t ∈ [0, 1].

Synthetic timelike Ricci curvature lower bounds via optimal transport

The relation between optimal transport and timelike Ricci curvature bounds in the smooth Lorentzian
setting has been the object of recent works by McCann [58] and Mondino-Suhr [61]. The key idea
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is that timelike Ricci curvature lower bounds can be equivalently characterised in terms of convexity
properties of the Bolzmann-Shannon entropy functional Ent(·|m) along `p-geodesics of probability
measures. Recall that, for a probability measure µ ∈ P(X), the entropy Ent(µ|m) is defined by

Ent(µ|m) =

∫
X

ρ log(ρ)m,

if µ = ρm is absolutely continuous with respect to m and (ρ log(ρ))+ is m-integrable; otherwise we set
Ent(µ|m) = +∞. We denote Dom(Ent(·|m)) := {µ ∈ P(X) : Ent(µ|m) <∞}.
The following definition is thus natural.

Definition (TCDep(K,N) and wTCDep(K,N) conditions). Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). We say
that a measured pre-length space (X, d,m,�,≤, τ) satisfies TCDep(K,N) (resp. wTCDep(K,N)) if the
following holds. For any couple (µ0, µ1) ∈ (Dom(Ent(·|m))∩Pc(X))2 which is (resp. strongly) timelike
p-dualisable by some π ∈ Πp-opt

≤ (µ0, µ1), there exists an `p-geodesic (µt)t∈[0,1] such that the function
[0, 1] 3 t 7→ e(t) := Ent(µt|m) is semi-convex and it satisfies

e′′(t)− 1

N
e′(t)2 ≥ K

∫
X×X

τ(x, y)2 π(dxdy), in the distributional sense on [0, 1].

Remark (Notation). The notation TCDep(K,N) comes by analogy with the corresponding Lott-Sturm-
Villani theory of curvature dimension conditions in metric-measure spaces. Here the superscript e refers
to the so-called ”entropic” formulation of the CD condition by Erbar, Kuwada and Sturm [28]; such
a formulation is slightly simpler, but equivalent under suitable technical assumptions. The possibility
p ∈ (1,∞), p 6= 2 was investigated by Kell [45] in the metric-measure setting. The leading T is a
mnemonic for “timelike”, following the notation of Woolgar and Wylie in their paper on N -Bakry-
Émery spacetimes [80], and of McCann [58]. The symbol w in wTCD has to be read “weak TCD” and
it is justified by the comparison with TCD requiring convexity estimates for the entropy along a smaller
family of `p-geodesics.

The TCDep(K,N) (resp. wTCDep(K,N)) satisfies the following natural compatibility conditions:

• TCDep(K,N) (resp. wTCDep(K,N)) implies TCDep(K
′, N ′) (resp. wTCDep(K

′, N ′)) for all K ′ ≤ K,
N ′ ≥ N , see Lemma 3.10;

• A smooth globally hyperbolic Lorentzian manifold (Mn, g) has dim(M) = n ≤ N and Ricg(v, v) ≥
−Kg(v, v) for every timelike v ∈ TM if and only if it satisfies TCDep(K,N), if and only if it satisfies
wTCDep(K,N), see Theorem 3.1 and Corollary A.2.

We show that wTCDep(K,N) spaces satisfy the following geometric properties:

• a timelike Brunn-Minkowski inequality, see Proposition 3.4;

• a timelike Bishop-Gromov inequality, Proposition 3.5;

• a timelike Bonnet-Myers inequality, Proposition 3.6.

Moreover, we show a (weak) stability property for TCD stating roughly that if a sequence of TCDep(K,N)
spaces converges weakly to a limit Lorentzian pre-length space, then the limit space satisfies wTCDep(K,N)
(see Theorem 3.14 for the precise statement).

A weaker variant of the TCDep(K,N) condition is obtained by considering (K,N)-convexity prop-
erties only for those `p-geodesics (µt)t∈[0,1] where µ1 is a Dirac delta. In the metric measure setting,
such a variant goes under the name of Measure Contraction Property (MCP for short) and was devel-
oped independently by Sturm [73] and Ohta [62]. We call “Timelike Measure Contraction Property”
(TMCPep(K,N) for short) such a weaker variant of TCDep(K,N), see Definition 3.7 for the precise
notion. The following holds:
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• under mild conditions on the space X (satisfied for instance for causally plain, globally hyperbolic
spacetimes with a C0 metric) wTCDep(K,N) implies TMCPep(K,N), see Proposition 3.11;

• TMCPep(K,N) implies TMCPep(K
′, N ′) for all K ′ ≤ K, N ′ ≥ N , see Lemma 3.10;

• a smooth globally hyperbolic Lorentzian manifold (Mn, g) with dim(M) = n ≥ 2 satisfies
TMCPep(K,n) if and only if Ricg(v, v) ≥ −Kg(v, v) for every timelike v ∈ TM , see Theorem
A.1;

• if a smooth globally hyperbolic Lorentzian manifold (Mn, g) satisfies TMCPep(K,N), then dim(M) =
n ≤ N , see Corollary A.2;

• the aforementioned timelike Bishop-Gromov inequality (Proposition 3.5) and timelike Bonnet-
Myers inequality (Proposition 3.6) remain valid for TMCPep(K,N) spaces;

• The TMCPep(K,N) condition is stable under weak convergence of Lorentzian synthetic spaces,
see Theorem 3.12.

Let us mention that the stability of TCDep(K,N) and TMCPep(K,N) is more subtle than the one
for the corresponding metric versions CD and MCP. Indeed, the fact that the convexity of the entropy
is required to hold only along `p-geodesics connecting timelike p-dualisable measures does not permit
to repeat verbatim the known stability arguments of [54, 72, 73, 35] for CD and MCP, where there is
(almost) no restriction on the endpoints of the Wasserstein geodesic.
Another difference between the Lorentzian and the Riemannian/metric setting is that, while in the lat-
ter the CD/MCP conditions imply a control on the volume growth of metric balls and thus compactness
in pointed-measured-Gromov-Hausdorff topology (which is thus the natural notion for weak conver-
gence of spaces), in the former the τ -balls typically have infinite volume (for instance in Minkowski
space, τ -spheres are hyperboloids) and thus we cannot expect to have compactness in pointed-measured-
Gromov-Hausdorff topology (which is thus not anymore the clearly natural notion for weak convergence
of spaces).

Timelike non-branching TMCPep(K,N) and applications

An important subclass of Lorentzian geodesic spaces is the the one of timelike non-branching structures:
roughly the ones for which timelike geodesic do not branch (both forward and backward in time), see
Definition 1.10 for the precise notion. In the classical Lorentzian setting, this is satisfied for C1,1 metrics
and it is expected to fail for lower regularity. The same phenomenon happens in the Riemannian/metric
setting, where the non-branching assumption (or slightly weaker variants) is rather standard in the
recent literature of CD/MCP spaces.

For timelike non-branching TMCPep(K,N) spaces we obtain:

• solution to the `p-Monge problem: if (µ0, µ1) are timelike p-dualisable with µ0 ∈ Dom(Ent(·|m)),
then there exists a unique `p-optimal coupling π ∈ Πp-opt

≤ (µ0, µ1) such that π ({τ > 0}) = 1 and
it is induced by a map; see Theorem 3.19.
Under the same assumptions, there exists a unique `p-geodesic from µ0 to µ1; see Theorem 3.20;

• a synthetic notion of mean curvature bounds for achronal Borel sets having locally finite “area”,
see Section 5.1;

• a sharp version (holding for every K ∈ R, N ∈ [1,∞)) of Hawking singularity Theorem, see
Theorem 5.5. Let us mention that the statement of Theorem 5.5 is sharp, as for N ∈ N the
bounds are attained in the smooth model spaces identified in [38] (see also [36]);

• sharp versions of timelike Bishop-Gromov, Poincaré, and Bonnet-Myers inequalities (see Propo-
sitions 5.6, 5.7, 5.8, 5.9; for the sharpness see Remark 5.10).
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In order to obtain the applications in the last three bullet points, in Section 4, we study the
`1-optimal transport problem associated to the τ -distance function τV from an achronal set V (see
(1.8) for the definition of τV ). The rough idea is that τV induces a partition of I+(V ), namely “the
chronological future of V ”, into timelike geodesics (also called “rays”). In the smooth setting (outside
the cut locus) such rays correspond to the gradient flow curves of τV . Such a partition of I+(V )
induces a disintegration of m into one-dimensional conditional measures, which satisfy MCP(K,N)
(see Theorems 4.16 and 4.17 for the precise statements). In Section 5.1, the disintegration is used to
construct an “area measure” as well as “normal variations” of V , and thus define synthetic notions of
mean curvature bounds. At this point, the above applications will follow.

The fact that the one-dimensional conditional measures satisfy MCP(K,N) is not trivial: recall in-
deed that the TMCPep(K,N) and TCDep(K,N) conditions are expressed in terms of `p (not `1) optimal
transport, while here we are dealing with an `1-optimal transport problem. The key idea to overcome
this issue is to include `p-cyclically monotone sets inside `-cyclically monotone sets; this technique was
introduced in [14] and pushed further in [16, 17] for the metric setting. In the present setting, since the
cost `p may take the value −∞, `p-cyclical monotonicity does not directly imply optimality. Nontheless
using the work of Bianchini-Caravenna [9] and its consequences included in Proposition 2.8, we will
use cyclically monotone sets to construct locally optimal couplings and to deduce local estimates on
the disintegration that will be then globalized. Another useful idea is that there is a natural way to
construct `p-geodesics with 0 < p < 1: translate along transport rays by a constant “distance”. Notice
that 0 < p < 1 plays a crucial role here, as an analogous statement in the Riemannian setting does not
hold true for W2.

Let us conclude the introduction by pointing out that the reader interested in space-times with
continuous metrics can find the main applications specialised to such a framework in Section 5.4.
In analogy with the huge impact that the synthetic theory of Ricci curvature lower bounds had in
the geometric analysis of metric measure spaces, it is natural to expect several other geometric and
analytic applications of the tools developed here; for instance, in a forthcoming paper [20], we will
obtain timelike isoperimetric inequalities, timelike Sobolev and log-Sobolev inequalities, among others.

1 Preliminaries

1.1 Basics on Lorentzian synthetic spaces

In this section we briefly recall some basic notions and results from the theory of Lorentzian length
(resp. geodesic) spaces. We follow the approach of Kunzinger-Sämann [50] and we refer to their paper
for further details and proofs.

Definition 1.1 (Causal space (X,�,≤)). A causal space (X,�,≤) is a set X endowed with a preorder
≤ and a transitive relation � contained in ≤.

We write x < y when x ≤ y, x 6= y. We say that x and y are timelike (resp. causally) related if
x � y (resp. x ≤ y). Let A ⊂ X be an arbitrary subset of X. We define the chronological (resp.
causal) future of A the set

I+(A) := {y ∈ X : ∃x ∈ A, x� y}
J+(A) := {y ∈ X : ∃x ∈ A, x ≤ y}

respectively. Analogously, we define I−(A) (resp. J−(A)) the chronological (resp. causal) past of A.
In case A = {x} is a singleton, with a slight abuse of notation, we will write I±(x) (resp. J±(x))
instead of I±({x}) (resp. J±({x})).

Definition 1.2 (Lorentzian pre-length space (X, d,�,≤, τ)). A Lorentzian pre-length space (X, d,�
,≤, τ) is a casual space (X,�,≤) additionally equipped with a proper metric d (i.e. closed and bounded
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subsets are compact) and a lower semicontinuous function τ : X ×X → [0,∞], called time-separation
function, satisfying

τ(x, y) + τ(y, z) ≤ τ(x, z) ∀x ≤ y ≤ z reverse triangle inequality

τ(x, y) = 0, if x 6≤ y, τ(x, y) > 0⇔ x� y.
(1.1)

Note that the lower semicontinuity of τ implies that I±(x) is open, for any x ∈ X.
We endow X with the metric topology induced by d. All the topological concepts on X will be
formulated in terms of such metric topology. We say that X is (resp. locally) causally closed if
{x ≤ y} ⊂ X × X is a closed subset (resp. if every point x ∈ X has neighbourhood U such that
{x ≤ y} ∩ Ū × Ū is closed in Ū × Ū).

If (X, d,�,≤, τ) is a Lorentzian pre-length space, notice that setting x≤̃y (resp. x�̃y) if and only if
y ≤ x (resp. y � x) and τ̃(x, y) := τ(y, x), we obtain a new Lorentzian pre-length space (X, d, �̃, ≤̃, τ̃).
The latter is said to be the causally reversed of the former.

Throughout the paper, I ⊂ R will denote an arbitrary interval.

Definition 1.3 (Causal/timelike curves). A non-constant curve γ : I → X is called (future-directed)
timelike (resp. causal) if γ is locally Lipschitz continuous (with respect to d) and if for all t1, t2 ∈ I,
with t1 < t2, it holds γt1 � γt2 (resp. γt1 ≤ γt2). We say that γ is a null curve if, in addition to being
causal, no two points on γ(I) are related with respect to �.

It was proved in [50, Proposition 5.9] that for strongly causal continuous Lorentzian metrics, this
notion of causality coincides with the classical one.

The length of a causal curve is defined via the time separation function, in analogy to the theory
of length metric spaces.

Definition 1.4 (Length of a causal curve). For γ : [a, b]→ X future-directed causal we set

Lτ (γ) := inf

{
N−1∑
i=0

τ(γti , γti+1
) : a = t0 < t1 < . . . < tN = b, N ∈ N

}
.

In case the interval is half-open, say I = [a, b), then the infimum is taken over all partitions with
a = t0 < t1 < . . . < tN < b (and analogously for the other cases).

It was proved in [50, Proposition 2.32] that for smooth strongly causal spacetimes (M, g), this
notion of length coincides with the classical one: Lτ (γ) = Lg(γ).
A future-directed causal curve γ : [a, b] → X is maximal (also called geodesic) if it realises the time
separation, i.e. if Lτ (γ) = τ(γa, γb).
In case the time separation function is continuous with τ(x, x) = 0 for every x ∈ X (as it will be
throughout the paper, since we will assume that X is a globally hyperbolic geodesic Lorentzian space),
then any timelike geodesic γ with finite τ -length has a (continuous, monotonically strictly increasing)
reparametrisation λ by τ -arc-length, i.e. τ(γλ(s1), γλ(s2)) = s2 − s1 for all s2 ≤ s1 in the corresponding
interval (see [50, Corollary 3.35]). We denote the set of causal (resp. timelike) geodesics as:

Geo(X) := {γ : [0, 1]→ X : τ(γs, γt) = (t− s)τ(γ0, γ1)∀s < t}, (1.2)

TGeo(X) := {γ ∈ Geo(X) : τ(γ0, γ1) > 0}. (1.3)

Given x ≤ y ∈ X we also set

Geo(x, y) := {γ ∈ Geo(X) : γ0 = x, γ1 = y} (1.4)

I(x, y, t) := {γt : γ ∈ Geo(x, y)} (1.5)

respectively the space of geodesics, and the set of t-intermediate points from x to y.
If x� y ∈ X we also set

TGeo(x, y) := {γ ∈ TGeo(X) : γ0 = x, γ1 = y}.
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Given two subsets A,B ⊂ X we call

I(A,B, t) :=
⋃

x∈A,y∈B
I(x, y, t) (1.6)

the subset of t-intermediate points of geodesics from points in A to points in B.

A Lorentzian pre-length space (X, d,�,≤, τ) is called

• non-totally imprisoning if for every compact set K b X there is constant C > 0 such that the
d-arc-length of all causal curves contained in K is bounded by C;

• globally hyperbolic if it is non-totally imprisoning and for every x, y ∈ X the set J+(x) ∩ J−(y)
is compact in X;

• K-globally hyperbolic if it is non-totally imprisoning and for every K1,K2 b X compact subsets,
the set J+(K1) ∩ J−(K2) is compact in X;

• geodesic if for all x, y ∈ X with x ≤ y there is a future-directed causal curve γ from x to y with
τ(x, y) = Lτ (γ), i.e. a (maximizing) geodesic from x to y.

It was proved in [50, Theorem 3.28] that for a globally hyperbolic Lorentzian geodesic (actually length
would suffice) space (X, d,�,≤, τ), the time-separation function τ is finite and continuous. Moreover,
any globally hyperbolic Lorentzian length space (for the definition of Lorenzian length space see [50,
Definition 3.22], we skip it for brevity since we will not use it) is geodesic [50, Theorem 3.30].

Let us mention that, in the setting of C0-Lorentzian metrics, global hyperbolicity implies causal
closedness and K-global hyperbolicity [67, Proposition 3.3 and Corollary 3.4].

It is readily seen that if X is K-hyperbolic and K1,K2 b X are compact subsets then

I(K1,K2, t) b
⋃

t∈[0,1]

I(K1,K2, t) b X, ∀t ∈ [0, 1]. (1.7)

In the next lemma we show that, under mild assumptions, global hyperbolicity implies K-global hy-
perbolicity also in the synthetic setting.

Lemma 1.5. Let (X, d,�,≤, τ) be a globally hyperbolic locally causally closed Lorentzian geodesic
space, and let K1,K2 b X be compact subsets satisfying the following property: I−(x) 6= ∅ for every
x ∈ K1 and I+(y) 6= ∅ for every y ∈ K2. Then J+(K1) ∩ J−(K2) is compact in X.
In particular, if (X, d,�,≤, τ) is a globally hyperbolic, locally causally closed Lorentzian geodesic space
satisfying I±(x) 6= ∅ for all x ∈ X, then it is also K-globally hyperbolic.

Proof. Step 1. Let (zn) ⊂ J+(K1) ∩ J−(K2) be an arbitrary sequence. By definition there exist
(xn) ⊂ K1, (yn) ⊂ K2 such that xn ≤ zn ≤ yn for every n ∈ N. Since K1,K2 are compact, there exists
x ∈ K1, y ∈ K2 such that xn → x, yn → y, up to a subsequence.
By assumption there exist x′, y′ ∈ X such that τ(x′, x) > 0, τ(y, y′) > 0. Since I+(x′), I−(y′) ⊂ X
are open subsets, it holds that xn ∈ I+(x′), yn ∈ I−(y′) for n large enough. In particular we have
x′ ≤ xn ≤ zn ≤ yn ≤ y′ and thus (zn) ⊂ J+(x′) ∩ J−(y′). Since J+(x′) ∩ J−(y′) is compact by
global hyperbolicity, the sequence (zn) has a subsequence converging to some z ∈ X. We claim that
x ≤ z ≤ y.

Step 2. Let γn : [0, 1] → X be causal curves (which, by global hyperbolicity, can be chosen
to be broken geodesics) starting at x′, ending at y′ and passing through xn, zn and yn. Clearly
γn([0, 1]) ⊂ J+(x′) ∩ J−(y′) which is compact by global hyperbolicity. Thus supn Ld(γ

n) < ∞ by
the non-total imprisoning property. Thus, without loss of generality we can assume that each γn is
parametrized with constant d-metric speed over [0, 1]. By the metric Arzelá-Ascoli Theorem, there
exists a Lipschitz curve γ : [0, 1]→ X such that γn → γ uniformly on [0, 1], up to a subsequence. Since
by assumption X is locally causally closed, we can cover γ([0, 1]) with finitely many causally closed
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neighbourhoods. Using that γn → γ uniformly and that each γn is a causal curve, it easily follows that
γ is causal as well.

Since γ passes through x, z, y (in this order), it follows that x ≤ z ≤ y. Hence z ∈ J+(K1)∩J−(K2)
giving the claim.

Lemma 1.6. Let (X, d,�,≤, τ) be a K-globally hyperbolic locally causally closed Lorentzian pre-length
space such that for every x, y ∈ X with x ≤ y there is a causal curve from x to y (in particular, this
holds if X is geodesic). Then X is causally closed.

Proof. Let xn → x, yn → y, with xn ≤ yn. By K-globally hyperbolicity, it holds that J+({x, xn}n∈N)∩
J−({y, yn}n∈N) ⊂ X is compact. For each n ∈ N, let γn be a causal curve from xn to yn. Arguing as
in Step 2 in the proof of Lemma 1.5, we obtain that γn converges uniformly (up to a subsequence) to
a limit causal curve γ from x to y. Thus x ≤ y, as desired.

In the proof of the singularity theorem, we will use a slight variation of the time separation function
associated to a subset V ⊂ X. Recall that a subset V ⊂ X is called achronal if x 6� y for every x, y ∈ V .
In particular, if V is achronal, then I+(V ) ∩ I−(V ) = ∅, so we can define the signed time-separation
to V , τV : X → [−∞,+∞], by

τV (x) :=


supy∈V τ(y, x), for x ∈ I+(V )

supy∈V −τ(x, y), for x ∈ I−(V )

0 otherwise

. (1.8)

Note that τV is lower semi-continuous, as supremum of (lower semi-)continuous functions.
In order for these suprema to be attained, global hyperbolicity and geodesic property of X alone are not
sufficient. One should rather demand additional compactness properties of the set V . The following
notion, introduced by Galloway [33] in the smooth setting, is well suited to this aim.

Definition 1.7 (Future timelike complete (FTC) subsets). A subset V ⊂ X is future timelike complete
(FTC), if for each point x ∈ I+(V ), the intersection J−(x) ∩ V ⊂ V has compact closure (w.r.t. d) in
V . Analogously, one defines past timelike completeness (PTC). A subset that is both FTC and PTC
is called timelike complete.

We denote with C the topological closure (with respect to d) of a subset C ⊂ X.

Lemma 1.8. Let (X, d,�,≤, τ) be a globally hyperbolic Lorentzian geodesic space and let V ⊂ X be
an achronal FTC (resp. PTC) subset. Then for each x ∈ I+(V ) (resp. x ∈ I−(V )) there exists a point
yx ∈ V with τV (yx) = τ(yx, x) > 0 (resp. τV (yx) = −τ(x, yx) < 0).

Proof. Fix a point x ∈ I+(V ) (for x ∈ I−(V ) the proof is analogous). By the very defnition of τV and
(1.1), it holds τV (x) > 0 and τ(·, x) ≡ 0 outside of J−(x). Since by global hyperbolicity [50, Theorem
3.28] the function τ(·, x) : X → R is finite and continuous, then it admits maximum on the compact
set K := J−(x) ∩ V ⊂ V at some point yx . Thus

τ(yx, x) = max
y∈K

τ(y, x) = sup
y∈V

τ(y, x) = τV (x) > 0.

Remark 1.9. Lemma 1.8 and reverse triangle inequality (1.1)implies that

τV (x)− τV (z) ≥ τ(yz, x)− τ(yz, z) ≥ τ(z, x), ∀x, z ∈ I+(V ), z ≤ x.

In analogy to the metric setting, it is natural to introduce the next notion of timelike non-branching.
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Definition 1.10 (Timelike non-branching). A Lorentzian pre-length space (X, d,�,≤, τ) is said to
be forward timelike non-branching if and only if for any γ1, γ2 ∈ TGeo(X), it holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ1
t = γ2

t =⇒ γ1
s = γ2

s , ∀s ∈ [0, 1].

It is said to be backward timelike non-branching if the reversed causal structure is forward timelike
non-branching. In case it is both forward and backward timelike non-branching it is said timelike
non-branching.

By Cauchy Theorem, it is clear that if (M, g) is a space-time whose Christoffel symbols are locally-
Lipschitz (e.g. in case g ∈ C1,1) then the associated synthetic structure is timelike non-branching. It
is expected that for spacetimes with a metric of lower regularity (e.g. g ∈ C1 or g ∈ C0) timelike
branching can occur. It is also expected that timelike branching can occur in closed cone structures
(see Remark 1.13) when the Lorentz-Finsler norm is not strictly convex (see [59, Remark 2.8]).

Definition 1.11 (Measured Lorentzian pre-length space (X, d,m,�,≤, τ)). A measured Lorentzian
pre-length space (X, d,m,�,≤, τ) is a Lorentzian pre-length space endowed with a Radon non-negative
measure m with suppm = X. We say that (X, d,m,�,≤, τ) is globally hyperbolic (resp. geodesic) if
(X, d,�,≤, τ) is so.

Recall that a Radon measure m on a proper metric space X is a Borel-regular measure which is
finite on compact subsets. In this framework, it is well known (see for instance [47, Section 1.6]) that
Suslin sets are m-measurable. For the sake of this paper it will be enough to recall that Suslin sets
(also called analytic sets) are precisely images via continuous mappings of Borel subsets in complete
and separable metric spaces (for more details see [47, 70]).

Remark 1.12 (Case of a spacetime with a continuous Lorentzian metric). LetM be a smooth manifold,
g be a continuous Lorentzian metric over M and assume that (M, g) is time-oriented (i.e. there is a
continuous timelike vector field). Note that, for C0-metrics, the natural class of differentiability of
the manifolds is C1; now, C1 manifolds always possess a C∞ subatlas, and one can choose some such
sub-atlas whenever convenient.

A causal (respectively timelike) curve in M is by definition a locally Lipschitz curve whose tangent
vector is causal (resp. timelike) almost everywhere. It would also be possible to start from absolutely
continuous (AC for short) curves, but since causal AC curves always admit a re-parametrisation that
is Lipschitz [59, Sec. 2.1, Rem. 2.3], we do not loose in generality with the above convention.

Denote with Lg(γ) the g-length of a causal curve γ : I → M , i.e. Lg(γ) :=
∫
I

√
−g(γ̇, γ̇) dt. The

time separation function τ : M ×M → [0,∞] is then defined in the usual way, i.e.

τ(x, y) := sup{Lg(γ) : γ is future directed causal from x to y}, if x ≤ y,

and τ(x, y) = 0 otherwise. Note that the reverse triangle inequality (1.1) follows directly from the
definition. It is easy to check that an Lg-maximal curve γ is also Lτ -maximal, and Lg(γ) = Lτ (γ) (see
for instance [50, Remark 5.1]). Also, we fix a complete Riemannian metric h on M and denote by dh

the associated distance function.
For a spacetime with a Lorentzian C0-metric:

• Global hyperbolicity implies causal closedness and K-global hyperbolicity [67, Proposition 3.3
and Corollary 3.4].

• Recall that a Cauchy hypersurface is a subset which is met exactly once by every inextendible
causal curve. It is a well known fact that, even for C0-metrics, a Cauchy hypersurface is a closed
acasual topological hypersurface [67, Proposition 5.2]. Global hyperbolicity is equivalent to the
existence of a Cauchy hypersurface [67, Theorem 5.7, Theorem 5.9] which in turn implies strong
causality [67, Proposition 5.6].

• By [50, Proposition 5.8], if g is a causally plain (or, more strongly, locally Lipschitz) Lorentzian
C0-metric on M then the associated synthetic structure is a pre-length Lorentzian space. More
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strongly, from [50, Theorem 3.30 and Theorem 5.12] and combining the above items, if g is a
globally hyperbolic and causally plain Lorentzian C0-metric on M then the associated synthetic
structure is a causally closed, K-globally hyperbolic Lorentzian geodesic space.

• Any Cauchy hypersurface is causally complete. More strongly, if V ⊂M is Cauchy hypersurface
then for every x ∈ J+(V ) it holds that J−(x) ∩ J+(V ) is compact (and analogous statement for
x ∈ J−(V )). This fact is classical and well known in the smooth setting (see for instance [63,
Lemma 14.40] or [79, Theorem 8.3.12]) and extendable to C0-metrics along the lines of the proof
of [67, Theorem 5.7].

Remark 1.13 (Other classes of examples). • Closed cone structures. Several results from smooth
causality theory can be extended to cone structures on smooth manifolds. One of the motiva-
tions for such generalisations comes from the problem of constructing smooth time functions
in stably causal or globally hyperbolic spacetimes. Fathi and Siconolfi [29] analysed continu-
ous cone structures with tools from weak KAM theory, Bernard and Suhr [6] studied Lyapunov
functions for closed cone structures and showed (among other results) the equivalence between
global hyperbolicity and the existence of steep temporal functions in this framework, Minguzzi
[59] gave a deep and comprehensive analysis of causality theory for closed cone structures, in-
cluding embedding and singularity theorems in this framework. Closed cone structures provide
a rich source of examples of Lorentzian pre-length and length spaces, which can be seen as the
synthetic-Lorentzian analogue of Finsler manifolds (see [50, Section 5.2] for more details).

• Outlook on examples, towards quantum gravity. The framework of Lorentzian synthetic
spaces allows to handle situations where one may not have the structure of a manifold or a
Lorentz(-Finsler) metric. The optimal transport tools developed in the paper can provide a new
perspective on curvature in those cases where there is no classical notion of curvature (Riemann
tensor, Ricci and sectional curvature, etc.). A remarkable example of such a situation is given
by certain approaches to quantum gravity, see for instance [57] where it is shown that from
only a countable dense set of events and the causality relation, it is possible to reconstruct a
globally hyperbolic spacetime in a purely order theoretic manner. In particular, two approaches
to quantum gravity are linked to Lorentzian synthetic spaces: the one of causal Fermion systems
[30, 31] and the theory of causal sets [11]. The basic idea in both cases is that the structure of
spacetime needs to be adjusted on a microscopic scale to include quantum effects. This leads to
non-smoothness of the underlying geometry, and the classical structure of Lorentzian manifold
emerges only in the macroscopic regime. For the connection to the theory of Lorentzian (pre-
)length spaces we refer to [50, Section 5.3], [30, Section 5.1]. Let us mention that the link with
causal Fermion systems looks particularly promising: indeed the two cornerstones, used to define
synthetic timelike-Ricci curvature lower bounds, are Loretzian-distance and measure, and a causal
Fermion system is naturally endowed with both (the reference measure in this setting is called
universal measure).

