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Einstein Equations and Spacetimes

Einstein Equations

Rµν − 1

2
gµν R = 8π Tµν , (1)

with

Rµν the Ricci curvature tensor,

R the scalar curvature tensor,

g the metric tensor and

Tµν the energy-momentum tensor.

Investigate dynamics of spacetimes (M, g), where M a 4-dimensional
manifold with Lorentzian metric g solving Einstein’s equations (1).

Einstein Vacuum (EV) Equations

Rµν = 0 . (2)



Evolution Equations, Constraints and Lapse

Evolution equations of a maximal foliation:

∂ḡij
∂t

= −2Φkij

∂kij
∂t

= −∇i∇jΦ + (R̄ij − 2kimk
m
j )Φ

Constraint equations of a maximal foliation:

trk = 0

∇i kij = 0

R̄ = | k |2

Lapse equation of a maximal foliation:

△Φ − | k |2 Φ = 0



Foliations of the Spacetime
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Foliation by a time function t
⇒ spacelike, complete Riemannian hypersurfaces Ht.

Foliation by a function u
⇒ null hypersurfaces Cu.

St,u = Ht ∩ Cu



Large Data

In order to investigate gravitational waves, we study the Cauchy problem.

• Stability theorems give precise description of null infinity.

• They are proven for small data. However, important results also hold
for large data.

Large data

Main behavior along null hypersurfaces towards future null infinity

⇒ Largely independent from the smallness.



General Spacetimes

From stability proofs, we have a very good understanding of the
dynamics and behavior of various classes of spacetimes.

Theorems [D. Christodoulou and S. Klainerman (1991), L. Bieri (2007)]

Every asymptotically flat initial data obeying appropriate smallness
assumptions (controlled via weighted Sobolev norms) gives rise to a
globally asymptotically flat solution of the Einstein vacuum equations
that is causally geodesically complete.

(CK) initial data where at spacelike infinity

ḡij = (1 + 2M
r ) δij + o4 (r−

3
2 ), and kij = o3 (r−

5
2 ).

(B) initial data where at spacelike infinity ḡij = δij + o3 (r−
1
2 ) and

kij = o2 (r−
3
2 ). (ADM energy finite.)

Small data ensures existence.

Large data

Main behavior along null hypersurfaces towards future null infinity

⇒ Largely independent from the smallness.



Non-Isotropic Mass

First, note that in (CK) spacetimes with initial metric asymptotically flat
of the type

ḡij = (1 +
2M

r
) δij + o4 (r−

3
2 )

the mass M is a constant.

⇒ What about the more general situation where we have mass that is
non-isotropic, that is

M(θ, ϕ)?

⇒ Investigate (A) spacetimes, more general! (See next slide.)



Asymptotic Flatness

(A) Asymptotically flat initial data set in the sense of (A): an
asymptotically flat initial data set (H0, ḡ, k), where ḡ and k are
sufficiently smooth and for which there exists a coordinate system
(x1, x2, x3) in a neighbourhood of infinity such that with

r = (
∑3

i=1(x
i)2)

1
2 → ∞, it is:

ḡij = δij + hij + o3 (r−
3
2 ) (3)

kij = o2(r
− 5

2 ) (4)

with hij being homogeneous of degree −1.

In particular, h may include a non-isotropic mass term M(θ, ϕ)
depending on the angles. The spacetime metric will include a resulting
term, being homogeneous of degree −1 with corresponding limit
M(u, θ, ϕ) at future null infinity depending on the retarded time u.



Asymptotic Flatness

(A*) Asymptotically flat initial data set in the sense of (A*): an
asymptotically flat initial data set (H0, ḡ, k), where ḡ and k are
sufficiently smooth and for which there exists a coordinate system
(x1, x2, x3) in a neighbourhood of infinity such that with

r = (
∑3

i=1(x
i)2)

1
2 → ∞, it is:

ḡij = δij + hij + o3 (r−
3
2 ) (5)

kij = O2(r
−2) (6)

with hij being homogeneous of degree −1.



Summary of main results:

For (A) spacetimes the following hold:

Peeling of the Weyl curvature components at future null infinity
stops.

Dynamical behavior with different properties: Different behavior and
fall-off properties at various levels, in particular, at future null
infinity and spacelike infinity. We also derive different behavior of
crucial curvature components and their derivatives.

Energy and momenta at future null infinity are well-defined. In
particular, angular momentum can be defined and is finite despite
the slow decay for β and its derivatives.

Address antipodal (non-)symmetries.



Asymptotic Flatness

(B) (L. Bieri 2007) (General asymptotically-flat spacetimes with finite
energy.) Asymptotically flat initial data set in the sense of (B): an
asymptotically flat initial data set (H0, ḡ, k), where ḡ and k are
sufficiently smooth and for which there exists a coordinate system
(x1, x2, x3) in a neighbourhood of infinity such that with

r = (
∑3

i=1(x
i)2)

1
2 → ∞, it is:

ḡij = δij + o3 (r−
1
2 ) (7)

kij = o2 (r−
3
2 ) . (8)

(9)

We can also take the following:

ḡij = δij + o3 (r−α) (10)

kij = o2 (r−1−α) (11)

for α > 0 or 0 < α < 1.

See also recent stability proof by D. Shen for 0 < α < 1
2 .



Vectorfields

Start with an outgoing null vectorfield L, define a conjugate (incoming)
null vectorfield L by requiring that

g(L,L) = −2 .

L and L are orthogonal to St,u.