1.2 Measures and weak/narrow convergence

In this subsection we briefly recall some basic notions of convergence of measures that will be used in
the paper. Standard references for the topic are [2, 78].

Given a complete and separable (in particular, everything hold for proper) metric space (X, d), we
denote by B(X) the collection of its Borel sets and by P(X) (resp. Pc(X)) the collection of all Borel
probability measures (resp. with compact support).
We say that (µn) ⊂ P(X) narrowly converges to µ∞ ∈ P(X) provided

lim
n→∞

∫
f µn =

∫
f µ∞ for every f ∈ Cb(X), (1.9)

where Cb(X) denotes the space of bounded and continuous functions.
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Relative narrow compactness in P(X) can be characterized by Prokhorov’s Theorem. Let us first
recall that a set K ⊂ P(X) is said to be tight provided for every ε > 0 there exists a compact set
Kε ⊂ X such that

µ(X \Kε) ≤ ε for every µ ∈ K.
The we have the following classical result:

Theorem 1.14 (Prokhorov). Let (X, d) be complete and separable. A subset K ⊂ P(X) is tight if and
only if it is precompact in the narrow topology.

We next recall a useful tightness criterion for measures in P(X ×X) (for the proof see for instance
[2, Lemma 5.2.2]). To this aim, denote with P1, P2 : X × X → X the projections onto the first and
second factor. The push-forward is defined as (Pi)]π(A) := π(P−1

i (A)) for any A ∈ B(X).

Lemma 1.15 (Tightness criterion in P(X × X)). A subset K ⊂ P(X × X) is tight if and only if
(Pi)]K ⊂ P(X) is tight for i = 1, 2.

We next recall a useful property concerning passage to the limit in (1.9) when f is possibly un-
bounded, but a “uniform integrability” condition holds.

Definition 1.16 (Uniform integrability). We say that a Borel function g : X → [0,+∞] is uniformly
integrable w.r.t. a given set K ⊂ P(X) if

lim sup
k→∞

sup
µ∈K

∫
{g≥k}

g µ = 0. (1.10)

Lemma 1.17 (Lemma 5.1.7 [2]). Let (µn) ⊂ P(X) be narrowly convergent to µ∞ ∈ P(X). If f : X →
[0,∞) is continuous and uniformly integrable with respect to the set {µn}n∈N, then

lim
n→∞

∫
f µn =

∫
f µ∞.

Conversely, if f : X → [0,∞) is continuous, f ∈ L1(µn) for every n ∈ N and

lim sup
n→∞

∫
X

f µn ≤
∫
X

f µ∞ < +∞, (1.11)

then f is uniformly integrable with respect to the set {µn}n∈N.

1.3 Relative entropy and basic properties

We denote Pac(X) the space of probability measures absolutely continuous with respect to m.

Definition 1.18. Given a probability measure µ ∈ P(X) we define its relative entropy by

Ent(µ|m) =

∫
X

ρ log(ρ)m, (1.12)

if µ = ρm is absolutely continuous with respect to m and (ρ log(ρ))+ is m-integrable. Otherwise we set
Ent(µ|m) = +∞.

A simple application of Jensen inequality using the convexity of (0,∞) 3 t 7→ t log t gives

Ent(µ|m) ≥ − logm(suppµ) > −∞, ∀µ ∈ Pc(X). (1.13)

We set Dom(Ent(·|m)) := {µ ∈ P(X) : Ent(µ|m) ∈ R} to be the finiteness domain of the entropy. An
important property of the relative entropy is the (joint) lower-semicontinuity under narrow convergence
in case the reference measures are probabilities (for a proof, see for instance [2, Lemma 9.4.3]):

mn,m∞ ∈ P(X), mn → m∞, µn → µ∞ narrowly =⇒ lim inf
n→∞

Ent(µn|mn) ≥ Ent(µ∞|m∞).

(1.14)
In particular, for a general fixed reference measure m it holds:

µn → µ∞ narrowly and m
( ⋃
n∈N

suppµn

)
<∞ =⇒ lim inf

n→∞
Ent(µn|m) ≥ Ent(µ∞|m). (1.15)
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2 Optimal transport in Lorentzian synthetic spaces

2.1 The `p-optimal transport problem

Given µ, ν ∈ P(X), denote

Π(µ, ν) := {π ∈ P(X ×X) : (P1)]π = µ, (P2)]π = ν},
Π≤(µ, ν) := {π ∈ Π(µ, ν) : π(X2

≤) = 1},
Π�(µ, ν) := {π ∈ Π(µ, ν) : π(X2

�) = 1}

where X2
≤ := {(x, y) ∈ X2 : x ≤ y} and X2

� := {(x, y) ∈ X2 : x� y}.
Note that for (X, d,�,≤, τ) causally closed (i.e. X2

≤ ⊂ X2 is a closed subset), π ∈ Π≤(µ, ν) if and

only if suppπ ⊂ X2
≤.

Definition 2.1. Let (X, d,�,≤, τ) be a Lorentzian pre-length space and let p ∈ (0, 1]. Given µ, ν ∈
P(X), the p-Lorentz-Wasserstein distance is defined by

`p(µ, ν) := sup
π∈Π≤(µ,ν)

(∫
X×X

τ(x, y)p π(dxdy)

)1/p

. (2.1)

When Π≤(µ, ν) = ∅ we set `p(µ, ν) := −∞.

Note that Definition 2.1 extends to Lorentzian pre-length spaces the corresponding notion given
in the smooth Lorentzian setting in [26] (see also [58, 61], and [74] for p = 1); when Π≤(µ, ν) = ∅
we adopt the convention of McCann [58] (note that [26] set `p(µ, ν) = 0 in this case). A coupling
π ∈ Π≤(µ, ν) maximising in (2.1) is said `p-optimal. The set of `p-optimal couplings from µ to ν is
denoted by Πp-opt

≤ (µ, ν).

Remark 2.2 (An equivalent formulation of (2.1)). Set

`p(x, y) :=

{
τ(x, y)p if x ≤ y
−∞ otherwise

. (2.2)

Notice that for every π ∈ Π≤(µ, ν) it holds
∫
X×X τ(x, y)p π(dxdy) =

∫
X×X `(x, y)p π(dxdy) ∈ R≥0.

Moreover, if π ∈ Π(µ, ν) satisfies
∫
X×X `(x, y)p π(dxdy) > −∞ then π ∈ Π≤(µ, ν). Thus the maximiza-

tion problem (2.1) is equivalent (i.e. the sup and the set of maximisers coincide) to the maximisation
problem

sup
π∈Π(µ,ν)

(∫
X×X

`p(x, y)π(dxdy)

)1/p

. (2.3)

The advantage of the formulation (2.3) is that, when X is causally closed and globally hyperbolic
geodesic (so that τ is continuous) then `p is upper semi-continuous on X ×X. Similarly, when X is
locally causally closed globally hyperbolic geodesic, if µ and ν have compact support then ` is upper
semi-continuous on suppµ× supp ν.
In both cases, one can apply to the Monge-Kantorovich problem (2.3) standard optimal transport
techniques (e.g. [78]).

We will adopt the following standard notation: given µ, ν ∈ P(X), we denote with µ⊗ ν ∈ P(X2)
the product measure; given u, v : X → R∪{+∞} we denote with u⊕ v : X2 → R∪{+∞} the function
u⊕ v(x, y) := u(x) + v(y).

Proposition 2.3. Let (X, d,�,≤, τ) be a causally closed (resp. locally causally closed) globally hyper-
bolic Lorentzian geodesic space and let µ, ν ∈ P(X) (resp. Pc(X)). If Π≤(µ, ν) 6= ∅ and if there exist
measurable functions a, b : X → R, with a⊕ b ∈ L1(µ⊗ ν) such that `p ≤ a⊕ b on suppµ× supp ν (e.g.
when µ, ν ∈ Pc(X)) then the sup in (2.1) is attained and finite.
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Proof. The claim follows from Remark 2.2 combined with [78, Theorem 4.1] (see also [77, Theorem
1.3]).

We next show that `p satisfies the reverse triangle inequality. This was proved in the smooth
Lorentzian setting by Eckstein-Miller [26, Theorem 13], and it is the natural Lorentzian analogue of
the fact that the Kantorovich-Rubinstein-Wasserstein distances Wp, p ≥ 1, in the metric space setting
satisfy the usual triangle inequality (see for instance [78, Section 6]).

We first isolate the causal version of the Gluing Lemma, a classical tool in Optimal Transport
theory (see for instance [78]).

Lemma 2.4 (Gluing Lemma). Let (X, d,�,≤, τ) be a Lorentzian pre-length space and let µi ∈ P(X)
for i = 1, 2, 3. If π12 ∈ Π≤(µ1, µ2) and π23 ∈ Π≤(µ2, µ3) are given, then there exists π123 ∈ P(X ×X)
such that

(P12)]π123 = π12, (P23)]π123 = π23, (P13)]π123 ∈ Π≤(µ1, µ3).

Proof. The proof goes along the same lines of the classical Gluing Lemma (see for instance [77, Lemma
7.6]). Disintegrate the coupling π12 with respect to P2 and the coupling π23 with respect to P1 and
obtain the following formula

π12 =

∫
X

(π12)x µ2(dx), π23 =

∫
X

(π23)x µ2(dx), (π12)x, (π23)x ∈ P(X ×X),

with (π12)x(X×{x}) = (π23)x({x}×X) = 1, µ2-a.e. . Since π12 and π23 are causal couplings, we have

(π12)x(X2
≤) = (π23)x(X2

≤) = 1, for µ2-a.e. x ∈ X.

In particular, for (π12)x-a.e. (z, x) and for (π23)x-a.e. (x, y), the transitive property of ≤ gives that
z ≤ y. Hence defining

π123 =

∫
X

(P14)]((π12)x ⊗ (π23)x)µ2(dx),

the first two claims are obtained by the classical Gluing Lemma [77, Lemma 7.6] (or [78, Chapter 1]),
while the last one follows from the previous argument.

Proposition 2.5 (`p satisfies the reverse triangle inequality). Let (X, d,�,≤, τ) be a Lorentzian pre-
length space and let p ∈ (0, 1]. Then `p satisfies the reverse triangle inequality:

`p(µ0, µ1) + `p(µ1, µ2) ≤ `p(µ0, µ2), ∀µ0, µ1, µ2 ∈ P(X), (2.4)

where we adopt the convention that ∞−∞ = −∞ to interpret the left hand side of (2.4).

Proof. We assume `p(µ0, µ1), `p(µ1, µ2) > −∞, otherwise the claim is trivial.
We first consider the case when `p(µ0, µ1), `p(µ1, µ2) < ∞. By the very definition (2.1) of `p, for any
ε > 0 we can find π01 ∈ Π≤(µ0, µ1) π12 ∈ Π≤(µ1, µ2) such that

`p(µ0, µ1) ≤
(∫

X×X
τ(x, y)p π01(dxdy)

)1/p

+ ε, `p(µ1, µ2) ≤
(∫

X×X
τ(x, y)p π12(dxdy)

)1/p

+ ε.

We denote with π012 ∈ P(X3) the measure given by the Gluing Lemma 2.4. Recalling that for π012-a.e.
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(x, z, y) ∈ X3 it holds x ≤ z ≤ y, we can use (1.1) to compute

`p(µ0, µ2) ≥
(∫

X×X
τ(x, y)p (P13)]π012(dxdy)

)1/p

=

(∫
X×X×X

τ(x, y)p π012(dxdzdy)

)1/p

≥
(∫

X×X×X
[τ(x, z) + τ(z, y)]p π012(dxdzdy)

)1/p

≥
(∫

X×X
τ(x, z)p π012(dxdzdy)

)1/p

+

(∫
X×X

τ(z, y)p π012(dxdzdy)

)1/p

=

(∫
X×X

τ(x, z)p π01(dxdz)

)1/p

+

(∫
X×X

τ(z, y)p π12(dzdy)

)1/p

≥ `p(µ0, µ1) + `p(µ1, µ2)− 2ε,

proving the inequality, by the arbitrariness of ε > 0. If one of `p(µ0, µ1), `p(µ1, µ2) is not bounded from
above, then simply take a sequence of couplings with diverging cost; repeating the above calculations
we obtain that also `p(µ0, µ2) =∞, proving the claim.

2.2 Cyclical monotonicity

The notion of cyclical monotonicity is very useful to relate an optimal coupling with its support.

Definition 2.6 (τp-cyclical monotonicity and `p-cyclical monotonicity). Fix p ∈ (0, 1] and let (X, d,�
,≤, τ) be a Lorentzian pre-length space. A subset Γ ⊂ X2

≤ is said to be τp-cyclically monotone (resp.
`p-cyclically monotone) if, for any N ∈ N and any family (x1, y1), . . . , (xN , yN ) of points in Γ, the next
inequality holds:

N∑
i=1

τ(xi, yi)
p ≥

N∑
i=1

τ(xi+1, yi)
p, (2.5)

(resp.
∑N
i=1 `(xi, yi)

p ≥
∑N
i=1 `(xi+1, yi)

p) with the convention xN+1 = x1. A coupling is said to be
τp-cyclically monotone (resp. `p-cyclically monotone) if it is concentrated on an τp-cyclically monotone
set (resp. `p-cyclically monotone set).

Remark 2.7. Notice that Γ ⊂ X2
≤ is `p-cyclically monotone if and only if (2.5) holds for those families

with xi+1 ≤ yi for all i ∈ {1, . . . , N}. It is then clear that

τp-cyclical monotonicity ⇒ `p-cyclical monotonicity. (2.6)

Note if P1(Γ)× P2(Γ) ⊂ X2
≤ then `p-cyclical monotonicity is equivalent to τp-cyclical monotonicity.

Proposition 2.8 (Optimality ⇔ cyclical monotonicity). Fix p ∈ (0, 1]. Let (X, d,�,≤, τ) be a
Lorentzian pre-length space and let µ, ν ∈ P(X). Assume that Π≤(µ, ν) 6= ∅ and that there exist
measurable functions a, b : X → R, with a⊕ b ∈ L1(µ⊗ ν) such that `p ≤ a⊕ b, µ⊗ ν-a.e.. Then the
following holds.

1. If π is `p-optimal then π is `p-cyclically monotone.

2. If π(X2
�) = 1 and π is `p-cyclically monotone then π is `p-optimal.

Proof. The result follows from [9], dealing with optimal transport (minimisation) problems associated
to general Borel cost functions c(·, ·) : X2 → [0,+∞]. Of course, the (maximising) optimal couplings
in Π(µ, ν) for the cost `p are the same as for the cost `p − (a ⊕ b), which is non-positive µ ⊗ ν-a.e.;
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hence we enter in the framework of [9].
The first claim thus follows from [9, Lemma 5.2] (see also [9, Proposition B.16]).
For the second claim, notice that [9, Theorem 5.6] provides a general condition to ensure that an
`p-cyclically monotone coupling is `p-optimal. Thanks to [9, Corollary 5.7, Proposition 5.8] it will be
enough to verify the existence of countably many Borel sets Ai, Bi ⊂ X such that

π
( ⋃
i∈N

Ai ×Bi
)

= 1,
⋃
i∈N

Ai ×Bi ⊂ X2
≤.

The existence of such sets (that can actually chosen to be open) follows directly from the fact that
X2
� = {τ > 0} ⊂ X2 is open by the lower semicontinuity of τ .

Remark 2.9. Thanks to [50, Proposition 5.8], Proposition 2.8 is valid for a causally plain (so, in
particular, for a locally-Lipschitz) Lorentzian C0-metric g on a space-time M .
In case (X, d,�,≤, τ) is a causally closed globally hyperbolic Lorentzian geodesic space (as it will be
for most of the paper), the first claim in Proposition 2.8 follows from more standard literature (see e.g.
[3, Theorem 3.2]), thanks to Remark 2.2.

We will later see that for τp-cyclically monotone causal couplings, `p-optimality holds true (Theorem
2.26). To conclude we report a standard fact about optimal couplings.

Lemma 2.10 (Restriction). Fix p ∈ (0, 1]. Let (X, d,�,≤, τ) be a Lorentzian pre-length space and let
µ, ν ∈ P(X). Then for every π ∈ Πp-opt

≤ (µ, ν) and every measurable function f : X ×X → [0,∞) with∫
f π = 1 and f ∈ L∞(π), also the coupling fπ is optimal, i.e. denoting with

µf := (P1)]fπ, νf := (P2)]fπ,

it holds true fπ ∈ Πp-opt
≤ (µf , νf ).

Proof. Trivially fπ ∈ Π≤(µf , νf ) hence we will only be concerned about optimality. Assume by
contradiction the existence of π̂ ∈ Π≤(µf , νf ) with∫

X×X
τ(x, y)pf(x, y)π(dxdy) <

∫
X×X

τ(x, y)pπ̂(dxdy).

Consider then the new coupling

π̄ := π − f

‖f‖∞
π +

1

‖f‖∞
π̂.

By linearity, π̄ has the same marginals of π and it is causal, i.e. π̄ ∈ Π≤(µ, ν). Finally∫
X×X

τ(x, y)pπ̄(dxdy) =

∫
X×X

τ(x, y)pπ(dxdy) +
1

‖f‖∞

∫
X×X

τ(x, y)p(π̂ − fπ)(dxdy)

>

∫
X×X

τ(x, y)pπ(dxdy),

giving a contradiction.

2.3 Stability of optimal couplings

While in the Riemannian framework stability of optimal couplings follows by stability of cyclical mono-
tonicity, in the Lorentzian setting, due to the upper semicontinuity of the cost function `p (opposed to
continuity of the Riemannian cost dp), a more refined analysis is needed.

Building on the previous Proposition 2.8, we can establish a first basic stability property with
respect to narrow convergence valid for a special class of optimal couplings.
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Lemma 2.11 (Stability of `p-optimal couplings I). Let (X, d,�,≤, τ) be a causally closed, globally
hyperbolic Lorentzian geodesic space and fix p ∈ (0, 1]. Let (µ1

n), (µ2
n) ⊂ P(X) be narrowly convergent

to some µ1
∞, µ

2
∞ ∈ P(X) and assume that, for every n ∈ N, there exists an `p-optimal coupling

πn ∈ Πp-opt
≤ (µ1

n, µ
2
n) which is also τp-cyclically monotone.

Then (πn) is narrowly relatively compact in P(X2), moreover any narrow limit point π∞ belongs
to Π≤(µ1

∞, µ
2
∞) and is `p-optimal, provided π∞(X2

�) = 1.

Proof. By Prokhorov Theorem 1.14, the subsets {µ1
n}n∈N, {µ2

n}n∈N ⊂ P(X) are tight. Lemma 1.15
implies that {πn}n∈N ⊂ P(X × X) is tight as well, and then (again by Theorem 1.14) it converges
narrowly, up to a subsequence, to some π∞ ∈ P(X × X). Using the continuity of the projection
maps, it is readily seen that π∞ ∈ Π(µ1

∞, µ
2
∞). The casual closeness assumption further implies that

π∞ ∈ Π≤(µ1
∞, µ

2
∞). To conclude optimality it is enough to observe that τp is continuous and therefore

τp-cyclical monotonicity is preserved under narrow convergence (note that the same claim would be
false for `p-cyclically monotone sets) and apply the second point of Proposition 2.8 together with (2.6)
(see also Theorem 2.26 below, for a more self-contained proof of the implication π is τp-cyclically
monotone ⇒ π is `p-optimal).

To obtain stronger stability properties, we will use Γ-convergence techniques. For the reaming of
this section, (X, d,�,≤, τ) will be a causally closed, globally hyperbolic Lorentzian geodesic space
and we also fix p ∈ (0, 1]. Let (µ1

n), (µ2
n) ⊂ P(X) be narrowly convergent to some µ1

∞, µ
2
∞ ∈ P(X).

Associated with them we define

Fn, F∞ : P(X2)→ R ∪ {−∞}, Fi(π) =

{∫
X×X τ(x, y)p π(dxdy), π ∈ Π≤(µ1

i , µ
2
i )

−∞, otherwise,

for i = n,∞.

Lemma 2.12. (lim sup-inequality) Let {πi}i∈N∪{∞} ⊂ P(X2) be such that πn → π∞ narrowly and τp

is uniformly integrable with respect to {πi}i∈N∪{∞} (in particular, the second condition is satisfied if
there exists a compact subset containing suppπn for all n ∈ N). Then

F∞(π∞) ≥ lim sup
n→∞

Fn(πn). (2.7)

If moreover, πn(X2
≤) = 1 for all n ∈ N, then also π∞(X2

≤) = 1 and

F∞(π∞) = lim
n→∞

Fn(πn).

Proof. Without loss of generality we can assume that πn(X2
≤) = 1 definitively, otherwise the claim

(2.7) is trivial. Since by assumption X2
≤ ⊂ X2 is closed, it follows that

π∞(X2
≤) ≥ lim sup

n→∞
πn(X2

≤) = 1.

Using that (from global hyperbolicity) τp is continuous on X2
≤ together with Lemma 1.17, we conclude

that Fn(πn)→ F∞(π∞).

For the liminf inequality we have to select a particular family of (µ1
n), (µ2

n).

Lemma 2.13 (Existence of a recovery sequence). Assume that there exists a compact subset K ⊂ X
such that suppµ1

n, suppµ2
n ⊂ K for all n ∈ N. Assume that, for each n ∈ N, the sets Π≤(µ1

n, µ
1
∞) and

Π≤(µ2
∞, µ

2
n) are both not empty. Then, for any π ∈ Π(µ1

∞, µ
2
∞), there exists a sequence πn ∈ Π(µ1

n, µ
2
n)

such that Fn(πn)→ F∞(π).

Proof. Fix any π ∈ P(X2). If π /∈ Π≤(µ1
∞, µ

2
∞) then the claim is trivial (just take as recovering sequence

π itself). Assume then π ∈ Π≤(µ1
∞, µ

2
∞). By assumption there exists π1

n ∈ Π≤(µ1
n, µ

1
∞) and π2

n ∈
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Π≤(µ2
∞, µ

2
n). Then, by Gluing Lemma 2.4 and transitivity of ≤, we obtain a π̂n ∈ P(X ×X ×X ×X)

such that

(P12)]π̂n = π1
n, (P23)]π̂n = π, (P34)]π̂n = π2

n, (P14)]π̂n ∈ Π≤(µ1
n, µ

2
n).

Recalling that τ is non-negative and satisfies reverse triangle inequality, we get:

F ((P14)]π̂n) =

∫
X×X

τ(x, y)p (P14)]π̂n(dxdy)

=

∫
X×X×X×X

τ(P14(x, z, w, y))p π̂n(dxdydzdw)

≥
∫
X×X×X×X

(τ(x, z) + τ(z, w) + τ(w, y))p π̂n(dxdydzdw)

≥
∫
X×X

τ(z, w)pπ(dzdw)

≥ F (π).

Using (2.7), it follows that the sequence πn := (P14)]π̂n satisfies the claim.

Theorem 2.14 (Stability of `p-optimal couplings II). Assume that there exists a compact subset
K ⊂ X such that suppµ1

n, suppµ2
n ⊂ K for all n ∈ N, and that for each n ∈ N the sets Π≤(µ1

n, µ
1
∞)

and Π≤(µ2
∞, µ

2
n) are both not empty.

Then `p(µ
1
n, µ

2
n) converges to `p(µ

1
∞, µ

2
∞) and any narrow-limit point of Πp-opt

≤ (µ1
n, µ

2
n) belongs to

Πp-opt
≤ (µ1

∞, µ
2
∞).

Proof. For the first claim, notice that from Lemma 2.12 and the equintegrability of τp granted by
the assumptions, it readily follows that lim supn→∞ `p(µ

1
n, µ

2
n) ≤ `p(µ1

∞, µ
2
∞). Also, Lemma 2.13 gives

`p(µ
1
∞, µ

2
∞) ≤ lim infn→∞ `p(µ

1
n, µ

2
n). Hence, `p(µ

1
n, µ

2
n)→ `p(µ

1
∞, µ

2
∞).

For the second claim, if πn ∈ Πp-opt
≤ (µ1

n, µ
2
n) converges narrowly to π then, by the continuity of the

projections and the causal closedness of X, we have that π ∈ Π≤(µ1
∞, µ

2
∞) and∫

τ(x, y)p π(dxdy) = lim
n→∞

∫
τ(x, y)p πn(dxdy) = lim

n→∞
`p(µ

1
n, µ

2
n)p = `p(µ

1
∞, µ

2
∞)p,

where the first identity follows from Lemma 2.12 and last by the previous part of the proof. We
conclude that π ∈ Πp-opt

≤ (µ1
∞, µ

2
∞).

Another simple criterion, based on ideas from Γ-convergence, to ensure stability of `p-optimal
couplings is the following one.

Lemma 2.15. Let (X, d,�,≤, τ) be a causally closed Lorentzian globally hyperbolic geodesic space
and fix p ∈ (0, 1]. Let (µ1

n), (µ2
n) ⊂ P(X) be narrowly convergent to some µ1

∞, µ
2
∞ ∈ P(X). Assume

moreover the existence of an optimal π̄∞ ∈ Πp-opt
≤ (µ1

∞, µ
2
∞) and of a sequence π̄n ∈ Π≤(µ1

n, µ
2
n) such

that Fn(π̄n)→ F∞(π̄∞).
Then for any τp-uniformly integrable sequence πn ∈ Πp-opt

≤ (µ1
n, µ

2
n), any limit measure π∞ in the

narrow topology is `p-optimal, i.e. π∞ ∈ Πp-opt
≤ (µ1

∞, µ
2
∞).

Proof. Consider any limit point π∞ of a τp-uniformly integrable sequence πn ∈ Πp-opt
≤ (µ1

n, µ
2
n) and

π̄∞ ∈ Πp-opt
≤ (µ1

∞, µ
2
∞) limit point of π̄n ∈ Π≤(µ1

n, µ
2
n). From Lemma 2.12 we have that

F∞(π∞) ≥ lim sup
n→∞

Fn(πn) ≥ lim sup
n→∞

Fn(π̄n) = F∞(π̄∞) ≥ F∞(π∞) (2.8)

giving optimality of π∞.
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From Lemma 2.15 we obtain another stability result. For this scope we introduce the following
notation:

D :=
{
ν ∈ Pc(X) : ν =

∑
i≤k

αiδxi , for some k ∈ N
}
.

Theorem 2.16 (Stability of `p-optimal couplings III). Let (X, d,�,≤, τ) be a locally causally closed,
globally hyperbolic Lorentzian geodesic space and fix p ∈ (0, 1]. Let also µ0, µ1 ∈ Pc(X) be given and
assume the existence of π ∈ Πp-opt

≤ (µ0, µ1) with suppπ ⊂ X2
�. Let (µ1,n) ⊂ D with suppµ1,n ⊂ suppµ1

be a sequence narrowly convergent to µ1 with `p(µ0, µ1,n) ∈ [0,∞). Then there exists another sequence
(µ̄1,n) ⊂ D such that the following holds true. The sequence (µ̄1,n) still narrowly converges to µ1 and

µ̄1,n is absolutely continuous with respect to µ1,n. Moreover, for any sequence πn ∈ Πp-opt
≤ (µ0, µ̄1,n),

any limit measure π∞ in the narrow topology is `p-optimal, i.e. π∞ ∈ Πp-opt
≤ (µ0, µ1), and

`p(µ0, µ̄1,n)→ `p(µ0, µ1).

Proof. Step 1. Restricting µ0.
Since suppπ is compact and X2

� is an open set, for any ε > 0 we find finitely many points (xi,ε, yi,ε)
with i = 1, . . . , kε such that suppπ ⊂ ∪i≤kεBε(xi,ε) × Bε(yi,ε) ⊂ X2

�. In particular, for any ε > 0,
µ1(∪i≤kεBε(yi,ε)) = 1. Then narrow convergence implies that

lim inf
n→∞

µ1,n(Aε) ≥ µ1(Aε) = 1, Aε := ∪i≤kεBε(yi,ε). (2.9)

Since we are interested in obtaining a sequence {µ̄1,n} absolutely continuous with respect to µ1,n,
we can restrict and normalize µ1,n to Aε obtaining (thanks to (2.9)) a new sequence still converging
narrowly to µ1. Hence, without loss of generality, we will assume µ1,n(Aε) = 1 for every n ∈ N.

Step 2. Construction of the approximations.
By assumption µ1,n =

∑
i≤hn αi,nδyi,n , with

∑
i≤hn αi,n = 1, αi,n ≥ 0 and from Step 1 we have

µ1,n(Aε) = 1. Let {Bi}kεi=1 be a pairwise disjoint covering of suppπ, where each Bi is a Borel subset of
Bε(xi,ε)×Bε(yi,ε) ⊂ X2

�. We define the following approximations:

πi,ε := πxBi,ε , πi,ε,n := (P1)]πi,ε ⊗

 ∑
yi,n∈P2(Bi,ε)

αi,nδyi,n

/ ∑
yi,n∈P2(Bi,ε)

αi,n

 , (2.10)

and set πε,n :=
∑
i≤kε πi,ε,n. Observe that:

(P2)]πε,n =
∑
i≤kε

(P2)]πi,ε,n

=
∑
i≤kε

 π(Bi,ε)∑
yi,n∈P2(Bi,ε)

αi,n

∑
yi,n∈P2(Bi,ε)

αi,nδyi,n


=
∑
i≤kε

 π(Bi,ε)

µ1,n(P2(Bi,ε))

∑
yi,n∈P2(Bi,ε)

αi,nδyi,n

 =: µ̄1,n. (2.11)

Moreover
(P1)]πε,n =

∑
i≤kε

(P1)]πi,ε = (P1)]π = µ0. (2.12)

It is clear from (2.11) and (2.12) that πε,n ∈ Π≤(µ0, µ̄1,n) and that µ̄1,n � µ1,n. Notice indeed that
πi,ε,n is concentrated over P1(Bi,ε) × P2(Bi,ε). Being Bi,ε a subset of the product of two balls inside
X2
�, causality of πi,ε,n and of πε,n then follow.
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Step 3. Convergence of the approximations.
We now estimate the difference between πε,n and π by checking first the difference between πi,ε,n and
πi,ε in duality with (f1, f2) ∈ Cb(X)2: from (2.10) we deduce that∫

f1(x)f2(y)πi,ε,n(dxdy) =

∫
X

f1(x)πi,ε(dxdy)

∑
yi,n∈P2(Bi,ε)

αi,nf2(yi,n)∑
yi,n∈P2(Bi,ε)

αi,n
.

Since suppµ1 is compact, we have that f2|suppµ1 is uniformly continuous. Denoting with ωf2(ε) the
modulus of continuity of f2|suppµ1 at distance ε, and recalling that P2(Bi,ε) ⊂ Bε(yi,ε) we estimate∣∣∣∣∫ f1(x)f2(y)πi,ε,n(dxdy)−

∫
X

f1(x)πi,ε(dxdy)f2(yi,ε)

∣∣∣∣ ≤ ωf2(ε)

∫
X

|f1(x)|πi,ε(dxdy).

In the same way:∣∣∣∣∫ f1(x)f2(y)πi,ε(dxdy)−
∫
f1(x)πi,ε(dxdy)f2(yi,ε)

∣∣∣∣ ≤ ωf2
(ε)

∫
X

|f1(x)|πi,ε(dxdy).

Hence, summing over all i ≤ kε, we obtain∣∣∣∣∫
X×X

f1(x)f2(y)πε,n(dxdy)−
∫
X×X

f1(x)f2(y)π(dxdy)

∣∣∣∣ ≤ 2ωf2
(ε)‖f1‖∞.

Recall that every ϕ ∈ C(suppµ0 × suppµ1;R) can be approximated in C0-norm by finite linear
combinations of product functions fi,1 ⊗ fi,2 with fi,1 ∈ C(suppµ0;R), fi,2 ∈ C(suppµ1;R). Thus,
letting εn ↓ 0 be such that lim infn→∞ µ1,n(Aεn) = 1 (the existence of the sequence (εn) is granted by
(2.9)) and defining πn := πεn,n for every n ∈ N, we have

πn ∈ Π≤(µ0, µ̄1,n), µ̄1,n � µ1,n, πn → π narrowly.

In particular the last convergence implies that µ̄1,n converges narrowly to µ1, applying (P2)]. Since
for large n the construction gives suppπn ⊂ (suppπ)ε b X2 (here (suppπ)ε denotes an ε-enlargement
of suppπ with respect to d), we have that (πn) is τp-uniformly integrable and thus Fn(πn) → F∞(π)
by Lemma 2.12. The conclusion then follows from Lemma 2.15.

Remark 2.17. The previous stability results can be seen as the Lorentzian counterpart of the metric
fact that Wp(µn, µ∞) → 0 if and only if µn → µ∞ narrowly and (µn) has uniformly integrable p-
moments. The remarkable differences in the Lorentzian setting are first that the cost is not continuous
implying the `p-optimality does not pass to the limit automatically, and second that `p(µn, µ∞) → 0
does not imply µn → µ∞ narrowly: it is easy to construct a counterexample (e.g. already in 1+1
dimensional Minkowski space-time) using that if suppµ1 and suppµ2 are contained in the light cone
of a given common point then `p(µ1, µ2) = 0.

2.4 Kantorovich duality

In the smooth Lorentzian setting, Kantorovich duality has been studied in [74, 46] in case p = 1 and in
[58] for p ∈ (0, 1), see also [7, 8] for relativistic cost functions in Rn. In this section we study Kantoroch
duality in the Lorentzian synthetic setting. The following definition, relaxing the notion of q-separated
introduced by McCann [58, Definition 4.1] in the smooth Lorentzian setting will turn out to be very
useful. Recall the definition (2.2) of the cost function `p.

Definition 2.18 (Timelike p-dualisable). Let (X, d,�,≤, τ) be a Lorentzian pre-length space and let
p ∈ (0, 1]. We say that (µ, ν) ∈ P(X)2 is timelike p-dualisable (by π ∈ Π�(µ, ν)) if

1. `p(µ, ν) ∈ (0,∞);

2. π ∈ Πp-opt
≤ (µ, ν) and π(X2

�) = 1;
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3. there exist measurable functions a, b : X → R, with a ⊕ b ∈ L1(µ ⊗ ν) such that `p ≤ a ⊕ b on
suppµ× supp ν.

The motivation for considering timelike p-dualisable pairs of measures is twofold: firstly the p-
optimal coupling π(dxdy) matches events described by µ(dx) with events described by ν(dy) so that
x� y, secondly Kantorovich duality holds (cf. [74, Proposition 2.7] in smooth Lorentzian setting and
in case p = 1):

Proposition 2.19 (Weak Kantorovich duality I). Fix p ∈ (0, 1]. Let (X, d,�,≤, τ) be a (resp. locally)
causally closed globally hyperbolic Lorentz geodesic space. If (µ, ν) ∈ P(X)2 (resp. Pc(X)2) is timelike
p-dualisable, then (weak) Kantorovich duality holds:

`p(µ, ν)p = inf

{∫
X

uµ+

∫
X

v ν

}
, (2.13)

where the inf is taken over all measurable functions u : suppµ→ R∪{+∞} and v : supp ν → R∪{+∞}
with u ⊕ v ≥ `p on suppµ × supp ν and u ⊕ v ∈ L1(µ ⊗ ν). Furthermore, the value of the right hand
side does not change if one restricts the inf to bounded and continuous functions.

Proof. The claim follows from Remark 2.2 combined with [77, Theorem 1.3].

Remark 2.20. The notion of timelike p-dualisabily is not empty, indeed for instance if X is globally
hyperbolic and µ, ν ∈ Pc(X) admit an optimal coupling π ∈ Πp-opt

≤ (µ, ν) concentrated on X2
�, then all

the three conditions are satisfied. The only one requiring a comment is the last one: since by global
hyperbolicity τ : X2 → R is continuous then it is bounded on the compact set suppµ × supp ν b X2

and we can choose a and b to be constant functions.

Under stronger assumptions on the causality relation on (µ, ν), (weak) Kantorovich duality holds
for general Lorentzian pre-length spaces:

Proposition 2.21 (Weak Kantorovich duality II). Fix p ∈ (0, 1]. Let (X, d,�,≤, τ) be a Lorentzian
pre-length space and let (µ, ν) ∈ P(X)2 such that (µ⊗ν) (X2

≤) = 1. Assume that there exist measurable

functions a, b : X → R, with a⊕ b ∈ L1(µ⊗ ν) such that τp ≤ a⊕ b, µ⊗ ν-a.e..
Then (weak) Kantorovich duality (2.13) holds.

Proof. The result follows from [5, Theorem 1] where (weak) Kantorovich duality (for the minimum
optimal transport problem) is proved to hold for general µ ⊗ ν-a.e. finite Borel costs with values in
[0,∞], observing that the cost (a⊕ b)− `p takes values in [0,∞], µ⊗ ν-a.e..

We next discuss the validity of the strong Kantorovich duality, i.e. the existence of optimal functions
(called Kantorovich potentials) achieving the infimum in the right hand side of (2.13). To that aim
the next definition is key.

Definition 2.22 (`p-concave functions, `p-transform and `p-subdifferential). Fix p ∈ (0, 1] and let
U, V ⊂ X. A measurable function ϕ : U → R is `p-concave relatively to (U, V ) if there exists a function
ψ : V → R such that

ϕ(x) = inf
y∈V

ψ(y)− `p(x, y), ∀x ∈ U.

The function
ϕ(`p) : V → R ∪ {−∞}, ϕ(`p)(y) := sup

x∈U
ϕ(x) + `p(x, y) (2.14)

is called `p-transform of ϕ. The `p-subdifferential ∂`pϕ ⊂ (U × V ) ∩X2
≤ is defined by

∂`pϕ := {(x, y) ∈ (U × V ) ∩X2
≤ : ϕ(`p)(y)− ϕ(x) = `p(x, y)}.

Replacing `p with τp in all the definitions above, one obtains the notions of τp-concave functions,
τp-transform and τp-subdifferential.
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Let us explicitely observe that, by the very definition (2.14) of `p-transform it holds

ϕ(`p)(y)− ϕ(x) ≥ `p(x, y), ∀(x, y) ∈ U × V, (2.15)

and analogous inequality replacing `p with τp.

Definition 2.23 (Strong Kantorovich duality). Fix p ∈ (0, 1]. We say that (µ, ν) ∈ P(X)2 satisfies
strong `p-Kantorovich duality if

1. `p(µ, ν) ∈ (0,∞);

2. there exists Borel subsets A1 ⊂ suppµ,A2 ⊂ supp ν with µ(A1) = ν(A2) = 1, and there exists
ϕ : A1 → R which is `p-concave relatively to (A1, A2) and satisfying

`p(µ, ν)p =

∫
X

ϕ(`p)(y) ν(dy)−
∫
X

ϕ(x)µ(dx).

Replacing `p with τp in condition 2 above, one obtains the notion of strong τp-Kantorovich duality.

Remark 2.24. Using (2.15), it is immediate to check that if (µ, ν) ∈ P(X)2 satisfies strong `p-
Kantorovich duality then the following holds. A coupling π ∈ Π≤(µ, ν) is `p-optimal if and only
if

ϕ(`p)(y)− ϕ(x) = `p(x, y) = τ(x, y)p, for π-a.e. (x, y),

i.e. if and only if π(∂`pϕ) = 1. Analogously, if (µ, ν) ∈ P(X)2 satisfies strong τp-Kantorovich duality
then π ∈ Π≤(µ, ν) is `p-optimal if and only if π(∂τpϕ) = 1.

Remark 2.25 (The case suppµ× supp ν ⊂ X2
≤). In case suppµ× supp ν ⊂ X2

≤, it is readily seen from
the definitions above that ϕ : suppµ → R is `p-concave (relatively to suppµ × supp ν) if and only if
it is τp-concave, moreover ϕ(`p) = ϕ(τp), and ∂`pϕ = ∂τpϕ. It follows that also the notions of strong
`p-Kantorovich duality and strong τp-Kantorovich duality coincide in this case.

We next relate τp-cyclical monotonicity with strong τp-Kantorovich duality.

Theorem 2.26 (τp-cyclical monotonicity ⇒ strong τp-Kantorovich duality). Fix p ∈ (0, 1]. Let
(X, d,�,≤, τ) be a Lorentzian pre-length space and let µ, ν ∈ P(X) be with `p(µ, ν) ∈ (0,∞). and that
`p(µ, ν) ∈ (0,∞). For any π ∈ Π≤(µ, ν) the following holds.

If π is τp-cyclically monotone then π is `p-optimal. Moreover, (µ, ν) satisfies strong τp-Kantorovich
duality and π(∂τpϕ) = 1.

Proof. The proof consists in constructing a τp-concave function ϕ such that π(∂τpϕ) = 1.
Let Γ ⊂ X2

≤ be a Borel τp-cyclically monotone set such that π(Γ) = 1, and τ |Γ is real valued. It follows
that τp is real valued on P1(Γ)× P2(Γ). Notice that Pi(Γ) ⊂ X is a Suslin set, for i = 1, 2.

Step 1. Definition of ϕ(x0,y0) = ϕ, and proof that ϕ(x0) = 0.
Fix (x0, y0) ∈ Γ. Define ϕ(x0,y0) = ϕ : P1(Γ)→ R ∪ {±∞} by

ϕ(x0,y0)(x) = ϕ(x) := inf

{
k∑
i=0

[
τ(x′i, y

′
i)
p − τ(x′i+1, y

′
i)
p
]}

(2.16)

where the inf is taken over all k ∈ N and all “chains”

{(x′i, y′i)}0≤i≤k+1 ⊂ Γ with x′k+1 = x, (x′0, y
′
0) = (x0, y0).

Let us stress that y′k+1 does not enter in the expression of the right hand side of (2.16) (this will be
useful in step 3). It is readily seen that

ϕ(x0) = 0. (2.17)

Indeed on the one hand ϕ(x0) ≤ τ(x0, y0)p − τ(x0, y0)p = 0. On the other hand, since by assumption
Γ is τp-cyclically monotone, then the right hand side of (2.16) is non-negative. Thus (2.17) is proved.
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Step 2. We show that ϕ is real-valued on P1(Γ) and measurable.
Fix x ∈ P1(Γ). The very definition (2.16) of ϕ = ϕ(x0,y0) gives

ϕ(x) + [τ(x, y)p − τ(x0, y)p] ≥ ϕ(x0)
(2.17)

= 0,

where y is such that (x, y) ∈ Γ. In particular, ϕ(x) > −∞. Analogously,

ϕ(x0) + [τ(x0, y0)p − τ(x, y0)p] ≥ ϕ(x)

and thus ϕ(x) < +∞. Notice that, under the stronger assumption that X is a globally hyperbolic
Lorentzian geodesic space (so that τ is continuous), then ϕ would be upper semi-continuous (as infimum
of a family of continuous functions) and thus measurable.
We now prove that ϕ is measurable also in the general setting. Since τp is lower semicontinuous, there
exists compact subset Γj b Γ such that Γj ⊂ Γj+1, Γ =

⋃
j∈N Γj and τp|Γj is continuous and real

valued. We choose continuous functions cl such that cl ↑ τp. Notice that cl|Γj → τp|Γj uniformly as
l→∞, for every j ∈ N, by Dini’s Theorem. Define the auxiliary functions

ϕk,j,l(x) := inf

{
k∑
i=0

[
cl(x

′
i, y
′
i)− cl(x′i+1, y

′
i)
]}

, ϕk,j(x) := inf

{
k∑
i=0

[
τ(x′i, y

′
i)
p − τ(x′i+1, y

′
i)
p
]}

,

where the infimum is taken over all “chains”

{(x′i, y′i)}0≤i≤k+1 ⊂ Γj with x′k+1 = x, (x′0, y
′
0) = (x0, y0) ∈ Γ1.

The uniform convergence cl|Γj → τp|Γj ensures that ϕk,j,l|Γj → ϕk,j |Γj pointwise. The monotonicity
of the quantities in j and k gives

ϕ(x) = lim
k→∞

lim
j→∞

ϕk,j(x) = lim
k→∞

lim
j→∞

lim
l→∞

ϕk,j,l(x), ∀x ∈ P1(Γ).

As each ϕk,j,l is upper semi continuous, we get that ϕ is measurable.

Step 3. We show that ϕ is τp-concave relatively to (P1(Γ), P2(Γ)).
Define ψ(x0,y0) = ψ : P2(Γ)→ R ∪ {−∞} by

ψ(x0,y0)(y) = ψ(y) := inf

{
k∑
i=0

[
τ(x′i, y

′
i)
p − τ(x′i+1, y

′
i)
p
]

+ τ(x′k+1, y)p

}
, (2.18)

where the inf is taken over all k ∈ N and all chains

{(x′i, y′i)}0≤i≤k+1 ⊂ Γ with y′k+1 = y, (x′0, y
′
0) = (x0, y0).

Notice that, for every x ∈ P1(Γ) there exists y ∈ P2(Γ) such that (x, y) ∈ Γ; thus, any chain in the
definition (2.16) of ϕ(x) can be concatenated with (x, y), giving an admissible chain for the definition
(2.18) of ψ(y). It follows that ϕ(x) + τ(x, y)p ≥ ψ(y) and thus

ϕ(x) ≥ inf
y∈P2(Γ)

ψ(y)− τ(x, y)p, ∀x ∈ P1(Γ).

Conversely, it is readily seen from the definition (2.16) (resp. (2.18)) of ϕ(x) (resp. ψ(y)) that (recall
that y′k+1 does not play any role in (2.16))

ϕ(x) ≤ ψ(y)− τ(x, y)p, ∀(x, y) ∈ P1(Γ)× P2(Γ).

We conclude that
ϕ(x) = inf

y∈P2(Γ)
ψ(y)− τ(x, y)p, ∀x ∈ P1(Γ).
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It follows that ψ is real valued on P2(Γ) and ϕ is τp-concave relatively to (P1(Γ), P2(Γ)).

Step 4. We show that Γ ⊂ ∂τpϕ.
Let (x̄, ȳ) ∈ Γ. From the definition (2.16) of ϕ(x) we have

ϕ(x̄) + [τ(x̄, ȳ)p − τ(x, ȳ)p] ≥ ϕ(x), ∀x ∈ P1(Γ),

which can be rewritten as

ϕ(x̄) + τ(x̄, ȳ)p ≥ sup
x∈P1(Γ)

ϕ(x) + τ(x, ȳ)p = ϕ(τp)(ȳ).

Since the inequality ϕ(x̄) + τ(x̄, ȳ)p ≤ ϕ(τp)(ȳ) is trivial from the definition of τp-transform, we con-
clude that equality holds and thus (x̄, ȳ) ∈ ∂τpϕ.

Step 5. Conclusion: we claim that

`p(µ, ν)p =

∫
X

ϕ(τp)(y) ν(dy)−
∫
X

ϕ(x)µ(dx) =

∫
X2

τ(x, y)p π(dxdy). (2.19)

From Step 4, we know that

ϕ(τp)(y)− ϕ(x) = τ(x, y)p, for all (x, y) ∈ Γ,

which integrated with respect to π gives the second identity of (2.19).
On the other hand, integrating the inequality

ϕ(τp)(y)− ϕ(x) ≥ τ(x, y)p, µ⊗ ν-a.e. (x, y),

with respect to any π′ ∈ Π≤(µ, ν) gives that

`p(µ, ν)p = sup
π′∈Π≤(µ,ν)

∫
X2

τ(x, y)p π′(dxdy) ≤
∫
X

ϕ(τp)(y) ν(dy)−
∫
X

ϕ(x)µ(dx).

The claimed (2.19) follows.

Definition 2.27 (Strongly timelike p-dualisability). A pair (µ, ν) ∈ (P(X))2 is said to be strongly
timelike p-dualisable if

1. (µ, ν) is timelike p-dualisable;

2. there exists a measurable `p-cyclically monotone set Γ ⊂ X2
� ∩ (suppµ × supp ν) such that a

coupling π ∈ Π≤(µ, ν) is `p-optimal if and only if π is concentrated on Γ, i.e. π(Γ) = 1.

Remark 2.28. Let (µ, ν) be timelike p-dualisable and satisfying strong `p-Kantorovich duality (resp.
strong τp-Kantorovich duality). It follows from Remark 2.24 that if Γ := ∂`pϕ ⊂ X2

� (resp. Γ :=
∂τpϕ ⊂ X2

�) then (µ, ν) is strongly timelike p-dualisable.

In the next two corollaries we show that the notion of strongly timelike p-dualisability is non-empty:

Corollary 2.29. Fix p ∈ (0, 1]. Let (X, d,�,≤, τ) be a causally closed (resp. locally causally closed)
globally hyperbolic Lorentzian geodesic space and assume that µ, ν ∈ P(X) (resp. Pc(X)) satisfy:

1. there exist measurable functions a, b : X → R with a ⊕ b ∈ L1(µ ⊗ ν) such that τp ≤ a ⊕ b on
suppµ× supp ν;

2. suppµ× supp ν ⊂ X2
�.

Then (µ, ν) satisfies strong τp-Kantorovich duality and is strongly timelike p-dualisable.
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Proof. The fact that there exists π ∈ Πp-opt
≤ (µ, ν) follows from Proposition 2.3; morover, since suppπ ⊂

suppµ× supp ν ⊂ X2
�, we infer that (µ, ν) is timelike p-dualisable.

From part 1 of Proposition 2.8 we have π is `p-cyclically monotone and thus, from Remark 2.7, also
τp-cyclically monotone since suppµ× supp ν ⊂ X2

≤.
Using now Theorem 2.26 we infer that (µ, ν) satisfies strong τp-Kantorovich duality. Setting Γ :=
∂τpϕ ⊂ suppµ× supp ν, it is a direct consequence of the assumptions that Γ ⊂ X2

� and thus Remark
2.24 yields that condition 2 of Definition 2.27 is satisfied.

In the next corollary we show that, in case ν is a Dirac measure, the strongly timelike p-dualisability
is equivalent to the timelike p-dualisability.

Corollary 2.30. Let (X, d,�,≤, τ) be a Lorentzian pre-length space and let p ∈ (0, 1]. Fix x̄ ∈ X and
let ν := δx̄. Assume that µ ∈ P(X) satisfies:

τ(·, x̄)p ∈ L1(X,µ) and τ(·, x̄) > 0 µ-a.e. . (2.20)

Then (µ, ν) is strongly timelike p-dualisable. In other terms, in case ν is a Dirac measure, the strongly
timelike p-dualisability is equivalent to the timelike p-dualisability.

Proof. Let π := µ ⊗ δx̄ and choose b ≡ 0, a(x) := τ(x, x̄)p. Noticing that Π(µ, δx̄) = {π} we get that
(2.20) implies: `p(µ, δx̄) ∈ (0,∞), π is the unique `p-optimal coupling for (µ, δx̄) and π(X2

�) = 1. It
follows that (µ, ν) is strongly timelike p-dualisable.

2.5 `p-geodesics of probability measures

Continuing the analogy with the metric setting, the next definition is natural (cf. [58, Definition 1.1]).

Definition 2.31 (Geodesics of probability measures in a Lorentz pre-length space). Let (X, d,�,≤, τ)
be a Lorentzian pre-length space and let p ∈ (0, 1]. We say that (µs)s∈[0,1] ⊂ P(X) is an `p-geodesic if
and only if

`p(µs, µt) = (t− s)`p(µ0, µ1) ∈ (0,∞), for all 0 ≤ s < t ≤ 1. (2.21)

Note that, with this convention, `p-geodesics are implicitly future-directed and timelike.
In the next proposition we collect some useful properties of `p-geodesics. Before stating it, we introduce
the evaluation map

et : C([0, 1], X)→ X, γ 7→ et(γ) := γt, ∀t ∈ [0, 1], (2.22)

and the stretching/restriction operator restrs2s1 : C([0, 1], X)→ C([0, 1], X)

(restrs2s1γ)t := γ(1−t)s1+ts2 , ∀s1, s2 ∈ [0, 1], s1 < s2, ∀t ∈ [0, 1]. (2.23)

Proposition 2.32. Fix p ∈ (0, 1) and let (X, d,�,≤, τ) be a K-globally hyperbolic, Lorentzian geodesic
space. Let µ0, µ1 ∈ Pc(X) such that there exists π ∈ Πp-opt

≤ (µ0, µ1) with suppπ b {τ > 0} (in
particular, if supp(µ0 ⊗ µ1) b {τ > 0}). Then

1. There always exists an `p-geodesic from µ0 to µ1.

2. For every `p-geodesic (µt)t∈[0,1] from µ0 to µ1 there exists a probability measure η ∈ P(C([0, 1], X)
such that (et)]η = µt for every t ∈ [0, 1] and η-a.e. γ is a maximal causal curve from γ0 ∈ suppµ0

to γ1 ∈ supp = µ1, τ(γ0, γ1) > 0. Such an η is called `p-dynamical optimal plan and the set of
dynamical optimal plans from µ0 to µ1 is denoted by OptGeo`p(µ0, µ1).

3. If η ∈ OptGeo`p(µ0, µ1) then ηs1,s2 := (restrs2s1)]η ∈ OptGeo`p((es1)]η, (es2)]η), for all s1 < s2,

s1, s
2 ∈ [0, 1].

4. Let η ∈ OptGeo`p(µ0, µ1) and let η̃ be a measure on C([0, 1], X) such that η̃ ≤ ηs1,s2 and

η̃(C([0, 1], X)) > 0. Then η′ := 1
η̃(C([0,1],X)) η̃ is an `p-dynamical optimal plan.
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5. If X is timelike non-branching then

(a) If (s1, s2) 6= (0, 1) then η′ as in 4. is the unique element of OptGeo`p((e0)]η
′, (e1)]η

′), and
(µ′t := (et)]η

′)t∈[0,1] is the unique `p-geodesic joining its endpoints.

(b) If γ1, γ2 ∈ supp η cross at some intermediate time t0 ∈ (0, 1), i.e. there exists t0 ∈ (0, 1)
such that γ1

t0 = γ2
t0 , then γ1

t = γ2
t for all t ∈ [0, 1].

6. Assume X is timelike non-branching and let η ∈ OptGeo`p(µ0, µ1). Assume that η can be written

as η = λ1η
1 + λ2η

2, for some ηi ∈ P(C([0, 1], X)), λi ∈ (0, 1) for i = 1, 2, λ1 + λ2 = 1, with
supp η1 ∩ supp η2 = ∅. Then η1, η2 are `p-optimal dynamical plans and they satisfy (et)]η

1 ⊥
(et)]η

2 for all t ∈ (0, 1).

7. Every `p-geodesic (µt = (et)]η)t∈[0,1] from µ0 to µ1 is an absolutely continuous curve in the
W1-Kantorovich Wasserstein space (P(X),W1) w.r.t. d, with length

LW1

(
(µt)t∈[0,1]

)
≤
∫

Ld(γ) η(dγ) ≤ C̄ <∞ (2.24)

where C̄ > 0 depends only on the compact subset J+(suppµ0) ∩ J−(suppµ1) b X.

Proof. First of all notice that by K-global hyperbolicity⋃
t∈[0,1]

suppµt ⊂ J+(suppµ0) ∩ J−(suppµ1) b X,

with J+(suppµ0) ∩ J−(suppµ1) compact subset.

1. and 2. (resp. 3. 4. and 5.) follow by applying [78, Theorem 7.21] (resp. [78, Theorem 7.30])
with X = J+(suppµ0) ∩ J−(suppµ1) b X.

6. The optimality of η1 and η2 follows directly from 4. Call µt := (et)]η and µit := (et)]η
i, for

i = 1, 2, t ∈ [0, 1]. Assume by contradiction that for some t0 ∈ (0, 1) there exists

A b X compact subset s. t. A ⊂ suppµ1
t0 ∩ suppµ2

t0 , µ
1
t0(A) > 0, µ1

t0xA� µ2
t0 . (2.25)

From 4. we know that

η̄ :=
1

µt0(A)
ηxe−1

t0 (A), η̄i :=
1

µit0(A)
ηixe−1

t0 (A) for i = 1, 2,

are all `p-optimal dynamical plans. Clearly supp η̄1 ∪ supp η̄2 ⊂ supp η̄ and thus 5(b) implies that

γ1
t0 = γ2

t0 for some γi ⊂ supp η̄i =⇒ γ1 = γ2. (2.26)

The combination of (2.25) with (2.26) gives that supp η̄1 = supp η̄2. Since supp η̄i ⊂ supp ηi, i = 1, 2,
we arrive to a contradiction with the assumption supp η1 ∩ supp η2 = ∅.

7. From the non-totally imprisoning property, it follows that

sup {Ld(γ) : γ ∈ supp η}
≤ sup

{
Ld(γ) : γ(I) ⊂ J+(suppµ0) ∩ J−(suppµ1), γ : I → X casual

}
=: C̄ <∞. (2.27)

In particular
∫

Ld(γ) η(dγ) ≤ C̄ <∞. The claim (2.24) follows from [53, Theorem 4].

Remark 2.33. If for every x ∈ suppµ and every y ∈ supp ν it holds I−(x) 6= ∅, I+(y) 6= ∅, then
the assumption of K-global hyperbolicity in Proposition 2.32 can be relaxed to global hyperbolicity
(thanks to Lemma 1.5).
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3 Synthetic Ricci curvature lower bounds

3.1 Timelike Curvature Dimension condition

The goal of this section to give a synthetic formulation of the strong energy condition (and more
generally a synthetic formulation of Ricg ≥ −Kg in the timelike directions and dim ≤ N) for a
measured pre-length space (X, d,m,�,≤, τ). Let us recall the characterization of Ricci curvature
bounded below and dimension bounded above in the smooth Lorentzian globally hyperbolic setting
proved by McCann [58, Corollary 6.6, Corollary 7.5] (see also [61, Corollary 4.4]).

Theorem 3.1. Let (Mn, g) be a globally hyperbolic spacetime and 0 < p < 1. Then the following are
equivalent:

1. Ricg(v, v) ≥ −Kg(v, v), for every timelike v ∈ TM .

2. For any couple (µ0, µ1) ∈ (Dom(Ent(·|m)))2 which is timelike p-dualisable (in the sense of Def-
inition 2.18) there exists a (unique) `p-geodesic (µt)t∈[0,1] joining them such that the function
[0, 1] 3 t 7→ e(t) := Ent(µt|Volg) is semi-convex (and thus in particular it is locally Lipschitz in
(0, 1)) and it satisfies:

e′′(t)− 1

n
e′(t)2 ≥ K

∫
M×M

τ(x, y)2 π(dxdy), (3.1)

in the distributional sense on [0, 1].

3. For any couple (µ0, µ1) ∈ (Dom(Ent(·|m))∩Pc(X))2 which is strongly timelike p-dualisable (in the
sense of Definition 2.27) there exists a (unique) `p-geodesic (µt)t∈[0,1] joining them and satisfying
(3.1).

Proof. The equivalence of 1 and 2 was proved in McCann [58, Corollary 6.6, Corollary 7.5] (see also
[61, Corollary 4.4]). Trivially 2 =⇒ 3. The implication 3 =⇒ 1 can be proved along the lines of [61,
Corollary 4.4] using Corollary 2.29.

The following definition is thus natural.