4.6 The Characteristic Initial Value Problem

In Section 3.3 we discussed about the Cauchy problem for the Einstein equations. In par-
ticular, we saw that the initial data set consists of the triplet (H0, g, k), where H0 is a
three-dimensional Riemannian manifold, g is the metric on H0 and k is a symmetric (0,2)
tensor field on H0 and such that g, k satisfy the constraint equations. Recall that g, k are to
be the first and second fundamental forms of H0 in M, respectively.

In this section, we will discuss in detail the formulation of the characteristic initial value
problem, i.e. the case where the initial Riemannian (spacelike) Cauchy hypesurface H0 is
replaced by two degenerate (null) hypersurfaces C ∪ C intersecting at a two-dimensional
surface S.

Motivation

Let us first motivate the formulation of the characteristic initial value problem. Let us
assume that g/ is a given degenerate metric on C ∪ C and let M be the arising spacetime
manifold and g the Lorentzian metric which satisfies the Einstein equations extending g/ on
C∪C. Let us consider the double null foliation of (M, g) such that Ω = 1 on C∪C. Let L be
the geodesic vector field on C, which coincides with the normalized and equivariant vector
field, and let u be its affine parameter such that u = 0 on S. Then, we obtain a foliation of
C which consists of the (spacelike) surfaces Sτ = {u = τ}. The crucial observation is that
the null second fundamental form χ on C, which recall that is defined to be the following
(0,2) tensor field on C

χ(X,Y ) = g(∇Xe4, Y ),

where X,Y ∈ TpC, is in fact, an tensor field which depends only on the intrinsic geometry of
C (although ∇XL depends on the spacetime metric g). Indeed, the first variational formula
gives us

χ =
1

2
L/4g/ ,

and since the Lie derivative L/L is intrinsic to the hypersurface C, we deduce that g/ com-
pletely determines χ on C. On the other hand, by the Raychaudhuri equation we have

e4(trχ) = −|χ|2 − trα,

and since χ and trχ (and ω = L(log Ω) = 0) are determined from g/ , we deduce that trα is
also determined. However, in view of the Einstein equations (see Section 4.3) we have

trα = Ric(e4, e4) = 0.

This shows that one cannot arbitrarily prescribe a degenerate metric g/ on C ∪ C, since
otherwise trα would in general be non-zero.
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Notation: Denote L by e4 and L by e3.
Complement e4 and e3 with an orthonormal frame e1, e2 on St,u

⇒ We obtain a null frame.

The null decomposition of a tensor relative to a null frame e4, e3, e2, e1
is obtained by taking contractions with the vectorfields e4, e3.



Shears and Expansion Scalars

Viewing S as a hypersurface in C, respectively C:

Denote the second fundamental form of S in C by χ, and the
second fundamental form of S in C by χ.

Their traceless parts are the shears and denoted by χ̂, χ̂ respectively.

The traces trχ and trχ are the expansion scalars.

Null Limits of the Shears:
limCu,t→∞ r2χ̂ = Σ(u) (in (A) spacetimes) and
limCu,t→∞ rχ̂ = Ξ(u).

4.6 The Characteristic Initial Value Problem

In Section 3.3 we discussed about the Cauchy problem for the Einstein equations. In par-
ticular, we saw that the initial data set consists of the triplet (H0, g, k), where H0 is a
three-dimensional Riemannian manifold, g is the metric on H0 and k is a symmetric (0,2)
tensor field on H0 and such that g, k satisfy the constraint equations. Recall that g, k are to
be the first and second fundamental forms of H0 in M, respectively.

In this section, we will discuss in detail the formulation of the characteristic initial value
problem, i.e. the case where the initial Riemannian (spacelike) Cauchy hypesurface H0 is
replaced by two degenerate (null) hypersurfaces C ∪ C intersecting at a two-dimensional
surface S.

Motivation

Let us first motivate the formulation of the characteristic initial value problem. Let us
assume that g/ is a given degenerate metric on C ∪ C and let M be the arising spacetime
manifold and g the Lorentzian metric which satisfies the Einstein equations extending g/ on
C∪C. Let us consider the double null foliation of (M, g) such that Ω = 1 on C∪C. Let L be
the geodesic vector field on C, which coincides with the normalized and equivariant vector
field, and let u be its affine parameter such that u = 0 on S. Then, we obtain a foliation of
C which consists of the (spacelike) surfaces Sτ = {u = τ}. The crucial observation is that
the null second fundamental form χ on C, which recall that is defined to be the following
(0,2) tensor field on C

χ(X,Y ) = g(∇Xe4, Y ),

where X,Y ∈ TpC, is in fact, an tensor field which depends only on the intrinsic geometry of
C (although ∇XL depends on the spacetime metric g). Indeed, the first variational formula
gives us

χ =
1

2
L/4g/ ,

and since the Lie derivative L/L is intrinsic to the hypersurface C, we deduce that g/ com-
pletely determines χ on C. On the other hand, by the Raychaudhuri equation we have

e4(trχ) = −|χ|2 − trα,

and since χ and trχ (and ω = L(log Ω) = 0) are determined from g/ , we deduce that trα is
also determined. However, in view of the Einstein equations (see Section 4.3) we have

trα = Ric(e4, e4) = 0.

This shows that one cannot arbitrarily prescribe a degenerate metric g/ on C ∪ C, since
otherwise trα would in general be non-zero.
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Null Hypersurfaces

The important role of null hypersurfaces in general relativity.