Definition 3.2 (TCDep(K,N) and wTCDep(K,N) conditions). Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). We
say that a measured pre-length space (X, d,m,�,≤, τ) satisfies TCDep(K,N) (resp. wTCDep(K,N)) if
the following holds. For any couple (µ0, µ1) ∈ (Dom(Ent(·|m)))2 which is timelike p-dualisable (resp.
(µ0, µ1) ∈ [Dom(Ent(·|m))∩Pc(X)]2 which is strongly timelike p-dualisable) by some π ∈ Πp-opt

� (µ0, µ1),
there exists an `p-geodesic (µt)t∈[0,1] such that the function [0, 1] 3 t 7→ e(t) := Ent(µt|Volg) is semi-
convex (and thus in particular it is locally Lipschitz in (0, 1)) and it satisfies

e′′(t)− 1

N
e′(t)2 ≥ K

∫
X×X

τ(x, y)2 π(dxdy), (3.2)

in the distributional sense on [0, 1].

Definition 3.2 corresponds to a differential/infinitesimal formulation of the TCDep(K,N) condition.
In order to have also an integral/global formulation it is convenient to introduce the following entropy
(cf. [28])

UN (µ|m) := exp

(
−Ent(µ|m)

N

)
. (3.3)

It is clear that (1.15) implies the upper-semicontinuity of UN under narrow convergence:

µn → µ∞ narrowly and m
( ⋃
n∈N

suppµn

)
<∞ =⇒ lim sup

n→∞
UN (µn|m) ≤ UN (µ∞|m). (3.4)
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It is straightforward to check that [0, 1] 3 t 7→ e(t) is semi-convex and satisfies (3.1) if and only if
[0, 1] 3 t 7→ uN (t) := exp(−e(t)/N) is semi-convex and satisfies

u′′N ≤ −
K

N
‖τ‖2L2(π) uN . (3.5)

Set

sκ(ϑ) :=


1√
κ

sin(
√
κϑ), κ > 0

ϑ, κ = 0
1√
−κ sinh(

√
−κϑ), κ < 0

, cκ(ϑ) :=

{
cos(
√
κϑ), κ ≥ 0

cosh(
√
−κϑ) κ < 0

, (3.6)

and

σ(t)
κ (ϑ) :=


sκ(tϑ)
sκ(ϑ) , κϑ2 6= 0 and κϑ2 < π2

t, κϑ2 = 0

+∞ κϑ2 ≥ π2

. (3.7)

Note that the function κ 7→ σ
(t)
κ (ϑ) is non-decreasing for every fixed ϑ, t. With the above notation, the

differential inequality (3.5) is equivalent to the integrated version (cf. [28, Lemma 2.2]):

uN (t) ≥ σ(1−t)
K/N

(
‖τ‖L2(π)

)
uN (0) + σ

(t)
K/N

(
‖τ‖L2(π)

)
uN (1). (3.8)

We thus proved the following proposition.

Proposition 3.3. Fix p ∈ (0, 1), K ∈ R and N ∈ (0,∞). The measured Lorentzian pre-length
space (X, d,m,�,≤, τ) satisfies (resp. weak) TCDep(K,N) if and only if for any couple (µ0, µ1) ∈(
Dom(Ent(·|m))

)2
which is timelike p-dualisable (resp. (µ0, µ1) ∈ [Dom(Ent(·|m)) ∩ Pc(X)]2 which is

strongly timelike p-dualisable) by some π ∈ Πp-opt
� (µ0, µ1), there exists an `p-geodesic (µt)t∈[0,1] such

that the function [0, 1] 3 t 7→ uN (t) := UN (µt|m) satisfies (3.8).

As an example of geometric application of the TCDep(K,N) we next show a timelike Brunn-
Minkowski inequality (for the Riemannian/metric counterparts see [73, 28, 17]).

Proposition 3.4 (A timelike Brunn-Minkowski inequality). Let (X, d,m,�,≤, τ) be a measured
Lorentzian pre-length space satisfying (resp. weak) TCDep(K,N), for some K ∈ R, N ∈ [1,∞), p ∈
(0, 1). Let A0, A1 ⊂ X be measurable subsets with m(A0),m(A1) ∈ (0,∞). Calling µi := 1/m(Ai)mxAi ,
i = 1, 2, assume that (µ0, µ1) is (resp. strongly) timelike p-dualisable. Then

m(At)
1/N ≥ σ(1−t)

K/N (Θ) m(A0)1/N + σ
(t)
K/N (Θ) m(A1)1/N (3.9)

where At := I(A0, A1, t) defined in (1.6) is the set of t-intermediate points of geodesics from A0 to A1,
and Θ is the maximal/minimal time-separation between points in A0 and A1, i.e.:

Θ :=

{
sup{τ(x0, x1) : x0 ∈ A0, x1 ∈ A1} if K < 0,

inf{τ(x0, x1) : x0 ∈ A0, x1 ∈ A1} if K ≥ 0.

In particular, if K ≥ 0 it holds:

m(At)
1/N ≥ (1− t)m(A0)1/N + tm(A1)1/N .

Proof. Let (µt)t∈[0,1] be the `p-geodesic given by Proposition 3.3, satisfying

UN (µt|m) ≥ σ(1−t)
K/N

(
‖τ‖L2(π)

)
m(A0)1/N + σ

(t)
K/N

(
‖τ‖L2(π)

)
m(A1)1/N .

Since µt = ρtm is concentrated on At, which is Suslin, applying Jensen’s inequality twice gives:

UN (µt|m) = exp

(
− 1

N

∫
log ρt µt

)
≤
∫
ρ
−1/N
t µt =

∫
At

ρ
1− 1

N
t m ≤ m(At)

1/N . (3.10)
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The claim follows observing that ϑ 7→ σK/N (ϑ) is non-increasing for K ≤ 0 (resp. non-decreasing for
K > 0) and that ‖τ‖L2(π) ≤ Θ (resp. ‖τ‖L2(π) ≥ Θ). Notice that in the case of wTCD, we first assume
A0, A1 to be compact and then obtain the full claim arguing by inner regularity of m with respect to
compact sets.

The Brunn–Minkowski inequality implies further geometric consequences like a timelike Bishop-
Gromov volume growth estimate and a timelike Bonnet-Myers theorem. In order to state them, let us
introduce some notation. Fix x0 ∈ X and let

Bτ (x0, r) := {x ∈ I+(x0) ∪ {x0} : τ(x0, x) < r}

be the τ -ball of radius r and center x0. Since typically the volume of a τ -ball is infinite (e.g. in
Minkowski space it is the region below an hyperboloid), it is useful to localise volume estimates using
star-shaped sets. To this aim, we say that E ⊂ I+(x0) ∪ {x0} is τ -star-shaped with respect to x0 if
I(x0, x, t) ⊂ E for every x ∈ E and t ∈ (0, 1]. Define

v(E, r) := m(Bτ (x0, r) ∩ E), s(E, r) := lim sup
δ↓0

1

δ
m
(
(Bτ (x0, r + δ) \Bτ (x0, r)) ∩ E

)
the volume of τ -ball of radius r (respectively of the τ -sphere of radius r) intersected with a compact
subset E ⊂ I+(x0) ∪ {x0}, τ -star-shaped with respect to x0.

Proposition 3.5 (A timelike Bishop-Gromov inequality). Let (X, d,m,�,≤, τ) be a measured globally
hyperbolic, locally causally Lorentzian geodesic space satisfying wTCDep(K,N), for some K ∈ R, N ∈
[1,∞), p ∈ (0, 1). Then, for each x0 ∈ X, each compact subset E ⊂ I+(x0) ∪ {x0} τ -star-shaped with
respect to x0, and each 0 < r < R ≤ π

√
N/(K ∨ 0), it holds:

s(E, r)

s(E,R)
≥
(

sK/N (r)

sK/N (R)

)N
,

v(E, r)

v(E,R)
≥
∫ r

0
sK/N (t)Ndt∫ R

0
sK/N (t)Ndt

. (3.11)

Proof. We briefly sketch the argument. The basic idea is to apply Proposition 3.4 to A0 := Bτ (x0, ε)∩E
and A1 :=

(
Bτ (x0, R+ δR)\Bτ (x0, R)

)
∩E. Observe that, for ε > 0 small enough, it holds A0×A1 ⊂

X2
� and thus the measures (µ0, µ1) in the statement of Proposition 3.4 are strongly timelike p-dualisable

thanks to Corollary 2.29. Thus we can apply Proposition 3.4 and follow verbatim the proof of [73,

Theorem 2.3] replacing the coefficients τ
(t)
K/N (ϑ) with σ

(t)
K/N (ϑ).

Proposition 3.6 (A timelike Bonnet-Myers inequality). Let (X, d,m,�,≤, τ) be a measured globally
hyperbolic, locally causally closed Lorentzian geodesic space satisfying wTCDep(K,N), for some K >
0, N ∈ [1,∞), p ∈ (0, 1). Then

sup
x,y∈X

τ(x, y) ≤ π
√
N

K
. (3.12)

In particular, for any causal curve γ it holds Lτ (γ) ≤ π
√

N
K .

Proof. Assume by contradiction that there exist x′0, x
′
1 ∈ X with τ(x′0, x

′
1) ≥ π

√
N/K + 4ε, for some

ε > 0. Let δ > 0 and x0, y0 ∈ X be such that

Bd(x0, δ) ⊂ I+(x′0), Bd(x1, δ) ⊂ I−(x′1), inf{τ(x, y) : x ∈ Bd(x0, δ), y ∈ Bd(x1, δ)} ≥ π
√
N/K + ε,

where Bd(x, r) denotes the d-metric ball of radius r centred at x. From Corollary 2.29 it follows that
A0 := Bd(x0, δ), A1 := Bd(x0, δ) satisfy the assumptions of Proposition 3.4. Note that, for this choice
of sets, Θ ≥ π

√
N/K + ε and thus m(A1/2) = +∞. However, A1/2 ⊂ J+(x′0) ∩ J−(x′1) is relatively

compact by global hyperbolicity and thus it has finite m-measure. Contradiction.
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3.2 Timelike Measure Contraction Property

A weaker variant of the TCDep(K,N) condition is obtained by considering (K,N)-convexity properties
only for those `p-geodesics (µt)t∈[0,1] where µ1 is a Dirac delta. In the metric measure setting, such
a variant goes under the name of Measure Contraction Property (MCP for short) and was developed
independently by Sturm [73] and Ohta [62].

Definition 3.7. Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). The measured Lorentzian pre-lengh space
(X, d,m,�,≤, τ) satisfies TMCPep(K,N) if and only if for any µ0 ∈ Pc(X) ∩ Dom(Ent(·|m)) and for
any x1 ∈ X such that x � x1 for µ0-a.e. x ∈ X, there exists an `p-geodesic (µt)t∈[0,1] from µ0 to
µ1 = δx1 such that

UN (µt|m) ≥ σ(1−t)
K/N

(
‖τ(·, x1)‖L2(µ0)

)
UN (µ0|m), ∀t ∈ [0, 1). (3.13)

Remark 3.8 (Geometric Properties). As in the Riemannian/metric case [73], many properties valid
for TCDep(K,N) remain true also for TMCPep(K,N). More precisely, this is the case for:

• Timelike Bishop-Gromov inequality, Proposition 3.5;

• Timelike Bonnet-Myers inequality, Proposition 3.6.

Actually, in Section 5.3, the above results will be improved to sharp forms in case of timelike non-
branching TMCPep(K,N) spaces. Such an improvement will be a product of the techniques developed
in Section 3.4 and Section 4.

Remark 3.9. If a Lorentzian pre-lengh space (X, d,m,�,≤, τ) satisfies TMCPep(K,N), then for any
x1 ∈ X and m-a.e. x � x1 there exists γ ∈ TGeo(X) such that γ0 = x and γ1 = x. If in addition X
is K-globally hyperbolic, it follows that X is time-like geodesic. Indeed, given any x1 ∈ X and x� x1

by TMCPep(K,N) there is a sequence xn → x and γn ∈ TGeo(X) with γn0 = xn and γn1 = x1. Since X
is K-globally hyperbolic, it follows the existence of a limit γ∞ ∈ TGeo(X) with γ∞0 = x and γ∞1 = x1

giving that X is timelike geodesic.
If instead x ≤ y one needs to further assume X to be causally path connected, i.e. for any x, y ∈ X

such that x ≤ y there exists a causal curve γ with γ0 = x and γ1 = y. Hence if a Lorentzian
pre-lengh space (X, d,m,�,≤, τ) satisfies TMCPep(K,N), it is K-globally hyperbolic and causally path
connected, then it is geodesic.

Lemma 3.10. Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). Let the measured Lorentzian pre-length space
(X, d,m,�,≤, τ) satisfy TCDep(K,N) (resp. wTCDep(K,N),TMCPep(K,N)). Then

1. Consistency: (X, d,m,�,≤, τ) satisfy TCDep(K
′, N ′) (resp. wTCDep(K

′, N ′),TMCPep(K
′, N ′))

for every K ′ ≤ K and N ′ ≥ N .

2. Scaling: The rescaled space (X, a · d, b · m,�,≤, r · τ), for a, b, r > 0 satisfies TCDep(K/r
2, N)

(resp. wTCDep(K/r
2, N),TMCPep(K/r

2, N)).

Proof. 1. Consistency for TCDep(K,N) follows directly by the definition (3.2).

Regarding TMCPep: the consistency in K follows by the fact that the map κ 7→ σ
(t)
κ (ϑ) is monotone

increasing. For the consistency in N , observe that taking the logarithm of (3.13) one obtains the
equivalent condition

Ent(µt|m) ≤ Ent(µ0|m)−N log
(
σ

(1−t)
K/N

(
‖τ(·, x1)‖L2(µ0)

))
. (3.14)

It follows from [73, Lemma 1.2] that(
σ

(t)
K/N ′(ϑ)

)N ′
≤ tN

′−N
(
σ

(t)
K/N (ϑ)

)N
≤
(
σ

(t)
K/N (ϑ)

)N
∀t ∈ [0, 1], K ∈ R, N ′ ≥ N,

giving that the function N 7→ −N log
(
σ

(1−t)
K/N (ϑ)

)
is non-decreasing for every fixed K, t, ϑ.

2. Follows by the very definitions, observing that Ent(µ|b · m) = Ent(µ|m) − log(b), ‖r · τ‖L2(π) =

r‖τ‖L2(π) and that σ
(t)
κ/r2(r · ϑ) = σ

(t)
κ (ϑ).
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We refer to Appendix A for a discussion of TMCPep(K,N) in case of smooth Lorentzian manifolds.

Proposition 3.11 (wTCDep(K,N) ⇒ TMCPep(K,N)). Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). The
wTCDep(K,N) condition implies TMCPep(K,N) for locally causally closed, K-globally hyperbolic Lorentzian
geodesic spaces.

Proof. Step 1.
Let µ0 = ρ0 m ∈ Dom(Ent(·|m)) ∩ Pc(X) and x1 ∈ X be such that x� x1 for µ0-a.e. x ∈ X.
For each ε > 0 consider Kε b suppµ0 b X compact subset such that (the last condition will be used
later in step 2)∫

X\Kε
ρ0 | log(ρ0)|m ≤ ε, µ0(Kε) ≥ 1− ε, Kε × {x1} ⊂ {τ > 0} ⊂ X2,

and consider the restricted measure µε0 := µ0xKε/µ0(Kε). A straightforward computation gives

Ent(µ0|m) =

∫
X\Kε

ρ log(ρ)m + Ent(µε0|m)µ0(Kε) + µ0(Kε) log(µ0(Kε)). (3.15)

Hence
Ent(µ0|m) ≥ Ent(µε0|m)(1− ε)− 2ε,

giving

UN (µε0|m) ≥ exp

(
− 2ε

N(1− ε)

)
UN (µ0|m)1/(1−ε). (3.16)

Step 2.
Fix ε � 1. Since the set {τ > 0} ⊂ X × X is open and by construction it contains Kε × {x1}, for
η > 0 small enough it holds

Kε ×Bη(x1) ⊂ {τ > 0}. (3.17)

Define µη1 := mxBη(x1)/m(Bη(x1)). By Corollary 2.29, we know that (µε0, µ
η
1) is strongly timelike

p-dualisable. It also clear that µε0, µ
η
1 ∈ Dom(Ent(·|m)) ∩ Pc(X).

The wTCDep(K,N) condition thus implies that for each ε, η > 0 small enough there exists an `p-
optimal coupling πε,η ∈ Π≤(µε0, µ

η
1) and an `p-geodesic (µε,ηt )t∈[0,1] joining µε0 and µη1 verifying for all

t ∈ [0, 1]:

UN (µε,ηt |m) ≥ σ
(1−t)
K/N

(
‖τ‖L2(πε,η)

)
UN (µε0|m) + σ

(t)
K/N

(
‖τ‖L2(πε,η)

)
UN (µη1 |m)

≥ σ
(1−t)
K/N

(
‖τ‖L2(πε,η)

)
UN (µε0|m)

≥ σ
(1−t)
K/N

(
‖τ‖L2(πε,η)

)
exp

(
− 2ε

N(1− ε)

)
UN (µ0|m)1/(1−ε), (3.18)

where in the last inequality we used (3.16).

Step 3.
In this last step we pass into the limit, first as η → 0, then as ε→ 0.
First of all it is clear that µε0 → µ0 and µη1 → µ1 narrowly. K-global hyperbolicity implies that

K̄ :=
⋃

s∈[0,1]

I(Kε0 , Bη0(x1), s) b X

is a compact subset, see (1.6),(1.7). It is easily seen that

suppµε,ηt ⊂ I(Kε, Bη(x1), t) ⊂ K̄, ∀t ∈ [0, 1], η ∈ [0, η0]. (3.19)
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Fix ε ∈ (0, ε0) and a sequence (ηn) with ηn ↓ 0. We aim to construct a limit `p-geodesic (µεt )t∈[0,1]

from µε0 to µ1 = δx1
. From (2.24) we get that

sup
n∈N

LW1

(
(µε,ηnt )t∈[0,1]

)
≤ C̄ <∞.

By the metric Arzelá-Ascoli Theorem we deduce that there exists a limit continuous curve (µεt )t∈[0,1] ⊂
(P(K̄),W1) such that (up to a sub-sequence) W1 (µε,ηnt , µεt ) → 0 and thus µε,ηnt → µεt narrowly, as
n→∞. Lemma 2.11 yields that

`p(µ
ε
0, µ

ε
t ) = lim

n→∞
`p(µ

ε
0, µ

ε,ηn
t ) = t lim

n→∞
`p(µ

ε
0, µ

ηn
1 ) = t `p(µ

ε
0, µ1). (3.20)

In other terms, the curve (µεt )t∈[0,1] is an `p-geodesic from µε0 to µ1 = δx1 . The upper-semicontinuity
of UN (·|m) under narrow convergence (3.4) yields

lim sup
i→∞

UN (µ
ε,ηni
t |m) ≤ UN (µεt ), ∀t ∈ [0, 1]. (3.21)

Moreover, it is readily seen that πε,ηni → µε0 ⊗ δx1 narrowly and

lim
i→∞

σ
(1−t)
K/N

(
‖τ‖L2(πε,ηni

)

)
= σ

(1−t)
K/N

(
‖τ(·, x1)‖L2(µε0)

)
. (3.22)

Combining (3.18),(3.21) and (3.22) gives

UN (µεt |m) ≥ σ(1−t)
K/N

(
‖τ(·, x1)‖L2(µε0)

)
exp

(
− 2ε

N(1− ε)

)
UN (µ0|m)1/(1−ε), ∀t ∈ [0, 1]. (3.23)

In order to conclude the proof we now pass to the limit as ε ↓ 0 in (3.23). Observe that

K̄ ′ :=
⋃

s∈[0,1]

I(suppµ0, x1, s) b X

is a compact subset by K-hyperbolicity and

suppµεt ⊂ I(suppµ0, x1, t) ⊂ K̄ ′, ∀t ∈ [0, 1], ε ∈ [0, ε0].

The argument from (3.19) to (3.23) can be adapted to show that there exists an `p-geodesic (µt)t∈[0,1]

satisfying (3.13).

3.3 Stability of TCDe
p(K,N) and TMCPe

p(K,N) conditions

This section is of independent interest and will not be used in the rest of the paper. In the next
theorem we show the stability of the TMCPep(K,N) condition under convergence of Lorentzian spaces.
Throughout this part we will make use of topological embeddings to identify spaces with their image
inside a larger space. Recall that a topological embedding is a map f : X → Y between two topological
spaces X and Y such that f is continuous, injective and with continuous inverse between X and f(X).

Theorem 3.12 (Stability of TMCPep(K,N)). Let {(Xj , dj ,mj ,�j ,≤j , τj)}j∈N∪{∞} be a sequence of
measured Lorentzian geodesic spaces satisfying the following properties:

1. There exists a locally causally closed, K-globally hyperbolic Lorentzian geodesic space (X̄, d̄,�, ≤̄, τ̄)
such that each (Xj , dj ,mj ,�j ,≤j , τj), j ∈ N ∪ {∞}, is isomorphically embedded in it, i.e. there
exist topological embedding maps ιj : Xj → X̄ such that

• x1
j ≤j x2

j if and only if ιj(x
1
j )≤̄ιj(x2

j ), for every j ∈ N ∪ {∞}, for every x1
j , x

2
j ∈ Xj;

• τ̄(ιj(x
1
j ), ιj(x

2
j )) = τj(x

1
j , x

2
j ) for every x1

j , x
2
j ∈ Xj, for every j ∈ N ∪ {∞};
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2. The measures (ιj)]mj converge to (ι∞)]m∞ weakly in duality with Cc(X̄) in X̄, i.e.∫
ϕ (ιj)]mj →

∫
ϕ (ι∞)]m∞ ∀ϕ ∈ Cc(X̄), (3.24)

where Cc(X̄) denotes the set of continuous functions with compact support.

3. There exist p ∈ (0, 1),K ∈ R, N ∈ (0,∞) such that (Xj , dj ,mj ,�j ,≤j , τj) satisfies TMCPep(K,N),
for each j ∈ N .

Then also the limit space (X∞, d∞,m∞,�∞,≤∞, τ∞) satisfies TMCPep(K,N).

Remark 3.13. Even though we haven’t specifically list any topological assumption on the sequence
of spaces Xj , they actually inherit them from X∞ via the topological embeddings ιj . The map ιj
preserves both the causal relations and τj hence (Xj , dj ,mj ,�j ,≤j , τj) are locally causally closed and
K-globally hyperbolic Lorentzian geodesic (by assumption) spaces.

Proof. For simplicity of notation, we will identify Xj with its isomorphic image ιj(Xj) ⊂ X̄ and the
measure mj with (ιj)]mj , for each j ∈ N ∪ {∞}.

Fix arbitrary µ∞0 = ρ∞0 m∞ ∈ Pc(X∞) ∩ Dom(Ent(·|m∞)) and x∞1 ∈ X∞ such that x �∞ x∞1 for
µ∞0 -a.e. x ∈ X∞. Since µ∞0 has compact support and X̄ is K-globally hyperbolic, we can restrict
all the arguments to a large compact subset of X̄ whose m∞-measure is the limit of its mj-measures.
For easy of notation, without loss of generality we can thus directly assume that X̄ is compact and
that (up to a convergent sequence of normalizations) mj are probability measures converging to m∞ in
narrow topology. Since on compact metric spaces narrow convergence is equivalent to W2 convergence,

we actually assume mj → m∞ in W
(X̄,d̄)
2 . Denote with γj ∈ Π(m∞,mj) an optimal coupling for W

(X̄,d̄)
2 .

Step 1. We show that, up to a subsequence, for every j ∈ N there exists µj0 ∈ Pc(Xj) ∩
Dom(Ent(·|mj)), xj1 ∈ Xj such that

µj0

(
I−�j

(xj1)
)

= 1, xj1 → x∞1 , µj0 → µ∞0 narrowly, UN (µ∞0 |m∞) ≤ lim inf
j→∞

UN (µj0|mj). (3.25)

Step 1a. Let us first consider the case µ∞0 = ρ∞0 m∞ ∈ Pc(X∞) has density ρ∞0 ∈ L∞(m∞) and
x∞1 ∈ X∞ is such that suppµ∞0 b I−�∞(x∞1 ).

From narrow convergence we deduce the existence of a sequence xj1 ∈ suppmj ⊂ Xj with xj1 → x∞1
with respect to d̄. Since τ̄ : X̄2 → R is continuous and suppµ∞0 is compact,

lim
j→∞

min
x∈suppµ∞0

τ̄(x, xj1) = min
x∈suppµ∞0

τ̄(x, x∞1 ) = min
x∈suppµ∞0

τ∞(x, x∞1 ) > 0.

Hence, for j sufficiently large, we can assume that x�̄xj1 for µ∞0 -a.e. x ∈ X∞. Then since I−�̄(xj1) is

open, any narrow converging sequence of probability measures µk0 → µ∞0 satisfies

lim inf
k→∞

µk0(I−�̄(xj1)) ≥ µ∞0 (I−�̄(xj1)) = 1. (3.26)

Define now γ′j ∈ P(X̄2) as γ′j(dxdy) := ρ∞0 (x)γj(dxdy) and µ̂j0 := (P2)]γ
′
j ∈ P(Xj) ⊂ P(X̄). By

construction, γ′j � γj , hence µ̂j0 � (P2)]γj = mj . Let µ̂j0 = ρ̂j0mj . It is readily checked from the

definition that it holds ρ̂j0(y) =
∫
ρ∞0 (x) (γj)y(dx), where {(γj)y} is the disintegration of γj w.r.t. the

projection on the second marginal. In particular, ‖ρ̂j0‖L∞(mj) ≤ ‖ρ∞0 ‖L∞(m∞).
By Jensen’s inequality applied to the convex function u(z) = z log(z) we have

Ent(µ̂j0|mj) =

∫
u(ρ̂j0)mj =

∫
u

(∫
ρ∞0 (x) (γj)y(dx)

)
mj(dy)

≤
∫
u(ρ∞0 (x)) (γj)y(dx)mj(dy) =

∫
u(ρ∞0 (x))γj(dxdy)

=

∫
u(ρ∞0 ) (P1)]γj =

∫
u(ρ∞0 )m∞ = Ent(µ∞0 |m∞).
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Since by construction we have γ′j ∈ Π(µ∞0 , µ̂
j
0), it holds(

W
(X̄,d̄)
2 (µ∞0 , µ̂

j
0)
)2

≤
∫

d̄2(x, y)γ′j(dxdy) =

∫
ρ∞0 (x)d̄2(x, y)γj(dxdy)

≤ ‖ρ∞0 ‖L∞(m∞)

(
W

(X̄,d̄)
2 (m∞,mj)

)2

,

and therefore W
(X̄,d̄)
2 (µ∞0 , µ̂

j
0)→ 0. In particular µ̂j0 → µ∞0 narrowly in X̄.

Moreover, reasoning like in (3.15), it will not be restrictive also to assume that µ̂j0 has compact

support. We will also cutoff where the density ρ̂j0 is too small in the following manner. Consider the

set Kj := {ρ̂j0 ≥ 1/j} that is easily verified to satisfy µ̂j0(Kj) ≥ 1− 1/j and define

µ̄j0 := µ̂j0xKj/µ̂
j
0(Kj).

The difference between Ent(µ̄j0|mj) and Ent(µ̂j0|mj) is controlled (see (3.15)) by∫
{ρ̂j0≤1/j}

|ρ̂j0 log(ρ̂j0)|mj ≤
1

j
log(j).

Hence µ̄j0 still verifies all the properties we have checked for µ̂j0. Finally it is only left to restrict µ̄j0 to

I�̄(xj1). From (3.26), adopting a diagonal argument, we also obtain that µ̄j0(I�̄(xj1)) ≥ 1− 1/j. Hence
we define

µj0 := µ̄j0xI�̄(xj1)/µ̄
j
0(I�̄(xj1)).

Again the difference between Ent(µ̄j0|mj) and Ent(µj0|mj) is controlled (see (3.15)) by∫
X\I�̄(xj1)

ρ̂j0 | log(ρ̂j0)|mj ≤ log(j) µ̄j0(X \ I�̄(xj1)) ≤ 1

j
log(j).

Thus (3.25) is proved in this case.

Step 1b. µ∞0 = ρ∞0 m∞ ∈ Pc(X∞) has density ρ∞0 ∈ L∞(m∞), and x∞1 ∈ X∞ is such that
x�∞ x∞1 for µ∞0 -a.e. x ∈ X∞.
For n ∈ N define µ∞0,n := c̄nµ

∞
0 x{τ∞(·, x∞1 ) ≥ 1

n} ∈ P(X∞), where c̄n ↓ 1 are the normalising constants.

By the continuity of τ∞, it is readily seen that suppµ∞0,n b I−�∞(x∞1 ). Moreover

lim
n→∞

Ent(µ∞0,n|m∞) = Ent(µ∞0 |m∞), lim
n→∞

W
(X̄,d̄)
2 (µ∞0,n, µ

∞
0 ) = 0.

Then apply Step 1a to µ∞0,n and conclude with a diagonal argument.

Step 1c. General case. If ρ∞0 is not bounded, for k ∈ N define ρ∞0,k := c̄k min{ρ∞0 , k}, c̄k ↓ 1 being
such that µ∞0,k := ρ∞0,k m∞ ∈ P(X∞). Clearly, it holds

lim
k→∞

Ent(µ∞0,k|m∞) = Ent(µ∞0 |m∞), lim
k→∞

W
(X̄,d̄)
2 (µ∞0,k, µ

∞
0 ) = 0.

Then apply Step 1b to µ∞0,k and conclude with a diagonal argument.