4.6 The Characteristic Initial Value Problem

In Section 3.3 we discussed about the Cauchy problem for the Einstein equations. In par-
ticular, we saw that the initial data set consists of the triplet (H0, g, k), where H0 is a
three-dimensional Riemannian manifold, g is the metric on H0 and k is a symmetric (0,2)
tensor field on H0 and such that g, k satisfy the constraint equations. Recall that g, k are to
be the first and second fundamental forms of H0 in M, respectively.

In this section, we will discuss in detail the formulation of the characteristic initial value
problem, i.e. the case where the initial Riemannian (spacelike) Cauchy hypesurface H0 is
replaced by two degenerate (null) hypersurfaces C ∪ C intersecting at a two-dimensional
surface S.

Motivation

Let us first motivate the formulation of the characteristic initial value problem. Let us
assume that g/ is a given degenerate metric on C ∪ C and let M be the arising spacetime
manifold and g the Lorentzian metric which satisfies the Einstein equations extending g/ on
C∪C. Let us consider the double null foliation of (M, g) such that Ω = 1 on C∪C. Let L be
the geodesic vector field on C, which coincides with the normalized and equivariant vector
field, and let u be its affine parameter such that u = 0 on S. Then, we obtain a foliation of
C which consists of the (spacelike) surfaces Sτ = {u = τ}. The crucial observation is that
the null second fundamental form χ on C, which recall that is defined to be the following
(0,2) tensor field on C

χ(X,Y ) = g(∇Xe4, Y ),

where X,Y ∈ TpC, is in fact, an tensor field which depends only on the intrinsic geometry of
C (although ∇XL depends on the spacetime metric g). Indeed, the first variational formula
gives us

χ =
1

2
L/4g/ ,

and since the Lie derivative L/L is intrinsic to the hypersurface C, we deduce that g/ com-
pletely determines χ on C. On the other hand, by the Raychaudhuri equation we have

e4(trχ) = −|χ|2 − trα,

and since χ and trχ (and ω = L(log Ω) = 0) are determined from g/ , we deduce that trα is
also determined. However, in view of the Einstein equations (see Section 4.3) we have

trα = Ric(e4, e4) = 0.

This shows that one cannot arbitrarily prescribe a degenerate metric g/ on C ∪ C, since
otherwise trα would in general be non-zero.
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Early studies by E.T. Newman and R. Penrose.



Foliation of Null Infinity

Future null infinity I+ is defined to be the endpoints of all
future-directed null geodesics along which r → ∞. It has the topology of
R× S2 with the function u taking values in R.

Thus a null hypersurface Cu intersects I+ at infinity in a 2-sphere S∞,u.



Define the tensor of projection from the tangent space of M to that of
St,u

Πµν = gµν +
1

2
(eν4e

µ
3 + eν3e

µ
4 ).

Definition

We define the null components of the Weyl curvature W as follows:

αµν (W ) = Π ρ
µ Π σ

ν Wργσδ e
γ
3 e

δ
3 (12)

β
µ
(W ) =

1

2
Π ρ

µ Wρσγδ e
σ
3 e

γ
3 e

δ
4 (13)

ρ (W ) =
1

4
Wαβγδ e

α
3 eβ4 e

γ
3 e

δ
4 (14)

σ (W ) =
1

4
∗Wαβγδ e

α
3 eβ4 e

γ
3 e

δ
4 (15)

βµ (W ) =
1

2
Π ρ

µ Wρσγδ e
σ
4 e

γ
3 e

δ
4 (16)

αµν (W ) = Π ρ
µ Π σ

ν Wργσδ e
γ
4 e

δ
4 . (17)



Thus, capital indices taking the values 1, 2, we have:

WA3B3 = αAB (18)

WA334 = 2 β
A

(19)

W3434 = 4 ρ (20)
∗W3434 = 4 σ (21)

WA434 = 2 βA (22)

WA4B4 = αAB (23)

with
α, α : S-tangent, symmetric, traceless tensors
β, β : S-tangent 1-forms
ρ, σ : scalars .

Notation: Hodge duals ∗W and W∗ defined as

∗
Wαβγδ =

1

2
εαβµνW

µν
γδ

W
∗
αβγδ =

1

2
W

µν
αβ

εµνγδ



We also work with the following frame. It is T = 1
Φ

∂
∂t . Let T = E0 and

(E1, E2, E3) an orthonormal frame field for Ht. Thus we have the frame
field (E0, E1, E2, E3) for the spacetime M .

The Weyl tensor Wαβγδ is decomposed into its electric and magnetic
parts, which are defined by

Eab :=WaTbT (24)

Hab :=
1
2ε

ef
aWefbT (25)

Here εabc is the spatial volume element and is related to the spacetime
volume element by εabc = εTabc.
In particular, in our notation it is

ENN = ρ , HNN = σ .



Peeling Stops

Solve initial value problem for the EV equations for (A) initial data to
obtain spacetimes of type (A). The Weyl curvature components have
the following behavior towards future null infinity.

α = O (r−1 τ
− 5

2
− ) (26)

β = O (r−2 τ
− 3

2
− ) (27)

ρ = O (r−3) (28)

ρ− ρ̄ = O (r−3) (29)

σ = O (r−3 τ
− 1

2
− ) (30)

σ − σ̄ = O (r−3 τ
− 1

2
− ) (31)

β = o (r−
7
2 ) (32)

α = o (r−
7
2 ) (33)

Here τ− :=
√
1 + u2 for retarded time u.

(32)-(33) hold under smallness assumptions, whereas for large data the
behavior becomes O(r−3).