Step 2. Conclusion.
Using the assumption that (Xj , dj ,mj ,�j ,≤j , τj) satisfies TMCPep(K,N), we obtain an `p-geodesic

(µjt )t∈[0,1] from µj0 to µj1 := δxj1
such that

UN (µjt |mj) ≥ σ
(1−t)
K/N

(
‖τ(·, xj1)‖L2(µj0)

)
UN (µj0|mj), ∀t ∈ [0, 1). (3.27)
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From (3.25), it is readily seen that µj0 ⊗ δxj1 → µ∞0 ⊗ δx∞1 narrowly in X̄2. Thus, recalling that τ̄ is

continuous and bounded, we infer∫
X̄2

τ̄(x, y)p µj0 ⊗ δxj1(dxdy) −→
∫
X̄2

τ̄(x, y)p µ∞0 ⊗ δx∞1 (dxdy), as j →∞. (3.28)

Using that Π≤
(
µj0, δxj1

)
=
{
µj0 ⊗ δxj1

}
, the convergence (3.28) yields

`p(µ
j
0, δxj1

)p −→ `p(µ
∞
0 , δx∞1 )p, as j →∞. (3.29)

Since by assumption X̄ is compact and non-totally imprisoning, from (the proof of) (2.24) we deduce
that

sup
j∈N

L
W

(X̄,d̄)
1

(
(µjt )t∈[0,1]

)
≤ C̄ <∞.

By the metric Arzelá-Ascoli Theorem (recall that the metric space (X̄, d̄) is proper by definition) we

deduce that there exists a limit continuous curve (µ∞t )t∈[0,1] ⊂ P(X̄,W
(X̄,d̄)
1 ) such that (up to a sub-

sequence) W
(X̄,d̄)
1

(
µjt , µ

∞
t

)
→ 0 and thus µjt → µ∞t narrowly in X̄, as j →∞ for every t ∈ [0, 1]. Using

that τ̄ is continuous and bounded together with (3.29), it is easy to see that

`p(µ
∞
0 , µ

∞
t ) ≥ lim

j→∞
`p(µ

j
0, µ

j
t ) = t lim

j→∞
`p(µ

j
0, µ

j
1) = t `p(µ

∞
0 , µ

∞
1 ).

By reverse triangle inequality, we obtain that the curve (µ∞t )t∈[0,1] is an `p-geodesic from µ∞0 to
µ∞1 = δx∞1 . Finally, the joint upper semicontinuity of UN under narrow convergence (1.14) yields:

UN (µ∞t |m∞) ≥ lim sup
j∈N

UN (µjt |mj), ∀t ∈ [0, 1], (3.30)

obtaining in particular that (µ∞t )t∈[0,1] ⊂ P(X∞). The combination of (3.25), (3.27), (3.28) and (3.30)
gives that

UN (µ∞t |m∞) ≥ σ(1−t)
K/N

(
‖τ̄(·, x∞1 )‖L2(µ∞0 )

)
UN (µ∞0 |m∞), ∀t ∈ [0, 1).

as desired.

In the next theorem we show that if a sequence of TCDep(K,N) Lorentzian spaces converge to a
limit Lorentzian space, then the latter is wTCDep(K,N). The same observation of Remark 3.13 will be
valid for the next theorem.

Theorem 3.14 (Weak stability of TCDep(K,N)). Let {(Xj , dj ,mj ,�j ,≤j , τj)}j∈N∪{∞} be a sequence
of measured Lorentzian geodesic spaces satisfying the following properties:

1. There exists a locally causally closed, K-globally hyperbolic Lorentzian geodesic space (X̄, d̄,�, ≤̄, τ̄)
such that each (Xj , dj ,mj ,�j ,≤j , τj), j ∈ N ∪ {∞}, is isomorphically embedded in it (as in 1.
of Theorem 3.12).

2. The measures (ιj)]mj converge to (ι∞)]m∞ weakly in duality with Cc(X̄) in X̄, i.e. (3.24) holds.

3. There exist p ∈ (0, 1),K ∈ R, N ∈ (0,∞) such that (Xj , dj ,mj ,�j ,≤j , τj) satisfies TCDep(K,N),
for each j ∈ N.

Then the limit space (X∞, d∞,m∞,�∞,≤∞, τ∞) satisfies the wTCDep(K,N) condition.

Proof. Without affecting generality, we will identify Xj with its isomorphic image ιj(Xj) ⊂ X̄ and the
measure mj with (ιj)]mj , for each j ∈ N ∪ {∞}.

Fix µ∞0 , µ
∞
1 ∈ Dom(Ent(·|m∞))∩Pc(X∞) strongly timelike p-dualisable, i.e. such that there exists

π∞ ∈ Πp-opt
≤∞ (µ∞0 , µ

∞
1 ) with π∞({τ∞ > 0}) = 1 and there exists a measurable `p-cyclically monotone

set
Γ ⊂ (X2

∞)�∞ ∩ (suppµ∞0 × suppµ∞1 )
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such that a coupling π ∈ Π≤∞(µ∞0 , µ
∞
1 ) is `p-optimal if and only if π is concentrated on Γ. Since

µ∞0 , µ
∞
1 have compact support and X̄ is K-globally hyperbolic, we can restrict all the arguments to a

large compact subset of X̄ whose m∞-measure is the limit of its mj-measures. For easy of notation,
without loss of generality we can thus directly assume that X̄ is compact and that (up to a convergent
sequence of normalizations) mj are probability measures converging to m∞ in narrow topology.

Step 1: We prove that, up to a subsequence, for every j ∈ N there exists (µj0, µ
j
1) ∈ P(Xj)

2 timelike
p-dualisable such that

µj0 → µ∞0 , µ
j
1 → µ∞1 narrowly in X̄ and `p(µ

j
0, µ

j
1)→ `p(µ

∞
0 , µ

∞
1 ) as j →∞. (3.31)

Since X̄ is compact, the narrow convergence implies W
(X̄,d̄)
q convergence for some (or equivalently

every) q ∈ [1,∞). In particular mj → m∞ in W
(X̄,d̄)
2 . Let

γj ∈ Π(m∞,mj) be a W
(X̄,d̄)
2 -optimal coupling. (3.32)

Thanks to the next Lemma 3.15, we can approximate π∞ by

π∞,n = ρ∞,nm∞ ⊗m∞, ρ∞,n ∈ L∞(m∞ ⊗m∞), π∞,n({τ̄ > 0}) = 1, π∞,n → π∞ narrowly

lim
n→∞

Ent((P1)]π∞,n|m∞) = Ent(µ∞0 |m∞), lim
n→∞

Ent((P2)]π∞,n|m∞) = Ent(µ∞1 |m∞).
(3.33)

Define then

π̃j,n(dx1dx2dx3dx4) := ρ∞,n(x1, x3)γj(dx1 dx2)⊗ γj(dx3 dx4), πj,n := (P24)]π̃j,n, (3.34)

and observe that πj,n � mj ⊗mj and that πj,n → π∞,n narrowly as j →∞. By lower semicontinuity
over open subsets, we have that lim infj→∞ πj,n({τ̄ > 0}) ≥ π∞,n({τ̄ > 0}) = 1. Thus, calling
cj,n := 1/πj,n({τ̄ > 0}) for j large enough, it holds that

π′j,n := cj,nπj,nx{τ̄ > 0} → π∞,n narrowly and lim
j→∞

∫
τ̄p π′j,n =

∫
τ̄p π∞,n > 0 (3.35)

by Lemma 1.17. Let
(µ′)j,n0 := (P1)]π

′
j,n, (µ′)j,n1 := (P2)]π

′
j,n (3.36)

and notice that `p
(
(µ′)j,n0 , (µ′)j,n1

)
∈ (0,∞). Let

π′′j,n ∈ Πp-opt

≤̄

(
(µ′)j,n0 , (µ′)j,n1

)
(3.37)

be an `p-optimal coupling (whose existence is ensured by Proposition 2.3).

Combining (3.35) with Lemma 1.15, with Prokhorov Theorem 1.14 and with the causal closeness
of X̄ we deduce that there exists π̂∞,n ∈ Π≤((P1)]π∞,n, (P2)]π∞,n) such that, up to a subsequence,
π′′j,n → π̂∞,n narrowly as j →∞. Repeating once more the tightness argument, we deduce that there
exists π̂∞ ∈ Π≤(µ∞0 , µ

∞
1 ) such that, up to a subsequence, π̂n,∞ → π̂∞ narrowly as n → ∞. We

conclude that there exist sequences (nk), (jk) such that

π′′jk,nk → π̂∞ narrowly and

∫
τ̄p π̂∞ = lim

k→∞

∫
τ̄p π′′jk,nk ≥

∫
τ̄p π∞, (3.38)

where the last chain of inequality follows from Lemma 1.17, (3.33), (3.35) and the optimality of π′′jk,nk .

Combining (3.38) with the fact that π∞ ∈ Πp-opt
≤∞ (µ∞0 , µ

∞
1 ), we get that π̂∞ ∈ Πp-opt

≤∞ (µ∞0 , µ
∞
1 ) as well.

Since by assumption (µ∞0 , µ
∞
1 ) is strongly timelike p-dualisable, we infer that π̂∞{τ̄ > 0} = 1. Thus

lim infk→∞ π′′jk,nk({τ̄ > 0}) ≥ π̂∞({τ̄ > 0}) = 1. For k large enough, set

c′′k := 1/π′′jk,nk({τ̄ > 0}), πk = c′′kπ
′′
jk,nk

x{τ̄ > 0}, µk0 := (P1)]πk, µk1 := (P2)]πk (3.39)
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and notice that
πk → π̂∞, µk0 → µ∞0 , µk1 → µ∞1 narrowly. (3.40)

Since the restriction of an optimal coupling is optimal (Lemma 2.10), it follows that πk ∈ Πp-opt

≤̄ (µk0 , µ
k
1)

and by construction πk({τ̄ > 0} = 1. We conclude that (µk0 , µ
k
1) is timelike p-dualisable by πk and

`p(µ
k
0 , µ

k
1)→ `p(µ

∞
0 , µ

∞
1 ). Up to renaming the indices, the claim (3.31) follows.

Step 2. We prove that the sequences (µj0), (µj1) constructed in Step 1 satisfy:

lim sup
j→∞

Ent(µj0|mj) ≤ Ent(µ∞0 |m∞), lim sup
j→∞

Ent(µj1|mj) ≤ Ent(µ∞1 |m∞). (3.41)

We divide this step into two substeps. Recall the definition (3.34) of π̃j,n(dx1dx2dx3dx4) and set

µj,n0 := (P2)]π̃j,n, µj,n1 := (P4)]π̃j,n.

Step 2a. We first prove that:

Ent(µj,n0 |mj) ≤ Ent((P1)]π∞,n|m∞), Ent(µj,n1 |mj) ≤ Ent((P2)]π∞,n|m∞), ∀j, n ∈ N. (3.42)

We give the argument for the former in (3.42), the latter being completely analogous. The explicit
expression (3.34) of π̃j,n(dx1dx2dx3dx4) combined with (3.33) and with Fubini’s Theorem permits to
write

(P1)]π∞,n = ρ∞,n0 m∞; ρ∞,n0 (x1) =

∫
X

ρ∞,n(x1, x3)m∞(dx3), (P1)]π∞,n-a.e. x1 ∈ X∞;

µj,n0 = ρj,n0 mj ; ρj,n0 (x2) =

∫
X

(∫
X2

ρ∞,n(x1, x3)γj(dx3dx4)

)
(γj)x2(dx1), µj,n0 -a.e. x2 ∈ Xj ;

(3.43)

where {(γj)x2} is the disintegration of γj with respect to P2. Since u(t) = t log t is convex on [0,∞),
Jensen’s inequality gives:

Ent(µj,n0 |mj) =

∫
X

u
(
ρj,n0 (x2)

)
mj(dx2)

≤
∫
X

∫
X

u

(∫
X2

ρ∞,n(x1, x3)γj(dx3dx4)

)
(γj)x2

(dx1)mj(dx2)

=

∫
X2

u
(
ρ∞,n0 (x1)

)
γj(dx1dx2) =

∫
X

u
(
ρ∞,n0 (x1)m∞(dx1)

= Ent((P1)]π∞,n|m∞).

Step 2b. We prove that the sequences (µj0), (µj1) constructed in Step 1 satisfy:

lim sup
j→∞

Ent(µji |mj) ≤ lim sup
k→∞

Ent(µjk,nki |mjk), i = 0, 1. (3.44)

We give the argument for i = 0, the case i = 1 being completely analogous. From the construction
of µk0 in Step 1 (see (3.34), (3.35), (3.36), (3.37), (3.39), see also (3.43)) it is not hard to check that
µk0 = ρk0mjk , where ρk0 ∈ L∞(mjk) satisfies

0 ≤ ρk0 ≤ ck ρ
jk,nk
0 ≤ ck‖ρ∞,nk‖L∞(m∞⊗m∞) ∀k ∈ N, ck → 1 as k →∞. (3.45)

The fact that u(t) := t log t is convex on [0,∞) and u(0) = 0, easily yields

u(t+ h)− u(t) ≥ u(h), ∀t, h ∈ [0,∞).
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Thus, (3.45) combined with Jensen’s inequality gives∫
u(ckρ

jk,nk
0 )mjk −

∫
u(ρk0)mjk ≥

∫
u(ckρ

jk,nk
0 − ρk0)mjk

≥ u
(∫

(ckρ
jk,nk
0 − ρk0)mjk

)
= u (ck − 1)→ 0 as k →∞.

(3.46)

The claim (3.44) follows immediately from (3.46). The claim (3.41) is a straightforward consequence
of (3.42) combined with (3.33) and (3.44).

Step 3. Passing to the limit in the TCD condition.
For simplicity of presentation we give the argument for the TCDep(0, N) condition, the one for general
K ∈ R being analogous just a bit more cumbersome due to the distortion coefficients. Since for

each j ∈ N the pair (µj0, µ
j
1) ∈

(
Dom(Ent(·|mj))

)2 ⊂ P(Xj)
2 is timelike p-dualisable, the assumption

that (Xj , dj ,mj ,�j ,≤j , τj) satisfies the TCDep(0, N) condition yields the existence of an `p-geodesic

(µjt )t∈[0,1] such that

UN (µjt |mj) ≥ (1− t)UN (µj0|mj) + t UN (µj1|mj), ∀t ∈ [0, 1], ∀j ∈ N. (3.47)

Since X̄ is compact and non-totally imprisoning, from (the proof of) (2.24) we deduce that

sup
j∈N

L
W

(X̄,d̄)
1

(
(µjt )t∈[0,1]

)
≤ C̄ <∞.

By the metric Arzelá-Ascoli Theorem we deduce that there exists a limit continuous curve (µ∞t )t∈[0,1] ⊂
P(X∞) ∩ P(X̄,W

(X̄,d̄)
1 ) such that (up to a sub-sequence) W

(X̄,d̄)
1

(
µjt , µ

∞
t

)
→ 0 and thus µjt → µ∞t

narrowly in X̄, as j →∞ for every t ∈ [0, 1].
Using that τ̄ is continuous and bounded, (3.31) and that (µjt )t∈[0,1] is an `p-geodesic, it follows that

`p(µ
∞
0 , µ

∞
t ) ≥ lim

j→∞
`p(µ

j
0, µ

j
t ) = t lim

j→∞
`p(µ

j
0, µ

j
1) = t `p(µ

∞
0 , µ

∞
1 ). (3.48)

By reverse triangle inequality, we get that the curve (µ∞t )t∈[0,1] is an `p-geodesic from µ∞0 to µ∞1 .
The joint upper semicontinuity of UN under narrow convergence (1.14) yields:

UN (µ∞t |m∞) ≥ lim sup
j∈N

UN (µjt |mj), ∀t ∈ [0, 1]. (3.49)

The combination of (3.41), (3.47) and (3.49) gives that

UN (µ∞t |m∞) ≥ (1− t)UN (µ∞0 |m∞) + t UN (µ∞1 ,m∞), ∀t ∈ [0, 1],

as desired.

In the proof of Theorem 3.14 we made use of the following approximation result.

Lemma 3.15. Let (X, d,m,�,≤, τ) be a locally causally closed, globally hyperbolic Lorentzian geodesic
space.
Let µ, ν ∈ Pc(X), µ, ν � m such that there exists π ∈ Πp-opt

≤ (µ, ν) with π({τ > 0}) = 1.

Then there exists a sequence (πn) ⊂ Π�(X2) with the following properties:

1. πn = ρnm⊗m� m⊗m with ρn ∈ L∞(m⊗m);

2. πn → π in the narrow convergence;
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3. If (P1)]πn =: µn = ρµnm and (P2)]πn =: νn = ρνnm, it holds that ρµn → ρµ and ρνn → ρν in
L1(m). Moreover,

lim
n→∞

Ent(µn|m) = Ent(µ|m), lim
n→∞

Ent(νn|m) = Ent(ν|m). (3.50)

Proof. Step 1. Basic approximation by product measures.
First, we cover {τ > 0} with a countable family of products of open subsets Ai ×Bi ⊂ {τ > 0}:

{τ > 0} =
⋃
i∈N

Ai ×Bi, with Ai, Bi ⊂ X open subsets. (3.51)

Let π̄n := πx∪i≤nAi×Bi and define πn := π̄n − π̄n−1, π0 = 0. We have the following decomposition:

π =
∑
n∈N

πn, πn ⊥ πm, πn({τ > 0} \An ×Bn) = 0.

For n ≥ 1, consider

µn := (P1)]πn, νn := (P2)]πn, ηn := µn ⊗ νn/πn(X2).

Observe that µn(X \ An) = νn(X \ Bn) = ηn(X2 \ {τ > 0}) = 0 and, by linearity of projections,
µ =

∑
n∈N µn, ν =

∑
n∈N νn. Notice moreover that the factor 1/πn(X2) in the definition of ηn is

necessary to obtain that (P1)]ηn = µn and (P2)]ηn = νn. Finally, set η :=
∑
n∈N ηn and note that

η ∈ Π≤(µ, ν), η(X2
�) = 1, η � m⊗m.

Notice moreover that, writing η = ρm⊗m, then

ρ(x, y) = ρµn(x) ρνn(y) ≤ ρµ(x) ρν(y), η-a.e. (x, y) ∈ An ×Bn,

where ρµ (respectively ρν , ρµn , ρνn) is the density of µ (resp. ν, µn, νn)) with respect to m.

Step 2. We iterate the construction taking finer coverings of the form (3.51) to obtain a sequence
(ηm) converging in the narrow topology to π.
Fix any f, g ∈ Cb(X) and observe that∫

X2

f(x)g(y)π(dxdy)−
∫
X2

f(x)g(y)η(dxdy)

=

∞∑
n=1

∫
X2

f(x)g(y)πn(dxdy)−
∫
X

f(x)µn(dx)

∫
X

g(y)
νn(dy)

πn(X2)
.

(3.52)

Since µ, ν have compact support, we have that f, g are uniformly continuous on suppµ ∪ supp ν b X.
Given any (xn, yn) ∈ An ×Bn, we estimate∣∣∣∣∫

X2

f(x)g(y)πn(dxdy)− f(xn)g(yn)πn(X2)

∣∣∣∣ ≤ επn(X2)(‖f‖∞ + ‖g‖∞), (3.53)

where ε is the modulus of continuity of both f and g over An and Bn respectively. Analogously,∣∣∣∣∫
X

f(x)µn(dx)

∫
X

g(y)
νn(dy)

πn(X2)
− f(xn)g(yn)πn(X2)

∣∣∣∣
=

∣∣∣∣∫
X

f(x)µn(dx)

∫
X

g(y)
νn(dy)

πn(X2)
− f(xn)µn(X)g(yn)

∣∣∣∣
≤
∣∣∣∣∫
X

(f(x)− f(xn))µn(dx)

∫
X

g(y)
νn(dy)

πn(X2)

∣∣∣∣+ |f(xn)µn(X)|
∣∣∣∣∫
X

g(y)
νn(dy)

πn(X2)
− g(yn)

∣∣∣∣
≤ εµn(X)‖g‖∞ + εµn(X)‖f‖∞ = επn(X)(‖g‖∞ + ‖f‖∞). (3.54)
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Combining (3.52), (3.53) and (3.54), we obtain∣∣∣∣∫
X2

f(x)g(y)π −
∫
X2

f(x)g(y)η

∣∣∣∣ ≤ 2ε(‖g‖∞ + ‖f‖∞),

where ε is the modulus of continuity of both f and g over subsets of suppµ ∪ supp ν b X with diameter
at most supn∈N max{diam (An),diam (Bn)}.
Then, considering finer and finer open coverings

{τ > 0} =
⋃
i∈N

Ami ×Bmi , with Ami , B
m
i ⊂ X open sets, lim

m→∞
sup
i∈N

max{diam (Ami ),diam (Bmi )} = 0,

and the corresponding measures ηm constructed in Step 1, it holds

ηm ∈ Π≤(µ, ν), ηm(X2
�) = 1, ηm � m⊗m, ηm → π narrowly.

Step 3. Conclusion by truncation and dominated convergence Theorem.
Let ηm = ρmm⊗m be the sequence constructed in Step 2. For any C > 0 define

ηCm := αC,m min{ρm, C} m⊗m,

where αC,m is the normalization constant. It is standard to check that ηCm → ηm narrowly as C →∞.
By a diagonal argument we obtain a sequence ηCmm → π narrowly for some Cm →∞. Define

µm := (P1)]η
Cm
m , νm := (P2)]η

Cm
m .

Writing µm = ρµ,mm, it holds

ρµ,m(x) = αCm,m

∫
X

min{ρm(x, y), Cm}m(dy) ≤ αCm,m
∫
X

ρm(x, y)m(dy) = αCm,mρµ(x), (3.55)

where the last identity follows from (P1)]ηm = µ for any m ∈ N. Hence, by dominated convergence
Theorem, ρµ,m(x)/αCm,m is converging to ρµ(x) in the stronger L1(m) norm, as m→∞.

For the last claim (3.50), without loss of generality we can assume Ent(µ|m) < ∞ (otherwise it is
trivial). From dominated convergence Theorem and (3.55), we deduce that Ent(µm|m)→ Ent(µ|m).
To conclude the proof, it is enough to repeat the last arguments also for ν.

Remark 3.16. Recalling from Theorem 3.1 that smooth globally hyperbolic spacetimes of dimension
≤ N with timelike Ricci curvature bounded below by K ∈ R satisfy TCDep(K,N), Theorem 3.14 yields
that their limit spaces (in the sense of Therem 3.14) satisfy wTCDep(K,N).

3.4 Optimal maps in timelike non-branching TMCPe
p(K,N) spaces

In this section we prove some results about existence of optimal transport maps in timelike non-
branching TMCPep(K,N) spaces, from which we will deduce the uniqueness of `p-geodesics (this section
should be compared with [18] where the analogous results were obtained for metric-measure spaces
satisfying MCP(K,N) and essentially non-branching).

Lemma 3.17. Let (X, d,m,�,≤, τ) be a timelike non-branching, K-globally hyperbolic, Lorentzian
geodesic space satisfying TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈ (0,∞). Let µ0 ∈ Pc(X), with
µ0 ∈ Dom(Ent(·|m)) and µ1 be a finite convex combination of Dirac masses, i.e. µ1 :=

∑n
j=1 λjδxj for

some {xj}j=1,...,n ⊂ X with xi 6= xj for i 6= j, and {λj}j=1,...,n ⊂ (0, 1] with
∑n
j=1 λj = 1. Assume

that there exists π ∈ Πp-opt
≤ (µ0, µ1) such that suppπ b {τ > 0}.

Then π is the unique element in Πp-opt
≤ (µ0, µ1) = {π} with suppπ b {τ > 0}. Moreover such a π

is induced by a map T , i.e. π = (Id, T )]µ0 and

`p(µ0, µ1)p =

∫
X

τ(x, T (x))p µ0(dx).
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Proof. We first show that π is induced by a map, the uniqueness will follow.
Consider the set

S := {x ∈ X : ∃xi 6= xj with (x, xi), (x, xj) ∈ suppπ} ⊂ suppµ0, (3.56)

and, since suppµ0 is compact, S is easily seen to be a closed set and therefore compact. It will be
enough to prove the stronger statement µ0(S) = 0.

Suppose by contradiction µ0(S) > 0. Since µ1 is a finite sum of Dirac masses, up to taking a smaller
S and up to relabelling the points xj , we can assume the existence of

T1, T2 : S → X, graph(T1), graph(T2) ⊂ suppπ,

both µ0-measurable with T1(x) = x1 and T2(x) = x2 for all x ∈ S, with x1 6= x2.
Possibly restricting to a subset of S, still of positive m-measure, we also assume that if 1/C ≤ ρ0 ≤ C

over S, where ρ0 is the density of µ0 with respect to m. Thanks to Lemma 2.10 the couplings

χS×{x1}

ρ0m(S)
π,

χS×{x2}

ρ0m(S)
π, (3.57)

are optimal. Hence, with no loss of generality, we can redefine µ0 := mxS/m(S) and consider η1 ∈
OptGeo`p(µ0, δx1

) and η2 ∈ OptGeo`p(µ0, δx2
) given by Proposition 2.32.

Necessarily supp η1 ∩ supp η2 = ∅; indeed for i = 1, 2 it holds ηi({γ : γ1 = xi}) = 1 and by
construction x1 6= x2. Thus, again by Proposition 2.32, it holds

(et)]η
1 ⊥ (et)]η

2, ∀t ∈ (0, 1]. (3.58)

The TMCPep(K,N) condition (3.13) gives that (see (3.14)), for i = 1, 2,∫
ρit log(ρit)m ≤ − log(m(S))−N log(σ

(1−t)
K/N (‖τ‖L2((e0,e1)]ηi))), ∀t ∈ [0, 1), i = 1, 2, (3.59)

where we have written (et)]η
i = ρitm. By Jensen’s inequality (1.13) we have∫

X

ρit log(ρit)m ≥ − log(m({ρit > 0}))

which, combined with (3.59), gives

lim inf
t→0

m
(
{ρit > 0}

)
≥ m (S) = m

(
{ρi0 > 0}

)
. (3.60)

Denote now

E :=
⋃

t∈[0,1],i=1,2

supp (et)]η
i

SεE := {y ∈ E : τ(x, y) ≤ ε for some x ∈ S}

and notice that, by K-global hyperbolicity, E (and thus also SεE) is a compact subset of X. Moreover,
by Dominated Convergence Theorem, we have limε→0 m(SεE) = m(S). In particular there exists ε0 > 0
such that

m(Sε0E ) ≤ 3

2
m(S). (3.61)

We now claim that there exists a small t0 > 0, such that

m
(
{ρ1
t0 > 0} ∩ {ρ2

t0 > 0}
)
> 0. (3.62)

To this aim notice that, by construction, for (et)]η
i-a.e. x ∈ X there exists a timelike geodesic

γ ∈ TGeo(X) such that x = γt, γ0 ∈ S, γ1 = xi, i = 1, 2; in particular, for t ∈ [0, ε0] the measure
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(et)]η
i is concentrated on Sε0E . But then the combination of (3.60) and (3.61) implies that there exists

t0 ∈ (0, ε0) satisfying the claim (3.62).
Observing that (3.62) contradicts (3.58), we conclude that π is induced by a map.

We now show that there exists a unique element π ∈ Πp-opt
≤ (µ0, µ1) satisfying suppπ b {τ > 0}.

Assume by contradiction that there exist π1, π2 ∈ Πp-opt
≤ (µ0, µ1) satisfying suppπ1, suppπ2 b {τ > 0}

with π1 6= π2. By the first part of the proof, we know that there exist maps T1, T2 : X → X such that
πi = (Id, Ti)]µ0; in particular T1 6= T2 on a µ0-nonnegligible subset. It is straightforward to check that
π := 1

2 (π1 + π2) satisfies π ∈ Πp-opt
≤ (µ0, µ1), suppπ b {τ > 0} and that π cannot be induced by a map.

This contradicts the first part of the proof.

Proposition 3.18. Let (X, d,m,�,≤, τ) be a timelike non-branching, locally causally closed, K-
globally hyperbolic, Lorentzian geodesic space satisfying TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈
(0,∞). Let µ0, µ1 ∈ Pc(X), with µ0 ∈ Dom(Ent(·|m)). Assume that there exists π ∈ Πp-opt

≤ (µ0, µ1)
such that suppπ b {τ > 0}.

Then there exist π̂ ∈ Πp-opt
≤ (µ0, µ1) and an `p-geodesic (µt)t∈[0,1] from µ0 to µ1 satisfying

UN (µt|m) ≥ σ(1−t)
K/N (‖τ‖L2(π̂))UN (µ0|m), ∀t ∈ [0, 1). (3.63)

In particular µt � m for all t ∈ [0, 1).

Proof. Step 1. Additionally assume suppµ0 × suppµ1 ⊂ {τ > 0}.
If suppµ1 is made of finitely many points, an easier variant of the following arguments give the result
(more precisely it is enough to take n to be the number of points in suppµ1 and stop at the end of
Step 2). Thus without loss of generality we can assume that suppµ1 contains infinitely many points.
Let Bi ⊂ suppµ1, i = 1, . . . , n be a finite Borel partition of suppµ1 with µ1(Bi) > 0 for each i. For
every i pick a point xi1 ∈ Bi and define

µ̄1 :=

n∑
i=1

aiδxi1 ,

where ai := µ1(Bi). Since suppµ0 × suppµ1 ⊂ {τ > 0}, there exists π̄ ∈ Πp-opt
≤ (µ0, µ̄1) such that

supp π̄ b {τ > 0}. Let T : X → X be the `p(µ0, µ̄1)-optimal map associated to π̄ by Lemma 3.17 and
define Ai := T−1(xi1). Observe that the sets Ci = Ai × {xi1} satisfy Ci b {τ > 0} and form a finite
Borel partition of supp π̄. Set π̄i := 1

ai
π̄xCi and

µ̄i0 := (P1)]π̄
i, µ̄i1 := (P2)]π̄

i = δxi1 .