In particular, we also derive for (A)

∇/ ρ = O (r−4) (34)

whereas in (CK) by Christodoulou and Klainerman it is

∇/ ρ = O (r−4τ
− 1

2
− ) . (35)

Note that we have for (A) spacetimes

ρ− ρ̄ = O (r−3)

whereas in (CK)

ρ− ρ̄ = O (r−3 τ
− 1

2
− )

takes extra decay in τ−. The reason for the latter is that for (A) the
mass depends on the angles, whereas it is a constant for (CK).



Convention

Convention on the “retarded time” u.

By u we denote the optical function corresponding to minus the retarded
time in Minkowski spacetime, and by u the corresponding advanced time.
We refer to u just as the retarded time with this sign convention.

Therefore, u→ +∞ corresponds to the limit at spacelike infinity,
u→ −∞ to the limit at future timelike infinity.

In the following, M denotes the Bondi mass and M+ its limit for
u→ +∞, namely the ADM mass.



Spacetimes with Slow Fall-Off

Spacetimes with Slow Fall-Off and Inhomogeneous Matter and
Energy Distributions:

Recall initial data (B) from above, where towards spatial infinity:

ḡij = δij + o3 (r−
1
2 ) and kij = o2 (r−

3
2 ) .

Then the spacetime curvature components behave as:

α = O (r−1 τ
− 3

2
− )

β = O (r−2 τ
− 1

2
− )

ρ, σ, α, β = o (r−
5
2 )

The components of the curvature that are not peeling have leading order
terms that are non-dynamical (and do not attain corresponding limits at
I+). Take off these pieces ⇒ obtain dynamical parts of these
(non-peeling) curvature components.

In particular, dynamical parts of ρ show no antipodal symmetry.



Spacetimes with Slow Fall-Off

Respectively, we can consider initial data, where towards spatial infinity:
ḡij = δij + o3 (r−α) and kij = o2 (r−1−α) for 0 < α < 1.

Then the spacetime curvature components behave as:

α = O (r−1 τ−1−α
− )

β = O (r−2 τ−α
− )

ρ, σ, α, β = o (r−2−α)



Gravitational Radiation and Memory

Gravitational Radiation and Memory

Gravitational waves propagating from their source to our detectors.

Photo: Courtesy of R. Hurt/Caltech-JPL.

Test masses will experience
• instantaneous displacements (while the wave packet is traveling
through)
• permanent displacements (cumulative, stays after wave packet passed).
The memory effect of gravitational waves.Class. Quantum Grav. 29 (2012) 000000 L Bieri et al

Figure 2. Permanent displacement of test masses caused by Christodoulou memory effect. Test
masses m1 and m2 are displaced permanently after the passage of a gravitational wave train.

p 1488: ‘When matter (i.e. electromagnetic or neutrino) radiation is present then if T is the
energy tensor of matter, φ∗

u (r2 1
4 T (l, l)) tends to a limit E as r∗

0 → ∞ and in (7)–(9) | � |2
is replaced by | � |2 +32πE.’ This is a suggestion, in which direction one would have to
search to find other contributions to the nonlinear memory effect. It was not known, what
the limit E would be. This limit E depending on u could behave in such a way that there
were no additive contribution from E to the memory, or that it was negligible. Studying the
adapted formulas (7)–(9) in Christodoulou (1991), one has to keep in mind that formula (9)
governs the nonlinear memory effect. It is an additive effect. How do we know that E is in fact
contributing? What is the structure of this limit? We give the answer in our formulas (15) and
(6) based on Bieri et al (2010) and on (2) from Zipser (2009). Our formula (6) corresponds to
Christodoulou’s formula (9). We find that the limit AF has the same decay behavior in u as the
limit �. Namely they satisfy

| AF (u, ·) | � C1(1+ | u |)− 3
2

| �(u, ·) | � C2(1+ | u |)− 3
2

Knowing these structure, we investigate our formula (6) more closely. Integrating with
respect to u from −∞ to +∞ yields a positive constant for F . This value contains the
corresponding positive constants coming from the electromagnetic field term AF and from
the purely gravitational term �. This proves that the contribution from the electromagnetic
field is of the same order6 as the purely geometric part. Our result being exact, it holds for all
corresponding physical situations. The constants C1 and C2 have to be determined or estimated
from astrophysical data of the many scenarios. This will be the purpose of the following
section, where we give rough estimates. It will be a challenge for the future to work on the
many details.

Summarizing, we have in (6) a general formula that always holds. Thus we can apply it to
all situations. From astrophysical data we can now determine the corresponding contributions
in every scenario.

6 Here, the word ‘order’ refers to decay behavior of the exact solution, not to any approximations. That is, ‘higher
order’ means ‘less decay’. For details, see Bieri et al (2010), Bieri (2009), Zipser (2009).
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Gravitational Wave memory

from M. Favata

  . 

  
  



Memory - Permanent Displacement

Asymptotically Flat Spacetimes

The permanent displacement △x of test masses is related to the
difference (Σ− − Σ+) at I+:

△x = −d0
r

(
Σ− − Σ+

)
, (36)

where d0 denotes the initial distance between the test masses, and (in (A)
spacetimes) the limit of the shear χ̂ is given as limCu,t→∞ r2χ̂ = Σ(u).

Contributions to the permanent displacement △x:

AF systems with O(r−1) decay: Two types of memory. The ordinary
memory is sourced by the change in the radial component of the electric
part of the Weyl tensor. The null memory is sourced by F , the energy
per unit solid angle radiated to infinity (including shear and component
of energy-momentum tensor). No magnetic memory.