Note that, by construction, µ0 =
∑
i aiµ̄

i
0 and

µ̄i0 ⊥ µ̄
j
0, ∀i 6= j. (3.64)

Noting that supp π̄i b {τ > 0}, the TMCPep(K,N) condition ensures that there exists an `p-geodesic

(µ̄it)t∈[0,1] from µ̄i0 to µ̄i1 satisfying

UN (µ̄it|m) ≥ σ(1−t)
K/N (‖τ(·, xi1)‖L2(µ̄i0))UN (µ̄i0|m), ∀i = 1, . . . , n, t ∈ [0, 1). (3.65)

Step 2. Taking the logarithm of (3.65) and summing over i (recalling that
∑
i ai = 1), we obtain

− 1

N

∑
i

aiEnt(µ̄it|m) ≥
∑
i

ai log
(
σ

(1−t)
K/N (‖τ(·, xi1)‖L2(µ̄i0))

)
− 1

N

∑
i

aiEnt(µ̄i0|m). (3.66)

Call η̄i ∈ OptGeo`p(µ̄i0, µ̄
i
1) the `p-optimal dynamical plan representing the `p-geodesic (µ̄it)t∈[0,1] given

by Proposition 2.32 point 2. Since by construction µ̄i1 = δxi1 and xi1 6= xj1 for i 6= j, it follows that

supp η̄i ∩ supp η̄j = ∅ for i 6= j. Proposition 2.32 point 6 implies that

µ̄it ⊥ µ̄
j
t , ∀t ∈ (0, 1), ∀i 6= j. (3.67)
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Calling µ̄t :=
∑
i aiµ̄

i
t and using (3.64), (3.67) it follows that

Ent(µ̄t|m) = Ent

(∑
i

aiµ̄
i
t|m

)
=
∑
i

aiEnt(µ̄it|m) +
∑
i

ai log(ai), ∀t ∈ [0, 1). (3.68)

Hence adding − 1
N

∑
i ai log(ai) to both sides of (3.66), using (3.68), and the convexity of the function

(−∞, π2) 3 k → log σ
(t)
k (1) (recall that σ

(t)
k (ϑ) = σ

(t)
kϑ2(1)) we obtain

UN (µ̄t|m) ≥ σ(1−t)
K/N (‖τ‖L2(π̄))UN (µ0|m), ∀t ∈ [0, 1).

Step 3. Taking finer partitions of suppµ1 we can construct a sequence {µ̄k1}k∈N ⊂ Pc(X) such that
each µ̄k1 is a finite convex combination of Dirac masses, supp µ̄k1 ⊂ suppµ1 for each k, and µ̄k1 → µ1

narrowly. We then invoke Theorem 2.16 to obtain another sequence, that we still denote by µ̄k1 , that is
converging to µ1 narrowly and which is absolutely continuous with the previous µ̄k1 , hence still obtained
as a finite convex combination of Dirac deltas.

For each k let (µ̄kt = (et)]η̄
k)t∈[0,1] be the `p-geodesic from µ0 to µ̄k1 and π̄k ∈ Πp-opt

≤ (µ0, µ̄
k
1) the

optimal coupling constructed in Step 2 satisfying

UN (µ̄kt |m) ≥ σ(1−t)
K/N (‖τ‖L2((e0,e1)]η̄k))UN (µ0|m), ∀t ∈ [0, 1). (3.69)

Notice indeed that by construction, (e0, e1)]η̄
k = π̄k.

We aim to construct a limit `p-geodesic (µt)t∈[0,1] from µ0 to µ1 satisfying (3.63). First of all notice
that by K-global hyperbolicity,

K̄ :=
⋃

t∈[0,1]

I(suppµ0, suppµ1, t) b X

is a compact subset, see (1.6),(1.7). It is easily seen that

supp µ̄kt ⊂ I(suppµ0, suppµ1, t) ⊂ K̄, ∀t ∈ [0, 1], k ∈ N. (3.70)

From (2.24) we deduce that
sup
k∈N

LW1

(
(µ̄kt )t∈[0,1]

)
≤ C̄ <∞.

By the metric Arzelá-Ascoli Theorem we deduce that there exists a limit continuous curve (µt)t∈[0,1] ⊂
(P(K̄),W1) such that (up to a sub-sequence) W1

(
µ̄kt , µt

)
→ 0 and thus µ̄kt → µt narrowly, as n→∞.

Recalling the assumption of π ∈ Πp-opt
≤ (µ0, µ1) with suppπ b {τ > 0}, Theorem 2.16 and Lemma 2.12

yield that
t`p(µ0, µ1) = t lim

k→∞
`p(µ0, µ̄

k
1) = lim

k→∞
`p(µ0, µ̄

k
t ) ≤ `p(µ0, µt). (3.71)

Thus, by reverse triangle inequality, the curve (µt)t∈[0,1] is an `p-geodesic from µ0 to µ1 and any narrow
limit π̂ of (π̄k) is `p-optimal. The upper-semicontinuity (3.4) of UN (·|m) in narrow topology yields

lim sup
j→∞

UN (µ̄
kj
t |m) ≤ UN (µt|m), ∀t ∈ [0, 1). (3.72)

Combining (3.69) and (3.72) gives the desired (3.63).

Step 4. Removing the assumption suppµ0 × suppµ1 ⊂ {τ > 0}.
By assumption there exists π ∈ Πp-opt

≤ (µ0, µ1) such that suppπ b {τ > 0}. Since suppπ is compact,
we can find finitely many products of open subsets Ai × Bi b {τ > 0}, i = 1, . . . , n, such that
suppπ ⊂

⋃n
i=1Ai ×Bi. Argueing by induction over n ∈ N noticing that

n⋃
i=1

Ai ×Bi =

((
An \

n−1⋃
i=1

Ai

)
×Bn

)
∪

(
n−1⋃
i=1

(Ai ∩An)× (Bi ∪Bn)

)
∪

(
n−1⋃
i=1

(Ai \An)×Bi

)
,
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it is easy to see that we can assume with no loss in generality that Ai ∩Aj = ∅, provided we admit Ai
to be Borel. In this way we obtain that suppπ ⊂

⋃n
i=1Ai ×Bi and suppµ0 ⊂

⋃n
i=1Ai are both finite

Borel pairwise disjoint unions with Ai ×Bi b {τ > 0} for every i = 1, . . . , n. Up to taking a subset of
indices, we can assume that π(Ai ×Bi) > 0, for all i = 1, . . . , n.

Setting π̄i := πxAi×Bi , we obtain the following decomposition:

π =
∑
i≤n

π̄i, π̄i ⊥ π̄j for i 6= j, π̄i({τ > 0} \Ai ×Bi) = 0.

Finally, set πi := π̄i/π̄i(X × X) and µ0,i := (P1)]πi, µ1,i := (P2)]πi. Clearly, it holds µ0,i ⊥ µ0,j if
i 6= j. By restriction property, πi ∈ Πp-opt

� (µ0,i, µ1,i) and we can apply the previous part of the proof
to the marginals µ0,i, µ1,i: there exists π̂i ∈ Πp-opt

≤ (µ0,i, µ1,i) and an `p-geodesic (µt,i)t∈[0,1] from µ0,i

to µ1,i satisfying

UN (µt,i|m) ≥ σ(1−t)
K/N (‖τ‖L2(π̂i))UN (µ0,i|m), ∀t ∈ [0, 1).

In particular µt,i � m for all t ∈ [0, 1). We can then sum over i the previous inequality and, reasoning
like in Step 2 by using mutual orthogonality of µ0,i, we have the claim.

Theorem 3.19. Let (X, d,m,�,≤, τ) be a timelike non-branching, locally causally closed, K-globally
hyperbolic, Lorentzian geodesic space satisfying TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈ (0,∞).

Let µ0, µ1 ∈ Pc(X), with µ0 ∈ Dom(Ent(·|m)). Assume that there exists π ∈ Πp-opt
≤ (µ0, µ1) such that

π ({τ > 0}) = 1.
Then there exists a unique optimal coupling π ∈ Πp-opt

≤ (µ0, µ1) such that π ({τ > 0}) = 1 and it is
induced by a map T , i.e. π = (Id, T )]µ0 and

`p(µ0, µ1)p =

∫
X

τ(x, T (x))p µ0(dx).

Proof. The arguments are along the same lines of the proof of Lemma 3.17 but with some (non-
completely trivial) modifications that we briefly discuss.

Step 1. Let Γ ⊂ X2
� be an `p-monotone subset such that π(Γ) = 1, given by Proposition 2.8.

Define
Γ(x) := P2

(
Γ ∩ ({x} ×X)

)
, (3.73)

and S the set of those x ∈ X such that Γ(x) is not a singleton. Note that the set S is Suslin. It will
be enough to prove the stronger statement µ0(S) = 0.

So suppose by contradiction µ0(S) > 0. By Von Neumann Selection Theorem, there exists

T1, T2 : S → X, graph(T1), graph(T2) ⊂ Γ,

both µ0-measurable and d(T1(x), T2(x)) > 0, for all x ∈ S. By Lusin Theorem, there exists a compact
set S1 ⊂ S such that the maps T1 and T2 are both continuous when restricted to S1 and µ0(S1) > 0.
In particular

inf
x∈S1

d(T1(x), T2(x)) = min
x∈S1

d(T1(x), T2(x)) = 2r > 0.

Then one can deduce the existence of a couple of points x1, x2 ∈ X, of a positive r > 0 and of a
compact set S2 ⊂ S1, again with µ0(S2) > 0, such that

{T1(x) : x ∈ S2} ⊂ Br(x1), {T2(x) : x ∈ S2} ⊂ Br(x2),

with d(x1, x2) > 2r, where Br(xi) is the open ball centred in xi and radius r, for i = 1, 2 with
respect to d. By the continuity of τ , up to further reducing r > 0, we can also suppose that S2 ×
(Br(x1) ∪Br(x2)) b {τ > 0}.

Step 2. Following the arguments of the proof of Lemma 3.17 (see in particular (3.57)), we can
invoke Lemma 2.10 and assume with no loss of generality µ0 to be restricted and renormalised to S2.
In particular we redefine µ0 := mxS2

/m(S2); the following measures are well defined as well

µ1
1 := (T1)]µ0, µ2

1 := (T2)]µ0;
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in particular µ1
1, µ

2
1 are Borel probability measures with suppµ1

1 ∩ suppµ2
1 = ∅.

By Proposition 3.18 we know there exist `p-geodesics (µit)t∈[0,1] from µ0 to µi1, i = 1, 2, satisfying

UN (µit|m) ≥ σ(1−t)
K/N (‖τ‖L2(π̂i))UN (µ0|m), ∀t ∈ [0, 1), i = 1, 2. (3.74)

Using (3.74), one can now follow verbatim the proof of Lemma 3.17 and conclude.

Theorem 3.20. Let (X, d,m,�,≤, τ) be a timelike non-branching, locally causally closed, K-globally
hyperbolic, Lorentzian geodesic space satisfying TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈ (0,∞).

Let µ0, µ1 ∈ Pc(X), with µ0 ∈ Dom(Ent(·|m)). Assume that there exists π ∈ Πp-opt
≤ (µ0, µ1) such that

π({τ > 0}) = 1.
Then there exists a unique η ∈ OptGeo`p(µ0, µ1) with (e0, e1)]η ({τ > 0}) = 1 and such η is induced

by a map, i.e. there exists T : X → TGeo(X) such that η = T]µ0.

Proof. As usual, it is sufficient to show that every η ∈ OptGeo`p(µ0, µ1) with (e0, e1)]η ({τ > 0}) = 1
is induced by a map; indeed if there exist η1 6= η2 ∈ OptGeo`p(µ0, µ1) with (e0, e1)]ηi ({τ > 0}) = 1

then also η̄ := 1
2 (η1 + η2) would be an element of OptGeo`p(µ0, µ1) with (e0, e1)]η̄ ({τ > 0}) = 1 but η̄

cannot be given by a map.
Assume by contradiction there exists η ∈ OptGeo`p(µ0, µ1) not induced by a map. In particular,

given the disintegration of η with respect to e0 : TGeo(X)→ X

η =

∫
X

ηx µ0(dx),

there exists a compact subset D ⊂ supp(µ0) with µ0(D) > 0 such that for µ0-a.e. x ∈ D the probability
measure ηx is not a Dirac mass. Via a selection argument, for µ0-a.e. x ∈ D we can also assume that
ηx is the sum of two Dirac masses. Then for µ0-a.e. x ∈ D there exist t = t(x) ∈ (0, 1) such that
(et)]ηx is not a Dirac mass over X. Then by continuity there exists an open interval I = I(x) ⊂ (0, 1)
containing t(x) above such that (es)]ηx is still not a Dirac mass over X, for every s ∈ I(x).
It follows that we can find a subset D̄ ⊂ D ⊂ X still satisfying µ0(D̄) > 0 with the following property:
there exists q̄ ∈ Q ∩ (0, 1) such that (eq̄)]ηx is not a Dirac mass, for every x ∈ D̄.

Indeed, since D =
⋃
q∈Q∩(0,1)Dq where

Dq := {x ∈ D : (eq)]ηx is not a Dirac mass}

and since µ0(D) > 0, there must exist q̄ ∈ Q ∩ (0, 1) with µ0(Dq̄) > 0; we then set D̄ := Dq̄. Set now

η̄ =
1

µ0(D̄)

∫
D̄

ηx µ0(dx).

Note that η̄ is an `p-optimal dynamical plan satisfying (e0, eq̄)]η̄ ({τ > 0}) = 1. But (e0, eq̄)]η̄ is an
`p-optimal coupling which is not given by a map, contradicting Theorem 3.19.

Corollary 3.21. Let (X, d,m,�,≤, τ) be a timelike non-branching, locally causally closed, K-globally
hyperbolic, Lorentzian geodesic space satisfying TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈ [1,∞).
Let µ0, µ1 ∈ Pc(X) be two probability measures with µ0 = mxA0/m(A0), A0 ⊂ M compact subset.
Assume that there exists π ∈ Πp-opt

≤ (µ0, µ1) such that π({τ > 0}) = 1.
Then there exists a unique `p-geodesic (µt)t∈[0,1] from µ0 to µ1. Moreover, it satisfies µt = ρtm� m

and
m({ρt > 0}) ≥ σ(1−t)

K/N (‖τ‖L2(π))
Nm(A0), (3.75)

where π is the unique element of Πp-opt
≤ (µ0, µ1) concentrated on {τ > 0}.

In particular, calling A1 = suppµ1 and using the notation of Proposition 3.4, the following timelike
half-Brunn-Minkowski inequality holds:

m(At)
1/N ≥ σ(1−t)

K/N (Θ)m(A0)1/N .

46



Proof. From Theorem 3.19 there exists a unique `p-geodesic (µt)t∈[0,1] from µ0 to µ1 and from Propo-

sition 3.18 we deduce that UN (µt|m) ≥ σ
(1−t)
K/N (‖τ‖L2(π))m(A)1/N , where π is the unique element

of Πp-opt
≤ (µ0, µ1) concentrated on {τ > 0}. We conclude applying twice Jensen’s inequality as in

(3.10).

4 Localization of Timelike Measure Contraction Property

4.1 Transport relation and disintegration associated to a time separation
function

From now on we make the standing assumptions that (X, d,�,≤, τ) is a globally hyperbolic Lorentzian
geodesic space and V ⊂ X is an achronal FTC Borel subset (see Definition 1.7). Recall that, associated
to V , we have the signed time-separation function τV : X → [−∞,+∞] defined in (1.8).

Lemma 4.1. For each x ∈ I+(V ) there exists a point yx ∈ V with τV (yx) = τ(yx, x) > 0. Moreover:

τV (z)− τV (x) ≥ τ(yx, z)− τ(yx, x) ≥ τ(x, z), ∀x, z ∈ I+(V ) ∪ V, x ≤ z. (4.1)

Proof. The first claim follows directly from Lemma 1.8. If x ≤ z and τ(yx, x) > 0, then also yx ≤ z by
transitivity. By reverse triangle inequality (1.1), we deduce (4.1).

Notice that (4.1) can be extended to the whole X2 simply by replacing τ with ` (recall (2.2)):

τV (z)− τV (x) ≥ `(x, z), ∀x, z ∈ (I+(V ) ∪ V )2. (4.2)

We can therefore naturally associate to V the following transport relation:

ΓV := {(x, z) ∈ (I+(V ) ∪ V )2 ∩X2
≤ : τV (z)− τV (x) = τ(x, z) > 0} ∪ {(x, x) : x ∈ I+(V ) ∪ V }. (4.3)

Recalling the Definition 2.6, inequality (4.2) readily yields:

Lemma 4.2. The set ΓV is `-cyclically monotone.

Proof. Take (x1, z1), . . . , (xn, zn) ∈ ΓV and sum

n∑
i=1

`(xi, zi) =

n∑
i=1

τ(xi, zi) =

n∑
i=1

τV (zi)− τV (xi) ≥
n∑
i=1

`(xi+1, zi).

A consequence of `-cyclical monotonicity is the alignment along geodesics of the couples:

Lemma 4.3. Consider (x, z) ∈ ΓV with x 6= z, x /∈ V . Then there exist y ∈ V, γ ∈ TGeo(y, z) and
t ∈ (0, 1) such that

x = γt, τ(y, γs) = τV (γs) ∀s ∈ [0, 1], (γs, γt) ∈ ΓV ∀s ∈ [0, t].

Proof. From Lemma 4.1, we have the existence of y ∈ V such that τV (x) = τ(y, x) > 0. Moreover from
(x, z) ∈ ΓV we get (y, z) ∈ X2

≤ and

τ(y, z) ≤ τV (z) = τV (x) + τ(x, z) = τ(y, x) + τ(x, z) ≤ τ(y, z),

yielding 0 < τ(y, x) + τ(x, z) = τ(y, z) and (y, z) ∈ ΓV . Hence we can concatenate a timelike geodesic
from y to x with a timelike geodesic from x to z (whose existence is guaranteed by fact that X is a
Lorentzian geodesic space) in order to obtain γ ∈ TGeo(y, z) and t ∈ (0, 1) such that γt = x, proving
first claim. In order to show the second claim, observe that for any s ∈ [0, 1] it holds:

τV (γs) = τV (γ1)− τV (γ1) + τV (γs) = τ(y, z)− τV (γ1) + τV (γs).
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From (4.1) we know that τV (γ1)− τV (γs) ≥ τ(γs, γ1) hence it follows that

τ(y, γs) ≤ τV (γs) ≤ τ(y, z)− τ(γs, z) = τ(y, γs),

proving the second point. For the last point, simply observe that

τV (γt)− τV (γs) = τ(y, γt)− τ(y, γs) = τ(γs, γt).

Next, we set Γ−1
V := {(x, y) : (y, x) ∈ ΓV } and we consider the transport relation RV and the

transport set with endpoints T eV :

RV := ΓV ∪ Γ−1
V , T eV := P1(RV \ {x = y}). (4.4)

The transport relation will be an equivalence relation on a specific subset of T eV that we will now
construct. Firstly we consider the following subsets of T eV :

a(T eV ) := {x ∈ T eV : @y ∈ T eV s.t. (y, x) ∈ ΓV , y 6= x}
b(T eV ) := {x ∈ T eV : @y ∈ T eV s.t. (x, y) ∈ ΓV , y 6= x},

(4.5)

called the set of initial and final points, respectively. Define the transport set without endpoints

TV := T eV \ (a(T eV ) ∪ b(T eV )). (4.6)

Lemma 4.4. It holds I+(V ) = (TV ∪ b(T eV )) \ V and V ⊃ a(T eV ).

Proof. By definition RV ⊂ (I+(V ) ∪ V )2 and since V is achronal I+(V ) ∩ V = ∅; hence the inclusion
I+(V ) ⊃ (TV ∪ b(T eV )) \ V is trivial. To show the converse inclusion, for every x ∈ I+(V ) Lemma 4.1
ensures the existence of y ∈ V such that τV (x) = τ(y, x) > 0. Thus (x, y) ∈ Γ−1

V ⊂ RV , giving that
x ∈ T eV \ a(T eV ) = TV ∪ b(T eV ). The argument for the second inclusion is trivial.

Proposition 4.5. Assume in addition to the previous assumptions that X is timelike (backward and
forward) non-branching. Then the transport relation RV is an equivalence relation over TV .

Proof. The reflexive property (x, x) ∈ RV for all x ∈ TV , as well as symmetry, hold by the very
definitions of ΓV and RV . We are then left to show transitivity: for every (x, y), (y, z) ∈ RV we next
prove that (x, z) ∈ RV . Clearly we can assume x 6= y 6= z, otherwise the claim is trivial.

Case 1: (x, y), (y, z) ∈ ΓV . Using (4.1) and reverse triangle inequality we have

τV (z)− τV (x) ≥ τ(x, z) ≥ τ(x, y) + τ(y, z) = τV (y)− τV (x) + τV (z)− τV (y) = τV (z)− τV (x).

Hence τ(x, z) = τV (z)− τV (x) and therefore (x, z) ∈ ΓV ⊂ RV .

Case 2: (x, y), (y, z) ∈ Γ−1
V . Hence (z, y), (y, x) ∈ ΓV and therefore (z, x) ∈ ΓV from case 1.

Case 3: (x, y) ∈ ΓV and (y, z) ∈ Γ−1
V . Hence (x, y), (z, y) ∈ ΓV . Since y /∈ b(T eV ), there exists w ∈ TV

such that (y, w) ∈ ΓV and y 6= w. Hence from (x, y), (z, y), (y, w) ∈ ΓV we deduce like in case 1 that

τ(x, y) + τ(y, w) = τ(x,w) > 0, τ(z, y) + τ(y, w) = τ(z, w) > 0.

Since by assumption X is a Lorentzian geodesic space, there exist γ1 ∈ TGeo(x,w), γ2 ∈ TGeo(z, w)
with common intermediate point y. Then from the backward non-branching assumption, necessarily
γ1

[0,1] ⊂ γ
2
[0,1] (or the other inclusion) holds true. The last claim of Lemma 4.3 finally gives (x, z) ∈ RV .

Case 4: (x, y) ∈ Γ−1
V and (y, z) ∈ ΓV . The argument is analogous to case 3: since y /∈ a(T ev ),

there exists w ∈ TV such that (w, y) ∈ ΓV and w 6= y. Then from the Lorentzian geodesic and (now
forward) non-branching assumption, necessarily all the points w, y, x, z lie on the same strictly timelike
geodesics, giving that (x, z) ∈ RV .
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Lemma 4.6. For each equivalence class [x] of (TV,RV ) there exists a convex set I ⊂ R of the Real line
and a bijective map F : I → [x] satisfying:

τ(F (t1), F (t2)) = t2 − t1, ∀ t1 ≤ t2 ∈ I. (4.7)

Moreover, if in addition X is locally causally closed, calling {z ∈ [x]} the topological closure of {z ∈
[x]} ⊂ X, it holds

{z ∈ [x]} \ {z ∈ [x]} = {z ∈ [x]} \ TV ⊂ a(T eV ) ∪ b(T eV ). (4.8)

Proof. For any x ∈ TV , denote with [x] the associated equivalence class. Consider the maps

F : (0,∞) ∩Dom(F ) 3 t 7→ {y : (x, y) ∈ ΓV , τ(x, y) = t}

and
F : (−∞, 0) ∩Dom(F ) 3 t 7→ {y : (y, x) ∈ ΓV , τ(y, x) = −t}

and F (0) = x. First observe that F is surjective: for each y ∈ [x], y 6= x with (x, y) ∈ ΓV (resp. (x, y) ∈
Γ−1
V ) it holds τ(x, y) ∈ (0,∞), hence τ(x, y) ∈ Dom(F ) and y ∈ F (τ(x, y)) (resp. τ(y, x) ∈ Dom(F )

and y ∈ F (−τ(y, x))).
The fact that F is injective follows readily from its definition.
We next show that F is a single valued map. Assume by contradiction y 6= z ∈ F (t) for some t > 0
(resp. t < 0); since x is not an initial (resp. final) point, using the geodesic assumption like in the
proof of Proposition 4.5 would produce a forward (resp. backward) branching time-like geodesic giving
a contradiction with the non-branching assumption.
Given t ∈ Dom(F ), with a slight abuse of notation, we identify F (t) with {F (t)}.
For t1 < t2 ∈ Dom(F ), Lemma 4.3 implies that the interval [t1, t2] ⊂ F (i.e. Dom(F ) ⊂ R is a convex
subset) and that (4.7) holds.

We now show (4.8). Let (zn) ⊂ [x] be with infn τV (zn) > 0 and zn → z̄. It is easily seen that there
exists x̄ ∈ [x] such that (x̄, zn) ∈ ΓV and x̄ 6= z̄. Using the continuity of τ (by global hyperbolicity), the
lower semicontinuity of τV , (4.1) and the local causal closeness, it is easy to check that (x̄, z̄) ∈ ΓV ⊂ RV
and thus z̄ ∈ T eV . Since by Proposition (4.5) the equivalence classes of RV form a partition of TV , it
follows that if z̄ /∈ [x] then z̄ /∈ TV ; more precisely it is easily seen that z̄ ∈ b(T eV ).
Let now (zn) ⊂ [x] be with τV (zn) → 0 and zn → z̄. By lower semicontinuity of τV , it follows that
τV (z̄) = 0. Using the continuity of τ it is easy to check that z̄ ∈ T eV and (z̄, x) ∈ RV . Arguing as
above, it follows that if z̄ /∈ [x] then z̄ /∈ TV ; more precisely it is easily seen that z̄ ∈ a(T eV ).

4.2 Disintegration of m associated to τV

We start with some measurability properties of the sets we have considered so far. We recall that
for any x ∈ X the set I+(x) = {y ∈ M : τ(x, y) > 0} is open by continuity of τ (ensured by global
hyperbolicity). Accordingly I+(V ) =

⋃
x∈V I

+(x) is an open subset of X.
By the very definition (1.8), τV is sup of continuous functions thus it is lower semi-continuous. It

follows that the set ΓV is Borel measurable (see (4.3)).
It follows that also RV is Borel measurable, yielding that T eV defined in (4.4) is a Suslin set. To

conclude, we obtain measurability of the transport set TV defined in (4.6).

Lemma 4.7. The set TV is Suslin.

Proof. Just notice that TV coincides with the following set

P2{(x, y, z) ∈ I+(V )× I+(V )× I+(V ) : (x, y) ∈ ΓV , (y, z) ∈ ΓV , d(z, y) 6= 0, d(x, y) 6= 0}.

Being the projection of a Borel set, the claim follows.

It is not hard to show that a(T eV ) and b(T eV ) are co-Suslin sets, meaning their complement is Suslin.
We next build an m-measurable quotient map Q of the equivalence relation RV over TV .
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Lemma 4.8. There exists an m-measurable quotient map Q : TV → X of the equivalence relation RV
over TV , i.e.

Q : TV → TV , (x,Q(x)) ∈ RV , (x, y) ∈ RV ⇒ Q(x) = Q(y). (4.9)

Proof. First consider the following (saturated) family of subsets of TV :

En := {y ∈ TV : (x, y) ∈ RV for some x ∈ TV with τV (x) > 1/n}, ∀n ∈ N, n ≥ 1.

By definition En is Suslin, En ⊂ En+1 and TV = ∪nEn. Set Fn := En \ En−1, with F1 = E1. Define
the map Q via its graph:

graph(Q) =
⋃
n

{(x, y) ∈ Fn × Fn : (x, y) ∈ RV , τV (y) = (1/n+ 1/(n− 1))/2}.

Notice that the map Q is well defined and its graph is A-measurable where A denotes the σ-algebra
generated by Suslin sets. Since A-measurable sets are universally measurable (meaning they belong to
every completion of the Borel σ-algebra with respect to any probability measure), in particular this
ensures that Q is m-measurable.

Notation. From now on we will denote Q := Q(TV ) ⊂ X the quotient set (which is A-measurable).
The equivalence classes of RV inside TV will be called rays and denoted with Xα, with α ∈ Q.

Applying the same trick used in [19, Section 3.1], Lemma 4.8 allows to apply Disintegration Theorem
[32, Section 452] (see also [15, Section 6.3]), provided the measure m is suitably modified into a finite
measure. To this aim, it will be useful the next elementary lemma (for its proof see [19, Lemma 3.3]).

Lemma 4.9. There exists a Borel function f : X → (0,∞) satisfying

inf
K
f > 0, for any bounded subset K ⊂ X,

∫
TV
f m = 1. (4.10)

Then, given f : X → (0,∞) satisfying (4.10), set µ := f mxTV , and define the normalized quotient
measure q := Q] µ ∈ P(X). It is straightforward to check that

Q](mxTV )� q.

Take indeed E ⊂ Q with q(E) = 0; then by definition
∫
Q−1(E)

f(x)m(dx) = 0, implying m(Q−1(E)) =

0, since f > 0. From the Disintegration Theorem [32, Section 452], we deduce the existence of a map

Q 3 α 7−→ µα ∈ P(X)

verifying the following properties:

(1) for any µ-measurable set B ⊂ X, the map α 7→ µα(B) is q-measurable;

(2) for q-a.e. α ∈ Q, µα is concentrated on Q−1(α);

(3) for any µ-measurable set B ⊂ X and q-measurable set C ⊂ Q, the following disintegration
formula holds:

µ(B ∩Q−1(C)) =

∫
C

µα(B) q(dα).

Finally the disintegration is q-essentially unique, i.e. if any other map Q 3 α 7−→ µ̄α ∈ P(X) satisfies
the previous three points, then

µ̄α = µα, q-a.e. α ∈ Q. (4.11)
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Hence once q is given (recall that q depends on f from Lemma 4.9), the disintegration is unique up to
a set of q-measure zero. In the case m(X) <∞, the natural choice, that we tacitly assume, is to take
as f the characteristic function of TV normalised by m(TV ) so that q := Q](mxTV /m(TV )).

All the previous properties will be summarized saying that Q 3 α 7→ µα is a disintegration of µ
strongly consistent with respect to Q. It follows from [32, Proposition 452F] that∫

X

g(x)µ(dx) =

∫
Q

∫
g(x)µα(dx) q(dα),

for every g : X → R ∪ {±∞} such that
∫
gµ is well-defined in R ∪ {±∞}. Hence picking g = 1/f

(where f is the one used to define µ), we get that

mxTV =

∫
Q

µα
f

q(dα),

where the identity has to be understood in duality with test functions as the previous formula.
Defining mα := µα/f , we obtain that mα (called conditional measure) is a Radon non-negative

measure over X, verifying all the measurability properties (with respect to α ∈ Q) of µα and giving
a disintegration of mxTV strongly consistent with respect to Q. Moreover, for every bounded subset
K ⊂ X, it holds

1

supK f
µα(K) ≤ mα(K) =

µα
f

(K) ≤ 1

infK f
, for q-a.e. α ∈ Q.

In the next statement, we summarize what obtained so far (cf. [19]). We denote by M+(X) the
space of non-negative Radon measures over (X, d).

Theorem 4.10. Let (X, d,�,≤, τ) be a globally hyperbolic Lorentzian geodesic space, and V ⊂ X a
Borel achronal FTC subset.

Then the measure m restricted to the transport set without endpoints TV admits the following dis-
integration formula:

mxTV =

∫
Q

mα q(dα),

where q is a Borel probability measure over Q ⊂ X such that Q](mxTV ) � q and the map Q 3 α 7→
mα ∈M+(X) satisfies the following properties:

(1) for any m-measurable set B, the map α 7→ mα(B) is q-measurable;

(2) for q-a.e. α ∈ Q, mα is concentrated on Q−1(α) = Xα (strong consistency);

(3) for any m-measurable set B and q-measurable set C, the following disintegration formula holds:

m(B ∩Q−1(C)) =

∫
C

mα(B) q(dα);

(4) For every bounded subset K ⊂ X there exists a constant CK ∈ (0,∞) such that

mα(K) ≤ CK, for q-a.e. α ∈ Q.

Moreover, fixed any q as above such that Q](mxTV )� q, the disintegration is q-essentially unique (in
the sense of (4.11)).
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4.3 `p-cyclically monotone subsets contained in the transport set TV
We will now obtain two results permitting to include `p-cyclically monotone sets inside `-cyclically
monotone sets. This technique has been introduced in [14] and pushed further in [16, 17] for the metric
setting, to generalize localization paradigm to metric measure spaces using the equivalence between
optimality and cyclical monotonicity.

In the present setting, since the cost `p may take the value −∞, `p-cyclical monotonicity does not
directly imply optimality. Nontheless using [9] and its consequences included in Proposition 2.8, we
will use cyclically monotone sets to construct locally optimal couplings and to deduce local estimates
on the disintegration that will be then globalized.

There is a simple and natural way to construct Wasserstein geodesics with 0 < p < 1: translate
along transport rays by a constant “distance”. Notice that 0 < p < 1 plays a crucial role, as an
analogous statement in the Riemannian setting does not hold true for W2.

Proposition 4.11. Consider Λ ⊂ ΓV with the following property: there exists t > 0 such that for each
(x, y) ∈ Λ, τ(x, y) = t. Then for each 0 < p < 1 the set Λ is `p-cyclically monotone.

Proof. Given (x1, y1), . . . , (xn, yn) ∈ Λ, we need to prove

n∑
i=1

`(xi, yi)
p ≥

n∑
i=1

`(xi+1, yi)
p,

that can be rewritten as

t ≥

(
1

n

n∑
i=1

`(xi+1, yi)
p

)1/p

. (4.12)

From Lemma 4.2 the corresponding inequality for p = 1 is valid:

nt =

n∑
i=1

`(xi, yi) ≥
n∑
i=1

`(xi+1, yi);

we rewrite it as

t ≥ 1

n

n∑
i=1

`(xi+1, yi). (4.13)

Since by assumption 0 < p < 1, the concavity of the function R 3 s 7→ sp implies(
1

n

n∑
i=1

`(xi+1, yi)

)p
≥ 1

n

n∑
i=1

`(xi+1, yi)
p,

which, combined with (4.13), gives (4.12).

In the next proposition we give a second way to construct `p-cyclically monotone sets (cf. [14]).

Proposition 4.12. Let ∆ ⊂ ΓV be such that

(τV (x0)− τV (x1))(τV (y0)− τV (y1)) ≥ 0, for all (x0, y0), (x1, y1) ∈ ∆. (4.14)

Then ∆ is `p-cyclically monotone for each p ∈ (0, 1).

Proof. Let {(x1, y1), . . . , (xN , yN )} ⊂ ∆ be an arbitrary finite subset of ∆. Define si := τV (xi),
ti := τV (yi) and consider the auxiliary measures

η0 :=
1

N

N∑
i=1

δsi , η1 :=
1

N

N∑
i=1

δti .
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Notice that the support η0 and η1 are confined inside a compact real interval, say I. Consider finally
the map F : I → I defined by

F (s) =

{
ti if s = si,

0 elsewhere .
(4.15)

Trivially F]η0 = η1; moreover, by (4.14), F is monotone on supp η0. This implies that graph(F ) is also
| · |2-cyclically monotone on supp η0 and in particular∫

|x− F (x)|2η0(dx) = W2(η0, η1),

where W2 is intended to be defined over P2(R). By [77, Remark 2.19 (ii)], F is optimal for any cost
c(x, y) = h(|x − y|), with h strictly convex and non-negative. For p ∈ (0, 1), consider the function
h(r) := −rp + a, where a can be taken to be

a > 2 sup
s∈I
|s|p.

Thus c̄(s, t) := −|t − s|p + a is non-negative and falls into the hypothesis of [77, Remark 2.19 (ii)].
Hence graph(F ) restricted to supp η0 is also c̄-cyclically monotone. We can now conclude as follows:

N∑
i=1

`(xi, yi)
p =

N∑
i=1

(τV (yi)− τV (xi))
p = −

N∑
i=1

c̄(si, ti) +Na

≥ −
N∑
i=1

c̄(si, ti+1) +Na =

N∑
i=1

(|τV (yi+1)− τV (xi)|)p

≥
N∑
i=1

`(xi, yi+1)p,

where in the last inequality we used (4.2).

4.4 Regularity of the conditional measures

Recall that by the Disintegration Theorem 4.10 we can write m =
∫
Q
mαq(dα), where mα is a non-

negative Radon measure on X concentrated on the ray Xα, for q-a.e. α ∈ Q. The goal of this section
is to prove that the conditional measures mα’s are absolutely continuous with respect to the Hausdorff
measure H1 restricted to the ray Xα, for q-a.e. α ∈ Q. Such a regularity of mα can be inferred from
the behavior of m with respect to translation along the transport set TV (cf. [10]).
Let us set some notation. First recall the definition (4.4) of transport set with endpoints T eV . For any
Borel set A ⊂ T eV and t ∈ [0,+∞) we can associate its “forward” translation

At := P2{(x, y) ∈ (A× T eV ) ∩ ΓV : τ(x, y) = t}.

If A is a Suslin set, At is Suslin as well. In particular, for A ⊂ T eV having m(A) > 0 it makes sense to
consider the set

{t ∈ [0,+∞) : m(At) > 0}.
and to evaluate its Lebesgue measure.

Proposition 4.13. Let (X, d,m,�,≤, τ) be a timelike non-branching, locally causally closed, K-
globally hyperbolic, Lorentzian geodesic space satisfying TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈
[1,∞). For any Suslin set A ⊂ T eV \ b(T eV ) having m(A) > 0 there exists s > 0 and a compact subset
B ⊂ A such that ⋃

t∈[0,s]

Bt b X, Bt ⊂ T eV \ b(T eV ) and m(Bt) > 0 ∀t ∈ [0, s). (4.16)

In particular, |{t ∈ [0,+∞) : m(At) > 0}| > 0.
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Proof. Consider A ⊂ T eV \ b(T ev ) with m(A) > 0. Take s ∈ [0,+∞) and consider the following subset
of ΓV :

Λs := {(x, y) ∈ (A× T eV ) ∩ ΓV : τ(x, y) = s}.

From Proposition 4.11 we deduce that Λs is `p-cyclically monotone, for each s ∈ [0,+∞). We also
observe that

0 ≤ s1 ≤ s2 =⇒ P1(Λs1) ⊂ P1(Λs2) ⊂ A.

Moreover, since A ⊂ T eV \ b(T eV ), it follows that for each x ∈ A there exist s ∈ (0,+∞) and z ∈ TV
such that (x, z) ∈ Λs, showing that ⋃

s>0

P1(Λs) = A.

In particular, by monotone convergence, we have lims↓0 m(P1(Λs)) = m(A) > 0. Define then B :=
P1(Λs) for s > 0 small enough so that m(B) > 0. We can also find a compact subset of B of positive
m-measure, that we still denote by B, and a measurable map T : B → TV such that (x, T (x)) ∈ Λs for
all x ∈ B. We then consider the following measures

µ0 := mxB/m(B), µ1 := T]µ0.

By construction, the coupling associated to T , i.e. πT = (Id, T )]µ0 verifies the following two conditions:∫
τ(x, y)pπT (dxdy) = sp ∈ (0,+∞).

Since πT is `p-cyclically monotone and πT ({τ > 0}) = 1, Proposition 2.8 ensures it is an `p-optimal
coupling. Up to further restricting π, we can assume that suppπ b {τ > 0}. Then by Theorem 3.20
and Corollary 3.21, there is a unique `p-geodesic (µt)t∈[0,1] between µ0 and µ1, and µt � m for all
t ∈ [0, 1). K-global hyperbolicity implies that

⋃
t∈[0,1] suppµt b X.

Since T is a translation of length s, it follows that µt is concentrated inside Bts ⊂ Ats; being
absolutely continuous, it implies that

m(Ats) > m(Bts) > 0, ∀t ∈ [0, 1),

proving the claim.

Corollary 4.14. Under the same assumptions of Proposition 4.13, it holds m(a(T eV )) = 0.

Proof. Assume by contradiction m(a(T eV )) > 0. Setting A = a(T eV ) in Proposition 4.13, we obtain
B ⊂ A compact subset satisfying (4.16).

Step 1. With the same notation of Proposition 4.13, we first claim that

Bt0 ∩Bt1 = ∅, for any 0 < t0 < t1 < s. (4.17)

Indeed, if by contradiction there exists y ∈ Bt0∩Bt1 then there exist x, z ∈ a(T eV ) such that τ(x, y) = t0,
τ(z, y) = t1, (x, y) ∈ ΓV and (z, y) ∈ ΓV . Since y /∈ b(T eV ), we can repeat the argument in Case 3 of
the proof of Proposition 4.5 and get that (z, x) ∈ ΓV contradicting that x ∈ a(T eV ).

Step 2. From Proposition 4.13 we have that there are uncountably many t ∈ [0, s) satisfying
m(Bt) > 0 and (4.17). Hence, on the one hand,

m

 ⋃
t∈(0,s)

Bt

 = +∞. (4.18)

On the other hand, since by (4.16)
⋃
t∈[0,s]Bt is relatively compact and m is by assumption a Radon

measure, we have m
(⋃

t∈[0,s]Bt

)
<∞ contradicting (4.18).
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Of course, if we assume that X endowed with the reversed causal structure satisfies the assumptions
of Proposition 4.13, then also m(b(T eV )) = 0.

Proposition 4.15. Under the same assumptions of Proposition 4.13, the conditional measure mα
(given in the Disintegration Theorem 4.10) is absolutely continuous with respect to the Lebesgue measure
L1xXα along the ray Xα, for q-a.e. α ∈ Q.

Proof. Assume by contradiction there is a Borel subset Q̂ ⊂ Q with q(Q̂) > 0 such that mα 6� L1xXα
for each α ∈ Q̂.
Let mα = hαL1xXα+m⊥α be the Lebesgue decomposition of mα with respect to L1xXα , with m⊥α ⊥
L1xXα . Then, for every α ∈ Q̂ there exists a Borel subset Aα ⊂ Xα such that

L1(Aα) = 0 and m⊥α = m⊥α xAα . (4.19)

Define A :=
⋃
α∈Q̂A

α ⊂ TV and observe that the Disintegration Theorem 4.10 gives

m(A) =

∫
Q

mα(A) q(dα) =

∫
Q̂

m+
α (Aα) q(dα) > 0.

Proposition 4.13 implies

0 <

∫
R+

m(At) dt =

∫
R+

(∫
Q

mα(At) q(dα)

)
dt =

∫
Q

(∫
R+

mα(At) dt

)
q(dα), (4.20)

where in the second equality we used the Disintegration Theorem 4.10, and the third equality follows
by Fubini-Tonelli’s Theorem. In order to simplify the notation, for the rest of the proof we identify
Xα with an interval in the Real line (see Lemma 4.6). Observe that∫

R+

mα(At) dt = L1 ⊗mα {(t, x) : t > 0, x ∈ Xα, x− t ∈ Aα}

=

∫
Xα

L1({t > 0 : x− t ∈ Aα})mα(dx) = 0, (4.21)

where in the last equality we used that

L1({t > 0 : x− t ∈ Aα}) = L1(Aα) = 0,

by the invariance properties of the Lebesgue measure and (4.19).
Plugging (4.21) into (4.20) gives the contradiction 0 < 0.

We summarise the content of this subsection, combined with Lemma 4.4 and the Disintegration
Theorem 4.10, in the next statement.

Theorem 4.16. Let (X, d,m,�,≤, τ) be a timelike non-branching, locally causally closed, K-globally
hyperbolic, Lorentzian geodesic space satisfying TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈ [1,∞),
and assume that the causally-reversed structure satisfies the same conditions. Let V ⊂ X be a Borel
achronal FTC subset, T eV , a(T eV ), b(T eV ) and TV be defined in (4.4), (4.5), (4.6).

Then m(a(T eV )) = m(b(T eV ) = 0 and the following disintegration formula holds true:

mxI+(V )= mxT eV = mxTV =

∫
Q

mα q(dα) =

∫
Q

h(α, ·)L1xXα q(dα), (4.22)

where

• q is a probability measure over the Borel quotient set Q ⊂ TV ;

• h(α, ·) ∈ L1
loc(Xα,L1xXα) for q-a.e. α ∈ Q;

• the map α 7→ mα(A) = h(α, ·)L1xXα(A) is q-measurable for every Borel set A ⊂ TV .
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4.5 Localization of TMCPe
p(K,N)

In this section we localize the curvature condition TMCPep(K,N) to the one dimensional metric mea-
sures spaces (Xα, |·|,mα) decomposing TV , in the sense of the Disintegration Theorem 4.16 (cf. [10, 19]).

Theorem 4.17. Let (X, d,m,�,≤, τ) and V ⊂ X be as in Theorem 4.16 with N ∈ (1,∞), and recall
the Disintegration formula (4.22).

Then, for q-a.e. α ∈ Q, the density h(α, ·) has an almost everywhere representative that is locally
Lipschitz and strictly positive in the interior of Xα, continuous on its closure, and satisfying(

sK/(N−1)(b− τV (x1))

sK/(N−1)(b− τV (x0))

)N−1

≤ h(α, x1)

h(α, x0)
≤
(
sK/(N−1)(τV (x1)− a)

sK/(N−1)(τV (x0)− a)

)N−1

, (4.23)

for all x0, x1 ∈ Xα, with 0 ≤ a < τV (x0) < τV (x1) < b < π
√

(N − 1)/(K ∨ 0).
In other words, for q-a.e. α ∈ Q, the one-dimensional metric measure space (Xα, | · |,mα) satisfies

MCP(K,N).

Proof. For x ∈ TV we will write R(x) to denote its equivalence class in (TV , RV ), i.e. the “ray passing
through x” (recall Proposition 4.5). For a subset B ⊂ TV , we denote R(B) :=

⋃
x∈B R(x).

Let Q̄ ⊂ Q be an arbitrary compact subset of positive q-measure for which there exist ε > 0 and
0 < a0 < a1 such that

sup
x,y∈Xα

τ(x, y) > ε, Xα ∩ {τV = a0} 6= ∅, Xα ∩ {τV = a1} 6= ∅ ∀α ∈ Q̄,

R(Q̄) ∩ τ−1
V ([a0, a1]) b X, {(x, y) ∈ ΓV : x, y ∈ R(Q̄), τV (x) = a0, τV (y) = a1} b {τ > 0}.

For any A0 ∈ (a0, a1) and L0 > 0 satisfying A0 + L0 < a1, consider the probability measure

µ0 := cQ̄,A0,L0
·mxτ−1

V (A0,A0+L0)∩R(Q̄),

where cQ̄,A0,L0
is the normalization constant so that µ0 ∈ Pc(X).

Let Ta1
: R(Q̄) → R(Q̄) ∩ τ−1

V (a1) be the “ray-projection map” defined by Ta1
(x) = τ−1

V (a1) ∩ R(x)
and set µ1 := (Ta1

)]µ0. Notice that {(x, Ta1
(x)) : x ∈ suppµ0} b {τ > 0}. Moreover, Proposition

4.12 implies that the associated coupling πTa1
= (Id, Ta1)]µ0 is `p-cyclically monotone and thus, by

Proposition 2.8, `p-optimal. Analogously, setting T t(x) := τ−1
V ((1 − t)τV (x) + ta1) ∩ R(x), it follows

that the curve of probability measures µ̄t = T t]µ0 is an `p-geodesic. Notice that

µ̄t
(
τ−1
V (At,At + Lt) ∩R(Q̄)

)
= 1, (4.24)

where At := (1− t)A0 + ta1 and Lt := (1− t)L0.
Since by Corollary 3.21 there is a unique `p-geodesic (µt)t∈[0,1] between µ0 and µ1, it must be
(µt)t∈[0,1] = (µ̄t)t∈[0,1]. Thus, combining (4.24) with (3.75), we get

m(τ−1
V (At, At + Lt) ∩R(Q̄)) ≥ σ(1−t)

K/N (‖τ‖L2(πTa1
))
Nm(τ−1

V (A0, A0 + L0) ∩R(Q̄)),

that can be rewritten using the Disintegration formula (4.22) as∫
Q̄

mα(τ−1
V (At, At + Lt) q(dα) ≥ σ(1−t)

K/N (‖τ‖L2(πTa1
))
N

∫
Q̄

mα(τ−1
V (A0, A0 + L0)) q(dα).

Recalling that mα = h(α, ·)L1, the arbitrariness of Q̄, a0, a1, A0, L0 (letting L0 ↓ 0) implies that

(1− t)hα((1− t)A0 + ta1) ≥ σ(1−t)
K/N (a1 −A0)Nhα(A0)

for q-a.e. α ∈ Q, L1-a.e. t ∈ (0, 1), that can be rewritten as

b− s
b− a

hα(s) ≥ σ( b−sb−a )

K/N (b− a)Nhα(a), for q-a.e. α ∈ Q, L1-a.e. s ∈ (a, b) ⊂ Xα. (4.25)
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It is a standard trick to obtain the first inequality in (4.23) out of (4.25). We anyway include few
details for the case K > 0, the other one being completely analogous. Using the notation of [73] and

of [4] we consider τ
(t)
K,N (ϑ) := t1/Nσ

(t)
K/(N−1)(ϑ)

N−1
N . While τ

(t)
K,N (ϑ) is always larger than σ

(t)
K/N (ϑ), for

ϑ� 1 the two coefficients are almost identical: to be precise if 0 < K ′ < K̃ < K we can choose ϑ∗ > 0

so that for all 0 ≤ ϑ ≤ ϑ∗ and all t ∈ [0, 1] the reverse inequality τ
(t)
K′,N (ϑ) ≤ σ(t)

K̃/N
(ϑ) is valid. Hence

(4.25) becomes:
b− s
b− a

hα(s) ≥ τ ( b−sb−a )

K′,N (b− a)Nhα(a),

provided 0 < b− a < ϑ∗, that can be rewritten in the following form:

hα(s) ≥ σ( b−sb−a )

K′/(N−1)(b− a)N−1hα(a), for q-a.e. α ∈ Q, L1-a.e. s ∈ (a, b) ⊂ Xα, b− a < ϑ∗. (4.26)

We have therefore proved that for each K ′ < K the following is true: for any point a there exists a
neighborhood of a where (4.26) is valid. As shown for instance in [4, 21] this implies that the same
inequality is valid on the whole domain of hα (local-to-global property). Taking then the limit as
K ′ → K from below we obtain the first inequality of (4.23).
Applying the analogous procedure to the causal-reversed structure we obtain the second inequality of
(4.23).

Remark 4.18 (The case N = 1). In case N = 1, under the same assumptions of Theorem 4.17 one
can follow the proof up to (4.25) and obtain that

b− s
b− a

hα(s) ≥ σ( b−sb−a )

K (b− a)hα(a), for q-a.e. α ∈ Q, L1-a.e. s ∈ (a, b) ⊂ Xα.

If K ≥ 0, then σ
( b−sb−a )

K (b − a) ≥ b−s
b−a implying hα(s) ≥ hα(a); reversing the causal structure, it follows

that hα has to be constant. For K < 0 we compute the Taylor expansion

σ
(t)
K (θ) = t

[
1 + t2 θ

2

6 (−K) + o(θ4)

1 + θ2

6 (−K) + o(θ4)

]
= t

[
1− θ2

6
(−K)(1− t) + o(θ4)

]
.

Hence we can conclude that lim infb→a(hα(b)−hα(a))/(b−a) ≥ 0. Again reversing the causal structure
we obtain that hα is locally Lipschitz and the reverse inequality holds, yielding hα constant as well.

5 Applications

5.1 Synthetic mean curvature bounds for achronal FTC subsets

In this section we will work under the standing assumptions of Theorem 4.16.
Recall that, thanks to Lemma 1.8 and Lemma 4.4, T eV ⊂ {τV > 0}∪V . For each t ≥ 0, we consider

the map ft : Dom(ft) ⊂ Q→ T eV , where

Dom(ft) := {α ∈ Q : X̄α ∩ {τV = t} \ b(T eV ) 6= ∅}, ft(α) := X̄α ∩ {τV = t} \ b(T eV ), (5.1)

where X̄α denotes the closure of the ray Xα ⊂ X.
Proposition 4.5 ensures that ft is single valued for every t ≥ 0 and injective for t > 0. Moreover
f0(α) ∈ V for all α ∈ Dom (f0) (see Proposition 4.8).
Thus, for each m-measurable subset A ⊂ T eV having m(A) <∞ the next identities hold true:

m(A) =

∫
Q

∫
A∩Xα

h(α, t)dt q(dα) =

∫
[0,+∞)

(ft)](h(·, t) q(dα))(A) dt, (5.2)
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where the first identity is the Disintegration formula (4.22) and the second identity follows from Fubini-
Tonelli’s Theorem. Define then

Ht := (ft)] h(·, t)q, for all t ≥ 0. (5.3)

By definition, Ht is concentrated on the level set {τV = t}. In particular H0 is concentrated on V . An
expert reader will recognise that Ht({τV = t}) is a kind of τ -Minkowski content of the set {τV = t},
with respect to m. We summarize this construction in the following

Proposition 5.1. The following coarea-type formula holds true:

mxT eV =

∫ ∞
0

Ht dt,

meaning that for each measurable set A ⊂ T eV with m(A) < ∞, the map [0,∞) 3 t 7→ Ht(A) is
measurable and

m(A) =

∫ ∞
0

Ht(A)dt =

∫ ∞
0

Ht(A ∩ {τV = t})dt.

We use the previous codimension-one measures to propose the following weak notion of upper bound
on the mean curvature of V . Notice that, even if H0 (as well as Ht for every t ≥ 0) is a well defined
measure, in general it not finite (even locally). Since from a geometric point of view the mean curvature
is the first variation of the area, in order to speak of the former it is natural to assume that the latter
is locally finite. In what follows, we will thus assume that H0 is a non-negative Radon measure.

In the next definition we use the “initial-point projection map” a : TV → V, a := f0 ◦Q. It is not
hard to check it is m-measurable: notice indeed that

graph(a) = {(x, y) ∈ TV × V : τV (x) = τ(y, x)},

showing that graph(a) is Borel.

Definition 5.2. The Borel achronal FTC subset V ⊂ X has forward mean curvature bounded below
by H0 ∈ R if H0 is a non-negative Radon measure and for any normal variation

Vt,φ := {x ∈ TV : 0 ≤ τV (x) ≤ tφ(a(x))},

the following inequality holds true:

lim sup
t→0

m(Vt,φ)− t
∫
V
φH0

t2/2
≥ H0

∫
V

φ2H0,

for any bounded Borel function φ : V → [0,∞) with compact support. Analogously V has forward
mean curvature bounded above by H0 ∈ R if H0 is a non-negative Radon measure and for any normal
variation Vt,φ as above the following inequality holds true:

lim inf
t→0

m(Vt,φ)− t
∫
V
φH0

t2/2
≤ H0

∫
V

φ2H0, (5.4)

for any bounded Borel function φ : V → [0,∞) with compact support.

Remark 5.3 (The disintegration formula, the measures Ht and the mean curvature bounds in the
smooth setting). Let (Mn, g) be a 2 ≤ n-dimensional smooth globally hyperbolic space-time and
V ⊂ M be a smooth compact achronal spacelike hypersurface without boundary. Then, the signed
time-separation function τV from V is smooth on a neighbourhood U of V and ∇τV is the smooth
timelike past-pointing unit normal vector field along V . More precisely,

∇τV (x) ⊥ TxV, g(∇τV (x),∇τV (x)) = −1, ∀x ∈ V.
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Denote with Volg the volume measure of (Mn, g) and with VolV the induced (n − 1)-dimensional
volume measure on V . By compactness of V , there exists δ > 0 such that the g-geodesic [0, δ] 3 t 7→
expx(−t∇τV (x)) is a future pointing maximal geodesic, for every x ∈ V . Define

U := V × [0, δ] ⊂ V × R, Φ : U →M, Φ(x, t) := expx(−t∇τV (x)).

For δ > 0 small enough it is a standard fact (tubular neighbourhood theorem) that Φ is a diffeomor-
phism onto its image and that the following integration formula holds true:∫

M

ϕdVolg =

∫
V

∫ δ

0

ϕ ◦ Φ(x, t) detDΦ(x,t)|TxV dtVolV (dx), ∀ϕ ∈ Cc(Φ(U)). (5.5)

Consider also the map Q : Φ(U)→ V given by Q := P1 ◦ Φ−1. Notice that, for every x ∈ V , it holds

Q−1(V ) = T eV ∩ Φ(U) = TV ∩ Φ(U), Q−1(x) = R(x) ∩ Φ(U) = [x](TV ,RV ) ∩ Φ(U),

i.e. Q−1(x) is the transport ray associated to τV intersected with Φ(U). Moreover,

q := Q](VolgxΦ(U)) = ψVolV � VolV , where ψ(x) :=

(∫ δ

0

detDΦ(x,t)|TxV dt

)
, ∀x ∈ V.

Hence, we can identify Q with V , and the quotient measure q with ψVolV . The integration formula
(5.5) can be thus rewritten as∫

M

ϕdVolg =

∫
V

1

ψ(x)

∫ δ

0

ϕ ◦ Φ(x, t) detDΦ(x,t)|TxV dt q(dx), ∀ϕ ∈ Cc(Φ(U)). (5.6)

The uniqueness statement (4.11) in the disintegration formula combined with (4.22) and (5.6) gives:

hα(t) =
1

ψ(α)
detDΦ(α,t)|TαV , hα(0) =

1

ψ(α)
, ∀α ∈ V, ∀t ∈ [0, δ].

Moreover, observing that Φ(α, t) = ft(α) where the latter was defined in (5.1), it follows that the
measure Ht defined in (5.3) can written as

Ht := (ft)] h(·, t)q = Φ(·, t)]
(

detDΦ(α,t)|TαV VolV (dα)
)
, for all t ≥ 0,

in particular, H0 = VolV , Ht is the (n − 1)-volume measure on the hypersurface {Φ(x, t) : x ∈ V }
and Proposition 5.1 reduces to the standard co-area formula. The definition 5.2 of mean curvature
bounds also reduces to the classical notions. Indeed, for φ ∈ C∞(V ;R≥0), the region Vt,φ is the
domain trapped between V and the normal graph of φ. The first variation of the volume is thus
d
dtVolg(Vt,φ) = Hn−1({Φ(x, tφ(x)) : x ∈ V }), where Hn−1 is the standard (n − 1)-volume of the

hypersurface {Φ(x, tφ(x)) : x ∈ V }; in particular, d
dt

∣∣
t=0

Volg(Vt,φ) = VolV (V ) = H0(V ). The left
hand side in (5.4), corresponding to the second variation of volume, is thus the first variation of the

area which gives the mean curvature ~HV of V :

lim
t↓0

m(Vt,φ)− t
∫
V
φH0

t2/2
=

d

dt2

∣∣∣∣
t=0

Volg(Vt,φ) =
d

dt

∣∣∣∣
t=0

Hn−1({Φ(x, tφ(x)) : x ∈ V })

=

∫
V

φ g( ~HV ,∇τV ) VolV .