(B) spacetimes: Different tensors on the right hand side of (36). In
addition, there is magnetic memory. All memories (electric and
magnetic) diverge at rate

√
|u|. Additional structures. New memories.



Gravitational Wave Memory

The beginnings....

• Ordinary (formerly called “linear”) effect
=> was known for a long time in the slow motion limit [Ya.B.
Zel’dovich, A.G. Polnarev 1974]

• Null (formerly called “nonlinear”) effect
=> was found by [D. Christodoulou 1991]

• Growing amount of work on memory by many authors.



The following F and FT generate null memory.

For the Einstein vacuum equations (see D. Christodoulou), the energy
radiated away per unit angle in a given direction is F/4π with

F (·) = 1

2

∫ +∞

−∞
| Ξ(u, ·) |2 du

and Ξ denoting the corresponding limit of the shear (i.e. news)

−1

2
lim

Cu,t→∞
rχ̂ = Ξ(u, ·) .

For the Einstein equations coupled to some other fields (see L. Bieri, P.
Chen, D. Garfinkle, S.-T. Yau) the energy radiated away per unit angle in
a given direction is FT /4π with

FT (·) =
1

2

∫ +∞

−∞

(
| Ξ(u, ·) |2 + C T33(u, ·)

)
du

where C is a (positive) constant.



Bianchi Equations - Electric Memory

Einstein vacuum equations:

Consider the Bianchi equation for D/ 3ρ.

Notation ρ3 := D/ 3ρ + 3
2 trχρ.

In the Bianchi equation for D/ 3ρ

D/ 3ρ +
3

2
trχρ = −div/ β − 1

2
χ̂α + (ε− ζ)β + 2ξβ (37)

we focus on the higher order terms,

ρ3 = − div/ β︸ ︷︷ ︸
=O(r−3τ

− 1
2

− )

− 1

2
χ̂ · α︸ ︷︷ ︸

=O(r−
5
2 τ

− 3
2

− )

+ l.o.t.



A short computation shows that

ρ3 = − div/ β︸ ︷︷ ︸
=O(r−3τ

− 1
2

− )

− ∂

∂u
(χ̂ · χ̂)︸ ︷︷ ︸

=O(r−
5
2 τ

− 3
2

− )

+
1

4
trχ|χ̂|2︸ ︷︷ ︸

=O(r−3τ−1
− )

+ l.o.t.

Thus it is

ρ3 +
∂

∂u
(χ̂ · χ̂) = −div/ β +

1

4
trχ|χ̂|2 = O(r−3τ

− 1
2

− ) (38)

Structures:

For small data, ρ3 as well as ∂
∂u (χ̂ · χ̂) take a well-defined limit at I+

when multiplied with r3.

For large data, that is not the case, but many more terms of order

r−
5
2 τ

− 3
2

− exist in ρ3 as well as in ∂
∂u (χ̂ · χ̂) and potentially terms of order

r−
5
2 τ−1−α

− with α ⩾ 0 in ρ3. However, as a consequence of equation
(38) all these terms on the left hand side of (38) cancel.

Limit at I+ of the left hand side of (38)

⇒ leading order term originates from ρ3 and is of order O(r−3τ
− 1

2
− ).



Bianchi Equations - Magnetic Memory

Consider the Bianchi equation for D/ 3σ.

Notation σ3 = D/ 3σ + 3
2 trχσ. In the Bianchi equation for σ3

σ3 = −curl/ β − 1

2
χ̂ · ∗α+ ε ∗β − 2ζ ∗β − 2ξ ∗β

we concentrate on the higher order terms

σ3 = −curl/ β − 1

2
χ̂ · ∗α+ l.o.t. (39)

A short computation yields

σ3 +
∂

∂u
(χ̂ ∧ χ̂) = −curl/ β = O(r−3τ

− 1
2

− ) (40)

For χ̂ ∧ χ̂ the orders of the terms are at the level of χ̂ · χ̂ above.



Electric Memory and Magnetic Memory

For spacetimes of slow fall-off such as (B) or data with 0 < α < 1.

Equation for the electric memory at future null infinity.

(P− − P+)−
∫ +∞

−∞
|Ξ|2 du = div/ div/ (Chi− − Chi+) (41)

Diverging terms in first term on left hand side sourced by electric Weyl
curvature component. More contributions and structures in this term.
Second term on left hand side finite for (B) spacetimes, but growing for
even slower decay.

Equation for the magnetic memory at future null infinity.

(Q− −Q+) = curl/ div/ (Chi− − Chi+) (42)

Diverging terms on left hand side sourced by magnetic Weyl curvature
component. More contributions and structures in this term.



Memory in Spacetimes with Slow Fall-Off

For the more general spacetimes of slow decay we found (B 2020):

1. There is the magnetic memory effect growing with |u| 12 , respectively
growing with |u|1−α for 0 < α < 1 , sourced by Q and finite
contributions from both Q and other structures.

2. Q has further diverging terms at lower order.

3. There is the electric memory. This electric part is growing with |u| 12 ,
respectively growing with |u|1−α for 0 < α < 1, sourced by P,
further lower-order growing terms and finite contributions from P
and from F (the latter start growing for systems of decay O(r−

1
2 )

and slower).

4. curl/ div/ (Chi− − Chi+) being non-trivial allows for the magnetic
structures to appear in gravitational radiation and to enter the
permanent changes of the spacetime. Thus, these more general
spacetimes generate memory of magnetic type.

Points 1, 2, 4 were established in (B 2020).

Point 3, the leading order behavior as well as the null memory were
established in (B 2018).