Remark 5.4 (Example of a surface with a conical singularity). The notion of forward mean curvature
bound should be compared with the recent related definition proposed by Ketterer [48]. In the notation
of [48], in order to have finite bound H0 one needs that the rays Xα are extendable passing through
V , which corresponds to have an interior & exterior ball condition (equivalent, in the smooth setting,
to a local L∞ bound on the full second fundamental form), see [48, Remark 5.9]. The notion proposed

59



above in Definition 5.2 instead works well even if the set V has corners or conical singularities. Indeed,
for instance, it is not hard to see that the set

V = {(x, t) ⊂ Rn,1 : t = α|x|}, α ∈ (0, 1),

in the (n+ 1)-dimensional Minkowski space-time Rn,1 is an achronal topological hypersurface, smooth
outside the origin (where it is Lipschitz) and having forward mean curvature bounded above by H0 = 0
in the sense of Definition 5.2. Notice that for any compact subset, one could choose the upper bound
on the mean curvature to be strictly negative, but such an upper bound approaches zero as |x| → ∞.

5.2 Hawking Singularity theorem in a synthetic framework

Let us define DH0,K,N > 0 as follows:

DH0,K,N :=



π
2

√
N−1
K if K > 0, N > 1, H0 = 0√

N−1
K cot−1

(
−H0√
K(N−1)

)
if K > 0, N > 1, H0 ∈ R \ {0}

−N−1
H0

if K = 0, N > 1, H0 < 0√
−N−1

K coth−1

(
−H0√
−K(N−1)

)
if K < 0, N > 1, H0 < −

√
−K(N − 1).

(5.7)

Theorem 5.5 (Hawking Singularity Theorem for TMCPep(K,N) spaces). Let (X, d,m,�,≤, τ) be a
timelike non-branching, locally causally closed, K-globally hyperbolic, Lorentzian geodesic space satis-
fying TMCPep(K,N) for some p ∈ (0, 1), K ∈ R, N ∈ [1,∞) and assume that the causally-reversed
structure satisfies the same conditions.
Let V ⊂ X be a Borel achronal FTC subset having forward mean curvature bounded above by H0 in
the sense of Definition 5.2. If

1. K > 0, N > 1 and H0 ∈ R, or

2. K = 0, N > 1 and H0 < 0, or

3. K < 0, N > 1 and H0 <
√
−K(N − 1) < 0,

then for every x ∈ I+(V ) it holds τV (x) ≤ DH0,K,N . In particular, for every timelike geodesic γ ∈
TGeo(X) with γ0 ∈ V , the maximal (on the right) domain of definition is contained in

[
0, DH0,K,N

]
.

In case N = 1, H0 < 0, it holds that I+(V ) = ∅.

Proof. Step 1: we show that supx∈I+(V ) τV (x) ≤ DH0,K,N , case N ∈ (1,∞).

Recall that, from Lemma 4.4, it holds I+(V ) = T eV \ V . Moreover, from Theorem 4.16 we have the
disintegration formula

mxI+(V )= mxT eV =

∫
Q

h(α, ·)L1xXα q(dα), (5.8)

where the closure X̄α of each Xα is a timelike geodesic starting at a point aα ∈ V and parametrized
by arclength on a (apriori possibly unbounded) closed Real interval Iα := [0, dα] ⊂ [0,∞) in terms of
τV (·) = τ(aα, ·), see Lemma 4.6 . For simplicity of notation, in the rest of the proof we will identify
X̄α with the closed Real interval Iα ⊂ [0,∞).
From Theorem 4.17, for q-a.e. α ∈ Q, the density h(α, ·) in (5.8), has an almost everywhere represen-
tative that is locally Lipschitz and strictly positive in the interior of Iα and continuous on Iα satisfying

h(α, t) ≥ h(α, 0)

(
sK/(N−1)(bα − t)
sK/(N−1)(bα)

)N−1

for all t ∈ [0, bα], bα ∈ Iα. (5.9)
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Recalling the notation of Definition 5.2 and using (5.8)-(5.9), for every bounded Borel function φ :
V → [0,∞) with compact support satisfying φ(f0(α)) ∈ Iα for every α ∈ Q, and for any q-measurable
assignment Q 3 α 7→ bα ∈ Iα with bα ≥ φ(f0(α)), bα > 0 for every α ∈ Q it holds:

m(Vt,φ)− t
∫
V

φH0 =

∫
Q

(∫
[0,tφ(f0(α))]

h(α, x)dx

)
q(dα)− t

∫
Q

φ(f0(α))h(α, 0) q(dα)

=

∫
Q

(∫
[0,t]

h(α, sφ(f0(α)))φ(f0(α))ds

)
q(dα)− t

∫
Q

φ(f0(α))h(α, 0) q(dα)

=

∫
Q

(∫
[0,t]

(h(α, sφ(f0(α)))− h(α, 0))ds

)
φ(f0(α)) q(dα)

≥
∫
Q

∫
[0,t]

((
sK/(N−1)(bα − sφ(f0(α)))

sK/(N−1)(bα)

)N−1

− 1

)
ds φ(f0(α))h(α, 0) q(dα)

=

∫
Q

∫
[0,t]

(
−
√
|K|(N − 1)

cK/(N−1)(bα)

sK/(N−1)(bα)
sφ(f0(α)) + o(s)

)
ds φ(f0(α))h(α, 0) q(dα)

=

∫
Q

(
−
√
|K|(N − 1)

cK/(N−1)(bα)

sK/(N−1)(bα)

t2

2
+ o(t2)

)
φ(f0(α))2 h(α, 0)q(dα), ∀t ∈ (0, 1).

Taking lim inf of both sides of the last inequality, using Fatou’s Lemma and the assumption that the
forward mean curvature of V is bounded above by H0 we deduce that

H0

∫
V

φ2H0 ≥ lim inf
t→0

m(Vt,φ)− t
∫
V
φH0

t2/2
≥
∫
V

−
√
|K|(N − 1)

cK/(N−1)(bα)

sK/(N−1)(bα)
φ2H0,

implying
bα ≤ DH0,K,N q-a.e. α ∈ Q.

By the arbitrariness of the assignment Q 3 α 7→ bα ∈ Iα = [0, dα] ⊂ [0,∞), it follows that

dα ≤ DH0,K,N q-a.e. α ∈ Q. (5.10)

Since by construction dα = supx∈Xα τV (x), the combination of (5.10) and the disintegration formula
(5.8) yields

τV (x) ≤ DH0,K,N , m-a.e. x ∈ I+(V ). (5.11)

The lower semi-continuity of τV permits to promote (5.11) to every x ∈ I+(V ).

Step 2. Consider any timelike geodesic γ parametrized by arclength and defined on a maximal
(on the right) interval [0, a) ⊂ [0,∞) such that γ0 ∈ V . We claim that a ≤ DH0,K,N . Indeed, if by
contradiction for some s0 ∈ [0, a)

τ(γ0, γs0) = s0 > DH0,K,N ,

the very definition (1.8) of τV would imply τV (γs0) > DH0,K,N contradicting Step 1.

Step 3: The case N = 1, H0 < 0.
Recalling Remark 4.18, in case N = 1 the density hα(·) is constant on Iα. Thus, argueing along the
lines of Step 1, we get that H0

∫
V
φ2H0 ≥ 0 which gives a contradiction unless I+(V ) = ∅.

5.3 Timelike Bishop-Gromov, Bonnet-Myers and Poincaré inequalities for
TMCPe

p(K,N)

In order to state the next result we need to introduce a bit of notation. Given a Borel achronal FTC
subset V ⊂ X, we say that a subset E ⊂ I+(V ) ∪ V is (τV , R0)-conically shaped if

E = {x ∈ I+(V ) ∪ V : τV (x) ≤ R0, yx ∈ E for all yx ∈ V with τ(yx, x) = τV (x)}.
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Note that, for a closed subset E, the condition is equivalent to ask that for every x ∈ E ∩ TV the
intersection E ∩ [x](TV ,RV ) corresponds to the interval [0, R0] via the map F of Lemma 4.6.

Proposition 5.6 (A Bishop-Gromov type inequality for achronal FTC sets in TMCPep(K,N) spaces).
Let (X, d,m,�,≤, τ) be a timelike non-branching, locally causally closed, K-globally hyperbolic, Lorentzian
geodesic space satisfying TMCPep(N,N) for some p ∈ (0, 1),K ∈ R, N ∈ (1,∞) and assume that the
causally-reversed structure satisfies the same conditions.
Let V ⊂ X be a Borel achronal FTC subset. Then, for every compact (τV , R0)-conically shaped subset
E ⊂ I+(V ) ∪ V it holds (recall the definition (5.3) of Ht):

Hr({τV = r} ∩ E)

HR({τV = R} ∩ E)
≥
(

sK/(N−1)(r)

sK/(N−1)(R)

)N−1

, for all 0 ≤ r ≤ R ≤ R0 (5.12)

m({τV ≤ r} ∩ E)

m({τV ≤ R} ∩ E)
≥
∫ r

0

(
sK/(N−1)(t)

)N−1
dt∫ R

0

(
sK/(N−1)(t)

)N−1
dt
, for all 0 ≤ r ≤ R ≤ R0. (5.13)

Proof. In order to show (5.12) observe that the combination of (5.2), (5.3) and Theorem 4.17 gives

Hr({τV = r} ∩ E) =

∫
V ∩E

h(α, r) q(dα)

≥
(

sK/(N−1)(r)

sK/(N−1)(R)

)N−1 ∫
V ∩E

h(α,R) q(dα)

=

(
sK/(N−1)(r)

sK/(N−1)(R)

)N−1

Hr({τV = R} ∩ E).

The claim (5.13) follows from (5.12) by recalling (5.2), (5.3) and the classical Gromov’s Lemma (see
for instance [22, Lemma III.4.1]).

Notice that, in particular, if {τV ≤ R0} ⊂ X is a compact subset then (5.12) and (5.13) remain
valid without capping with the cutoff set E in the left hand side.

Let us introduce some notation for the next result. For u : X → R we will use the short-hand
notation u(α, t) to denote u(X̄α ∩ {τV = t}). Notice that if u is Lipschitz then, for every α ∈ Q,
the function t 7→ u(α, t) is locally Lipschitz and thus L1-a.e. differentiable with derivative denoted as
∂
∂tu(α, t). For u with compact support, we will also use the notation

uα :=
1

mα(suppu)

∫
Xα

umα if mα(suppu) 6= 0, and uα := 0 otherwise,

to denote the average of u on (Xα,mα).

Proposition 5.7 (A timelike Poincaré inequality for TMCPep(K,N)). For every (K,N,D) ∈ R ×
(1,∞)× (0,∞), there exists a constant λMCPK,N,D > 0 with the following property.
Let (X, d,m,�,≤, τ) and V ⊂ X be as in Proposition 5.6. Then, for every u : X → R Lipschitz with
compact support contained in I+(V ) it holds∫

X

|u− uα|2 m ≤ λMCPK,N,D

∫
X

∣∣∣∣ ∂∂tu(α, t)

∣∣∣∣2 m, (5.14)

where D := supα∈Q supx,y∈Xα∩suppu τ(x, y) ≤ supx,y∈suppu τ(x, y) <∞.

Proof. Since from Theorem 4.17 each ray (Xα,mα) is an MCP(K,N) space, from [41] we know that∫
Xα

|u(α, t)− uα|2 mα(dt) ≤ λMCPK,N,D

∫
Xα

∣∣∣∣ ∂∂tu(α, t)

∣∣∣∣2 mα(dt).

The claimed (5.14) follows then from the disintegration formula (4.22).
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It is possible to give quite precise estimates on the constan λMCPK,N,D , the interested reader is
referred to [41].

Finally we take advantage of the techniques developed in the second part of the paper to sharpen,
for timelike non-branching spaces, the timelike Bishop-Gromov inequality obtained in Proposition 3.5
and the timelike Bonnet-Myers inequality obtained in Proposition 3.6.

Proposition 5.8 (A timelike Bishop-Gromov inequality for timelike non-branching TMCPep(K,N)).
Let (X, d,m,�,≤, τ) be as in Proposition 5.6. Then, for each x0 ∈ X, each compact subset E ⊂
I+(x0) ∪ {x0} τ -star-shaped with respect to x0, and each 0 < r < R ≤ π

√
(N − 1)/(K ∨ 0), it holds:

s(E, r)

s(E,R)
≥
(

sK/(N−1)(r)

sK/(N−1)(R)

)N−1

,
v(E, r)

v(E,R)
≥
∫ r

0
sK/(N−1)(t)

N−1dt∫ R
0

sK/(N−1)(t)N−1dt
. (5.15)

Proof. Consider τx0(·) := τ(x0, ·) : I+(x0) → R. One can repeat verbatim (actually here it would
be slightly easier) the constructions of Section 4 replacing τV by τx0 and obtain a partition (up to
a set of m-measure zero) of I+(x0) into transport rays {Xα}α∈Q associated to τx0

, i.e. each Xα is
a future pointing radial τ -geodesic emanating from x0. One can disintegrate mxI+(x0) accordingly as
mxI+(x0)=

∫
Q
mα q(dα) where each mα is concentrated on Xα, and (Xα, |·|,mα) is a 1-dim. MCP(K,N)

m.m.s.. One can now prove (5.15) along the same lines of the proof of Proposition 5.6.

Proposition 5.9 (A timelike Bonnet-Myers inequality for timelike non-branching TMCPep(K,N)). Let
(X, d,m,�,≤, τ) be as in Proposition 5.6, with K > 0. Then

sup
x,y∈X

τ(x, y) ≤ π
√
N − 1

K
. (5.16)

Proof. Assume by contradiction that there exist x0, x1 ∈ X with τ(x0, x1) ≥ π
√

(N − 1)/K + 2ε, for
some ε > 0. Let δ > 0 be such that

inf{τ(x0, y) : y ∈ Bd(x1, δ)} ≥ π
√

(N − 1)/K + ε.

Consider the disintegration mxI+(x0)=
∫
Q
mα q(dα) associated to τx0

, as outlined in the proof of Propo-

sition 5.8. Since m(Bd(x1, δ)) > 0, it follows that Lτ (Xα) ≥ π
√

(N − 1)/K + ε for a q-non negligible
subset of rays. But since every (Xα, | · |,mα) is a 1-dim. MCP(K,N) m.m.s. with full support, its
diameter is at most π

√
(N − 1)/K (as it’s easily seen from (4.23)). Contradiction.

Remark 5.10 (Sharpness). The Lorentzian model spaces are: for K < 0 (scaled) de Sitter space,
K = 0 Minkowski space, K > 0 (scaled) anti-de Sitter space. Recall that the standard de Sitter
space (Mn, gdS) has constant sectional curvature equal to 1, thus RicgdS (v, v) = −(n− 1)gdS(v, v) for
v timelike, and hence it is the model space for K = −(n− 1). The Minkowski space has null sectional
(and thus Ricci) curvatures, thus is the model space for K = 0. The anti de-Sitter space (Mn, gadS) has
constant sectional curvature equal to −1, thus RicgadS (v, v) = (n−1)gdS(v, v) for v timelike, and hence
it is the model space for K = n− 1. It is well known that any globally hyperbolic subset of (Mn, gadS)
has timelike diameter at most π, with sharp bound; this shows the sharpeness of Proposition 5.9. Using
that in the model spaces the sectional curvature is constant, direct volume computations via Jacobi
fields show that equality is achieved in (5.15); thus also Proposition 5.8 is sharp. Choosing V to be
a level set of the natural time-function in the model spaces, it is possible to check that equality is
achieved in (5.12) and (5.13) as well.

5.4 The case of a spacetime with continuous metric

Next we specialise Theorem 5.5 to the case of a spacetime with a continuous metric. As observed in
[24], spacetimes with continuous metrics may present pathological causal behaviour. For instance [24]
(see also [50, Section 5.1]) gives examples of spacetimes with Hölder-continous metrics where the null
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curves emanating from a point cover a set with non-empty interior, a phenomenon called “bubbling”.
In order to prevent such a pathological behavior, [24] proposed the notion of “causally plain” metric.
Let us briefly recall it together with the needed notation.

The notion of causally plain Lorentzian metric. Let ǧ, g be two Lorentzian metrics. We write
ǧ ≺ g if {v 6= 0 : ǧ(v, v) ≤ 0} ⊂ {v : g(v, v) < 0}. For a neighbourhood U of x ∈M , set

Ǐ+
g (x, U) := {y ∈ U :∃ a smooth Lorentzian metric ǧ ≺ g and a future pointing ǧ-timelike curve

γ : [0, 1]→ U , with γ0 = x, γ1 = y and ǧ(γ̇, γ̇) < 0}.

The set Ǐ−g (x, U) is defined analogously. It is clear that Ǐ±g ⊂ I±g and equality holds for smooth metrics.
Let us also recall that a cylindrical neighbourhood of a point x ∈ X with respect to g, is a relatively
compact chart domain containing x such that, in this chart, g equals the Minkowski metric at x and
the slopes of the light cones of g stay close to 1 (for the precise definition see [24, Def. 1.8]).

A spacetime (M, g) is said to be causally plain if every x ∈M admits a cylindrical neighbourhood
U such that ∂Ǐ±g (x, U) = ∂J±(x, U); otherwise (M, g) is said to be bubbling [24, Def. 1.16].
The rough idea is that (M, g) is causally plain provided, for every x ∈ M , the span of all null curves
emanating from x has empty interior.
It was proved in [24, Corollary 1.17] that a spacetime with locally Lipschitz continuous Lorentzian
metric is causally plain. In the same paper [24, Section 1.1] (see also [50, Section 5.1]) examples of
Hölder-continuos bubbling Lorentzian metrics are discussed.

Let (M, g) be a spacetime with a C0-Lorentzian metric. Recall from Remark 1.12 that if (M, g) is
globally hyperbolic and causally plain then the associated Lorentzian synthetic space is causally closed,
K-globally hyperbolic and geodesic. Recall also that any Cauchy hypersurface is causally complete.
It is then clear that Proposition 3.4, Proposition 3.5, Proposition 3.6 and Remark 3.8 give the following:

Corollary 5.11 (Geometric properties of a globally hyperbolic causally plain spacetime with C0 metric,
with synthetic timelike Ricci bounded below). Let (M, g) be a 2 ≤ n-dimensional globally hyperbolic,
causally plain spacetime with a C0-Lorentzian metric.

• Timelike Bishop-Gromov: If (M, g) satisfies TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈
[1,∞), then for each x0 ∈M , each compact subset E ⊂ I+(x0)∪ {x0} τ -star-shaped with respect
to x0, and each 0 < r < R ≤ π

√
N/(K ∨ 0), inequality (3.11) holds.

• Timelike Bonnet-Myers: If (M, g) satisfies TMCPep(K,N) for some p ∈ (0, 1),K > 0, N ∈ [1,∞),
then (3.12) holds. In particular (M, g) is not timelike geodesically complete.

• Timelike Brunn-Minkowski: If (M, g) satisfies wTCDep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈
[1,∞), then (3.9) holds.

In Corollary 5.14 below, taking advantage of the techniques developed in Section 3.4 and Section 4,
the results of Corollary 5.11 will be improved to sharp forms in case of timelike non-branching struc-
tures.

It is clear that Theorem 5.5 implies the following result for a spacetime with C0-Lorentzian metric.

Corollary 5.12 (Hawking Singularity Theorem for a spacetime with a C0-Lorentzian metric). Let
(M, g) be a 2 ≤ n-dimensional timelike non-branching, globally hyperbolic, causally plain spacetime
with a C0-Lorentzian metric satisfying TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈ (1,∞) and
assume that the causally-reversed structure satisfies the same conditions.
Let V ⊂M be a Borel achronal FTC subset (or, more strongly, let V be a Cauchy hypersurface) having
forward mean curvature bounded above by H0 < 0 in the sense of Definition 5.2.

Then for every x ∈ I+(V ) it holds τV (x) ≤ DH0,K,N , provided H0,K,N fall in the range specified
in Theorem 5.5 . In particular, for every timelike geodesic γ ∈ TGeo(M) with γ0 ∈ V , the maximal
(on the right) domain of definition is contained in

[
0, DH0,K,N

]
; in particular (M, g) is not timelike

geodesically complete.
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Remark 5.13. [Literature about Hawking singularity Theorem] Hawking singularity Theorem was
proved in [43, Theorem 4, p. 272] for smooth space-times (the proof works for C2 metrics) assuming
that V is a compact spacelike slice. The result was extended to C1,1 metrics in [51] and to C1 metrics
in [37], by approximating the metric of low regularity with smoother metrics. The extension to non-
compact future causally complete V was established in [33, Theorem 3.1] (see also [38]) in the smooth
setting, and extended to C1,1 metrics in [36]. Theorem 5.5 and Corollary 5.12, already in the smooth
setting, relax the future causal completeness with the weaker future timelike completeness (in addition
to extend the results to a synthetic framework, including C0 metrics). Hawking (as well as Penrose
and Hawking-Penrose) singularity Theorem was also extended to (smooth) closed cone structures [59]
and smooth weighted Lorentz-Finsler manifolds [55]. Let us mention that a first synthetic singularity
theorem was recently shown in [1] under the stronger assumptions that the space is a synthetic warped
product with lower bound on sectional curvature in the sense of comparision triangles (á la Alexandrov).

Specialising Proposition 5.6, Proposition 5.7, Proposition 5.8, Proposition 5.9 to the case of a
spacetime with a C0-Lorentzian metric give:

Corollary 5.14 (Timelike Bishop-Gromov, Bonnet-Myers and Poincare’ inequalities). Let (M, g) be
a 2 ≤ n-dimensional timelike non-branching, globally hyperbolic, causally plain spacetime with a C0-
Lorentzian metric satisfying TMCPep(K,N) for some p ∈ (0, 1),K ∈ R, N ∈ (1,∞) and assume that
the causally-reversed structure satisfies the same conditions.
Let V ⊂M be a Borel achronal FTC subset (or, more strongly, let V be a Cauchy hypersurface). Then:

• Timelike Bishop-Gromov I: For every compact (τV , R0)-conically shaped subset E ⊂ I+(V ) ∪ V
the inequalities (5.12) and (5.13) hold. In particular, if {τV ≤ R0} ⊂ X is a compact subset then
(5.12) and (5.13) remain valid without capping with the cutoff set E in the left hand side.

• Timelike Bishop-Gromov II: For each x0 ∈ M , each compact subset E ⊂ I+(x0) ∪ {x0} τ -star-
shaped with respect to x0, and each 0 < r < R ≤ π

√
(N − 1)/(K ∨ 0), the inequalities (5.15)

hold.

• Timelike Poincaré: For every u : M → R Lipschitz with compact support contained in I+(V ),
the inequality (5.14) holds.

• Timelike Bonnet-Myers: If K > 0, then inequality (5.16) holds.

A Appendix - TMCPep(K,N) on smooth Lorentzian manifolds

Theorem A.1. Let (Mn, g) be a globally hyperbolic smooth spacetime of dimension n ≥ 2 without
boundary. Then the associated Lorentzian geodesic space satisfies TMCPep(K,n) if only if Ricg(v, v) ≥
−Kg(v, v) for every timelike vector v ∈ TM .

Proof. Step 1: “If” implication.
From Theorem 3.1, the Lorentzian geodesic space associated to (Mn, g) satisfies the TCDep(K,n) con-
dition, which in turn implies TMCPep(K,n) by Proposition 3.11 (see also Remark 1.12).

Step 2 : “Only if” implication.
Fix x ∈M and v ∈ TpM future pointing with g(v, v) = −1. Let U be a compact subset of {w ∈ TxM :
w is future pointing with g(w,w) < 0}, star-shaped with respect to 0, such that rv ∈ U for r > 0 small
enough and such that the exponential map expgx : U →M of g based at x is a diffeomorphism onto its
image when restricted to U . Calling dVolg the volume density on M associated to g, recall that it can
be represented as

dVolg(y) = (expgx)] (Ax(r, ξ)drdξ) , for all y = expgx(rξ) ∈ expgx(U), (A.1)

where Ax(r, ξ) denotes the volume density on {rξ ∈ U : g(ξ, ξ) = −1} induced by g.
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Fix a g-orthonormal basis e1, e2, . . . , en of TpM with e1 = v and denote by κi the sectional curvature
of the plane spanned by e1 and ei, for i = 2, . . . , n. Recalling the definitions (3.6), (3.7) of sκ(ϑ) and

σ
(t)
κ (ϑ) respectively, it is easy to check that for small r > 0 it holds:

σ(1/2)
κ (2r) =

sκ(r)

sκ(2r)
=

1

2

(
1 +

κ

2
r2 +O(r4)

)
. (A.2)

Standard Jacobi-fields computations (see for instance [27] for the Lorentzian setting) give that

Ax(r, v)

Ax(2r, v)
=

n∏
i=2

sκi(r)

sκi(2r)
+O(r3). (A.3)

Plugging (A.2) into (A.3) yields

Ax(r, v)

Ax(2r, v)
=

1

2n−1

n∏
i=2

(
1 +

κi
2
r2
)

+O(r3) =
1

2n−1

(
1 +

n∑
i=2

κir
2

)
+O(r3)

=
1

2n−1

(
1 + Ricg(v, v)r2

)
+O(r3). (A.4)

We next relate Ax(r, v)/Ax(2r, v) with the TMCPep(K,n) condition via localisation.
Consider τx(·) := τ(x, ·) : I+(x) ⊃ expgx(U)→ R. By the very definitions, we have τx (expgx(rξ)) = r

for every rξ ∈ U , g(ξ, ξ) = −1. In other terms, the partition of expgx(U) \ {x} by future pointing g-
geodesics emanating from x coincides with the partition by transport rays induced by τx.

Under this identification, the disintegration of dVolg induced by τx is nothing but (A.1). Theorem
4.17 then gives that r 7→ Ax(r, v) is an MCP(K,n) density on an interval (0, εv) (see for instance the
proof of [62, Theorem 3.2]): it thus satisfies

Ax(r, v)

Ax(2r, v)
≥
(

sK/(n−1)(r)

sK/(n−1)(2r)

)n−1

. (A.5)

Combining (A.4) with (A.5), we obtain

Ricg(v, v)r2 ≥
(

2sK/(n−1)(r)

sK/(n−1)(2r)

)n−1

− 1 +O(r3) =

(
1 +

K

n− 1
r2

)n−1

− 1 +O(r3)

= Kr2 +O(r3).

Dividing both sides by r2 and sending r ↓ 0, we thus obtain Ricg(v, v) ≥ K = −Kg(v, v).
By the arbitrariness of x and v, the proof is complete.

Corollary A.2. Let (Mn, g) be a globally hyperbolic smooth spacetime of dimension n ≥ 2 without
boundary.

1. If Ricg(v, v) ≥ −Kg(v, v) for every timelike vector v ∈ TM , then the associated Lorentzian
geodesic space satisfies TMCPep(K

′, N ′) for every K ′ ≤ K and N ′ ≥ N .

2. If the Lorentzian geodesic space associated to (Mn, g) satisfies TMCPep(K,N), then n ≤ N .

Proof. The first statement follows from Theorem A.1 and Lemma 3.10 (or from Theorem 3.1 and
Proposition 3.11).
We now prove the second statement. We will build on the proof of Theorem A.1. Fix x ∈M and let

U ⊂ {w ∈ TxM : w is future pointing with g(w,w) < 0}

be compact star-shaped with respect to 0, with non-empty interior, such that the exponential map
expgx : U →M of g based at x is a diffeomorphism onto its image when restricted to U . Calling

Bgr (x, U) := expgx({w ∈ U : |g(w,w)| ≤ r}), r > 0,
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it is easy to see that there exists c = cU > 0 such that

Volg(B
g
r (x, U)) = c rn +O(rn+1), for small r > 0. (A.6)

On the other hand, using that r 7→ Ax(r, v) is an MCP(K,N) density (see the discussion before (A.5))
and recalling (A.1), we obtain via the classical Gromov’s Lemma (see for instance [22, Lemma III.4.1])
that

(0, ε) 3 r 7→ Volg(B
g
r (x, U))∫ r

0

[
sK/(N−1)(t)

]N−1
dt

is monotone non-increasing. (A.7)

Since sK/(N−1)(t) = O(t) for small t > 0, it is easy to see that the combination of (A.6) and (A.7)
yields n ≤ N .

Remark A.3. In general, TMCPep(K,N) on a globally hyperbolic smooth spacetime does not imply
that Ricg(v, v) ≥ −Kg(v, v) for every timelike vector v ∈ TM . It follows that TMCPep(K,N) is a
strictly weaker condition than wTCDep(K,N). More precisely, the following holds: For each N > 1
there exists a constant cN > 0 such that each globally hyperbolic smooth spacetime with timelike
Ricci curvature ≥ 0, dimension ≤ N − 1 and τ -diameter ≤ L satisfies TMCPep(K,N) for each positive
K ≤ cN/L2 (compare with [73, Remark 5.6] for the Riemannian setting).

Proof. From Theorem A.1 we know that TMCPep(0, N − 1) holds. Recalling that the TMCPep(K,N)
condition is equivalent to (3.14), it is sufficient to show that

tN−1 ≥
(
σ

(t)
K/N (ϑ)

)N
, ∀t ∈ [0, 1], ϑ ∈ [0, L].

Now, for sufficiently small cN ∈ (0, 1) and all Kϑ2 ≤ cN , the right-hand side can be estimated from
above by tN (1 + (1− t2)Kϑ2). But clearly tN−1 ≥ tN

(
1 + (1− t2)Kϑ2

)
, for all Kϑ2 ≤ cN .
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