Adding Neutrinos

(B 2020) Einstein-null-fluid equations describing neutrino radiation:

Rµν = 8π Tµν .

Describe the neutrinos in this equation, represented via the
energy-momentum tensor given by

Tµν = NKµKν (43)

with K being a null vector and N = N (θ1, θ2, r, τ−) a positive scalar
function depending on r, τ−, and the spherical variables θ1, θ2.

When coupled to the Einstein equations in the most general settings, the

energy-momentum tensor Tµν obeys those loose decay laws. No symmetry nor

other restrictions imposed.

In particular, we do not have stationarity outside a compact set, but
instead a distribution of neutrinos decaying very slowly towards infinity.

“Geometric terms”: same growth rate as in EV case.

“T” terms: growing at rate
√
|u|.



“Geometric terms”: same growth rate as in EV case.

“T” terms: growing at rate
√
|u|.

In particular:

For data as in (B) as well as for data with exact r−
1
2 decay in the

remainder of the metric, there is a contribution from the neutrinos to the
electric memory growing at rate

√
|u|.

For data with exact r−
1
2 decay in the remainder of the metric, in

addition, we find the following contribution from the neutrinos to the
magnetic memory: Fix u0, then the integral

∫ u

u0

(
curl/ T

)∗
343

du diverges

like
√

|u| as |u| → ∞.

Solve the corresponding Hodge system on S2 to derive the full changes
of the spacetime.



In the special class of Einstein-neutrino spacetimes with slow fall-off (that

is O(r−
1
2 ) decay of the remainder of the metric) we find that the angular

momentum radiated away caused by the matter is

AT (·) = 4π

∫ +∞

−∞

(
curl/ T

)∗
343

(u, ·)du .

Hereby, T33 and
(
curl/ T

)∗
343

denote corresponding limits generated by
the stress-energy tensor of matter, that is the null fluid describing the
neutrino distribution.



Summary

Summary

• Spacetimes decaying like O(r−α) for 0 < α < 1 cause magnetic
memory of the above types diverging at |u|1−α.

• The corresponding electric memories diverge at the same rate.

• Neutrinos contribute to the electric memory growing at rate
√
|u|.

• A non-trivial curl of neutrino stress-energy starts occurring at O(r−
1
2 ).

• The integral
∫
u

∂
∂u (χ̂ · χ̂) du as well as

∫
u

∂
∂u (χ̂∧ χ̂) du generates finite

electric (former), respectively finite magnetic (latter) memory.



Velocity-Coded Memory

B and A. Polnarev 2024:
Results on Velocity-Coded Memory

Scenario: A supermassive black hole surrounded by a large accretion disk.
A less massive black hole moves perpendicular to the plane of the disk
and intersects it.

After crossing the disk ⇒ smaller black hole experiences a jump of
acceleration.
⇒ Acceleration jump is seen as a jump in curvature, which happens in a
very short time interval.

At the detector, this burst arrives and lasts for the short time △u. After
this short time △u, the velocity of the test masses stays constant over a
very long time interval δu. ⇒ Velocity-Coded Memory



Electromagnetic Memory

Consider the Maxwell equations.

EM Memory (L. Bieri and D. Garfinkle 2013). The electromagnetic
memory is a residual velocity (i.e. kick) of test charges.

It consists of ordinary kick and null kick .

The kick points in the direction of SA and has a magnitude of

∆v =
q

mr
|SA| (44)

ordinary kick due to difference between the early and late time
values of the radial component of the electric field Er

null kick due to charge radiated to infinity, that is F giving the
amount of charge radiated to infinity per unit solid angle.



Experiment to Measure Electromagnetic Memory

B and D. Garfinkle 2023, 2024:
Experiment to Measure Electromagnetic Memory

Electromagnetic memory ⇒ requires a source whose charges are not
confined to any bounded spatial region.

Experiment: Create a situation of unbound charges for a short time.

Measure the memory in the far field region.



We also found the following:

Other fields behaving like that:

The stress-energy tensor of the fields gets out to null infinity for

a field that is both charged and massless being the analog for
electromagnetism of fields whose stress-energy gets out to null
infinity (Maxwell equations with massless charge, linear),

Maxwell-Klein-Gordon system for a charged, massless scalar field
(nonlinear),

charged null dust (nonlinear, can be derived from [BG] result on
null fluids).



(A) and (A*) Spacetimes: Limits at Future Null Infinity I+

Limits at Future Null Infinity I+ for (A) Spacetimes

lim
Cu,t→∞

r3ρ = P (u, θ, ϕ)

P̄ = P̄ (u)

(P − P̄ )(u, θ, ϕ) : does not decay in | u | as | u |→ ∞,

leading order term is dynamical, i.e. depends on u,

and also depends on the angles θ, ϕ

lim
u→+∞

P (u, θ, ϕ) = P+(θ, ϕ)

We see that P = P (u, θ, ϕ) is a function on R× S2, and P+ = P+(θ, ϕ)
is a function on S2. Thus, in particular, as u→ +∞, the quantity
P (u, θ, ϕ) tends to a function P+(θ, ϕ) on S2, not a constant.

For (CK) spacetimes it is

P − P̄ = O(| u |− 1
2 )

lim
u→+∞

P = P+ = lim
u→+∞

P̄ = P̄+ = −2M+
ADM = constant



Limits at Spacelike Infinity

Limits at Spacelike Infinity for (A) Spacetimes

Consider ρ.

Denote by PH0
(θ, ϕ) the limit of r3ρ at spacelike infinity. The following

limits obey
PH0

(θ, ϕ) ̸= P+(θ, ϕ) in general ,

however, ∫
S2

PH0
(θ, ϕ) =

∫
S2

P+(θ, ϕ) .

PH0(θ, ϕ), respectively P+(θ, ϕ), do not have any l = 1 modes, but they
have all the other modes l = 0 and l ⩾ 2.



Limits at Future Null Infinity

Recall first the limit at spacelike infinity:

PH0(θ, ϕ) does not have any l = 1 modes, but it has all the other modes
l = 0 and l ⩾ 2..

At future null infinity: First take the limit at future null infinity and then
the limit as retarded time u→ ∞ (past):

P+(θ, ϕ) does not have any l = 1 modes, but it has all the other modes
l = 0 and l ⩾ 2.



Theorem [L. Bieri (2022)]

For (A) spacetimes, the normalized curvature components rα, r2β, r3ρ,

r3σ have limits on Cu as t→ ∞:

lim
Cu,t→∞

rα = A (u, ·) , lim
Cu,t→∞

r2β = B (u, ·) ,

lim
Cu,t→∞

r3ρ = P (u, ·) , lim
Cu,t→∞

r3σ = Q(u, ·)

where the limits are on S2 and depend on u. These limits satisfy

|A (u, ·)| ⩽ C (1 + |u|)−5/2 |B (u, ·)| ⩽ C (1 + |u|)−3/2

|Q (u, ·)| ⩽ C (1 + |u|)−1/2

whereas P (u, ·), (P (u, ·)− P̄ (u)) do not decay in |u|.

Moreover, the following limits exist

lim
Cu,t→∞

r2χ̂ =: Σ(u, ·) (45)

−1

2
lim

Cu,t→∞
rχ̂ = lim

Cu,t→∞
rη̂ =: Ξ (u, ·) (46)



Limits

At future null infinity I+, let the retarded time u tend to the past (that
is to +∞ in our convention), respectively the future (that is to −∞ in
our convention).

(CK) :
(P − P )+ = (P − P )− = 0.

Binary merger with slow initial velocities :
(P − P )+ = 0 , (P − P )− ̸= 0.

Binary merger with large initial velocities : general case :
(P − P )+ ̸= 0 , (P − P )− ̸= 0.



Taking Limits

Schematically
u -> - Δ
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Taking Limits

It

2.

t= 0

I

-
I-



P+
I+(θ, φ) and P+

I−(θ, φ) are functions on S2.



Simple Situations with Antipodal Symmetry

Simple Situations with Antipodal Symmetry:

Schwarzschild spacetime:

ρ = − 2m
r3s

⇒ trivially holds for corresponding limits.

Boosted Schwarzschild:

Compute corresponding limits for ρ:

P ∗
I+ = 2m · a , P ∗

I− = 2m · b
where the factors a and b include the boost parameter γ and the velocity
v, and a is antipodally symmetric to b. That is, if p, q are antipodal
points on S2, then a(p) = b(q).

Therefore: P ∗
I+(p) = P ∗

I−(q).



Continue: Simple Situations with Antipodal Symmetry

Sums of Boosted Schwarzschild

Situations with “strong fall-off of initial data”:

⇒ Corresponding limits (P − P̄ )∗I+ = 0 = (P − P̄ )∗I−



General Case: No Antipodal Symmetry

General Case: No Antipodal Symmetry (B., Zhongshan An 2022)
At future null infinity I+ we have

P = −div/ div/ Σ+
1

2
△/ H −N − Σ · Ξ

Take the limit as u→ ∞:

P+
I+(θ, ϕ) := lim

u→+∞
PI+(u, θ, ϕ) = −div/ div/ Σ+

I+ +
1

2
△/ H+

I+ −N+
I+

At past null infinity I− we have

PI− = div/ div/ Ξ− 1

2
△/ H −NI− − ΣI− · ΞI−

Taking the limit as u→ ∞:

P+
I−(θ, ϕ) := lim

u→+∞
PI−(u, θ, ϕ) = div/ div/ Ξ+

I− − 1

2
△/ H+

I− −N+
I−



Σ and Ξ are the corresponding limits of χ̂, respectively χ̂.

There is no “special” relation between Σ and Ξ.

There is no “special” relation between the corresponding terms in χ̂ and
χ̂. We can specify data freely.

⇒ No antipodal symmetry in the curvature component limits
P+
I+(θ, ϕ) and P

+
I−(θ, ϕ).



Situations with antipodal symmetry (B., Zhongshan An 2022):

Boosted Schwarzschild

Sums of Boosted Schwarzschild

Scenarios described by a mass term expanded in spherical harmonics
with only l = even modes

Situations without antipodal symmetry (B., Zhongshan An 2022/25):

General case above

Asymmetric matter constellations

Scenarios described by a mass term expanded in spherical harmonics
with both l = even and l = odd modes



Concrete Examples

Concrete examples (B., David Garfinkle, James Wheeler, 2024/25)

Brill waves are solutions of the Einstein vacuum equations that are
axisymmetric and time-symmetric, found by Dieter Brill (1959). Defined
by the initial spatial metric on H = R3 given in cylindrical coordinates
{ρ, z, φ} by

g = Ψ4(e2q(dρ2 + dz2) + ρ2dφ2) .

Function q = q(ρ, z) chosen, subject to mild conditions, conformal factor
Ψ determined by the constraint equations. The time-symmetry implies
that the extrinsic curvature vanishes.

Brill wave data with antipodal symmetry:

Mild conditions and behavior towards spatial infinity given by

q = O(r−
3
2 ) , Ψ = 1 +

M

2r
+O(r−

3
2 )

Brill wave data without antipodal symmetry:

Mild conditions and behavior towards spatial infinity given by

q = O(r−
1
2 ) , Ψ = 1 +O(r−

1
2 )



Angular Momentum

Angular Momentum at I+

in (A) spacetimes

Classical definition of angular momentum at I+:

Jk :=

∫
S2

εAB∇BX̃
k(NA − 1

4
C D

A ∇BCDB) , k = 1, 2, 3.

Bondi-Sachs coordinates.

X̃k for k = 1, 2, 3: standard coordinate functions in R3 restricted to S2,

NA: angular momentum aspect,

CAB : shear tensor,

εAB : volume form of the standard round metric σAB of S2.

Further, in the Bondi-Sachs notation, NAB is the news tensor and m the
mass aspect.



Christodoulou-Klainerman and Bondi-Sachs

We use (CK) notation.

Relate the Christodoulou-Klainerman notation to the Bondi-Sachs
coordinate system. The left hand side is given in the (CK) notation:

BA = −NA

BA = ∇/ B
NAB

AAB = −2∂uNAB

ΣAB = −1

2
CAB

ΞAB = −1

2
NAB .

In (A) spacetimes the limit BA may not exist. Nevertheless, we can define
angular momentum, because the involved l = 1 modes behave better.

Obtained a conservation of angular momentum for (A) spacetimes.



Use the Bianchi equation for D/ 3β

D/ 3β + trχβ = D/ ∗
1(−ρ, σ) + 2χ̂β + 3ζρ+ 3∗ζσ + νβ + ξα

= ∇/ ρ+ εAB∇/ B
σ + 2χ̂β + l.o.t. (47)

The right hand side of (47) obeys good fall-off behavior.

⇒ Multiply by r4 and take the limit on a given Cu as r → ∞.

Each of the components on the right hand side has a well-defined limit at
I+. Therefore, it follows that the left hand side tends to a well-defined
limit at I+.



This yields the limiting equation at I+

R = ∇/ P + ∗∇/ Q+ 2Σ ·B .

with

lim
Cu,r→∞

r4(D/ 3β + trχβ) =: R(u, θ, ϕ) .

Compute from there, take the l = 1 modes and integrate to obtain∫ u2

u1

R[1]du =

∫ u2

u1

∇/ Pl=1du+

∫ u2

u1

∗∇/ Ql=1du

+2

∫ u2

u1

(Σ ·B)[1]du (48)

Each term on the right hand side is integrable(!). Not obvious, but can
prove it.
Subscript [1] denotes projection on the sum of the 1st and 0th eigenspaces of △/ .



Recall from above that

R = ∇/ P + ∗∇/ Q+ 2Σ ·B .

The “interesting” term on the right hand side is ∇/ P because
∇/ ρ = O (r−4) in (A) spacetimes.

As a comparison, recall that in (CK) spacetimes it is ∇/ ρ = O (r−4τ
− 1

2
− ).

Therefore, in (A) spacetimes, we obtain a behavior uR, and
correspondingly for β a behavior like r−4|u|+1. Thus, β has less decay
and the leading order term is dynamical.



Peeling Stops

From the Bianchi equations we derive the limiting equations at future
null infinity I+ for the limits P , respectively Q. They read

∂P

∂u
=

1

2
div/ B − Σ · ∂Ξ

∂u
(49)

∂Q

∂u
=

1

2
curl/ B − Σ ∧ ∂Ξ

∂u
(50)

P (θ, ϕ, u) at highest order does not have any power law decrease nor
increase in u as |u| → ∞, but it depends on u and changes with u. Then
by these equations it must hold that

∂P

∂u
= o(|u|− 3

2 ) .

If we assume more decay, then we could also have

∂P

∂u
= O(|u|−2) .



Leading Behavior

Note that the (A) spacetimes are more general than the situation studied
by Demetrios Christodoulou (2000), where log terms show up for β.

In particular, Christodoulou finds r−4 log r behavior for β.

In (A) spacetimes, peeling of the Weyl curvature components at future
null infinity stops at the order r−3 respectively r−4|u|+1.

log terms are naturally present at lower order, but the leading order
terms show less decay due to the more general behavior.



Summary

Summary

For (A) spacetimes the following hold:

• There are natural contributions from (P − P[1]) and F to the
gravitational wave memory effect.

• Peeling of the Weyl curvature components at future null infinity stops.

• The limit limCu,t→∞ r3ρ = P (u, θ, ϕ) tends to a function P+(θ, ϕ) on
S2 when the retarded time u→ +∞. In (CK) the corresponding limit is
a constant.

• ρ− ρ̄, respectively P − P̄ , does not decay in retarded time u. (Here, ρ̄
means the mean value of ρ on St,u, and P̄ the mean value of P on S2.)

• Energy and momenta at future null infinity are well-defined. In
particular, angular momentum can be defined and is finite despite the
slow decay for β and its derivatives.



Outlook

Gravitational wave sources where an extended neutrino halo is
present: Expect to see these structures.

Dark matter of certain types may behave as described here.

Study various examples of systems with non-isotropic mass.

Couple Einstein equations to other types of matter-energy to
investigate similar questions.

Intersections of gravitational waves and related problems.

Use above and new results to obtain better understanding of
gravitational wave and memory patterns for different sources.
⇒ Read off new phenomena from these results and future
observations.
⇒ Find new physics.

Thank you!


