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Introduction

The Maier-Saupe theory of liquid crystals is perhaps the most success-
ful microscopic theory proposed so far to explain the condensation
of the nematic phase. MAIER & SAUPE (1958)

In essence, it rests on three conceptual pillars:
e it is a mean-field theory;
e it considers only attractive interactions between molecules;

e it applies only to homogeneous phases.



Helmholtz Free Energy

We consider a dynamical system with N identical particles in the
Hamiltonian formalism.

Lagrangian

£(q,q) := K(a,q) —U(q)
q=1(qi,...,qnv) € OV generalized coordinates
O single particle configuration space
q=(q41,...,4n) generalized velocities
JIC kinetic energy
U potential energy

Ham:iltonian

H(aq,p) =K +U

. 0L .
pj = aq conjugate momenta



equations of motion

ON x RN ¢ R?N  phase space

canonical ensemble

Imagine a great many replicas of the system described by the same
Hamiltonian H, but differing in the occupation of the phase space, as a
result, for example, of different initial conditions. Different ensembles
differ in their probability density o. G1BBs(1902)



In the canonical ensemble,

1
oo(d, p) := Ee—k—Tﬂ(q,p)

k  Boltzmann constant
1" absolute temperature

partition function

Z::/ dp/ dqe_%mq’p)
RN ON

Helmholtz free energy

F:=—-kT'InZ.

The number of particles IV, the volume V' they occupy, and the tem-
perature 1" hidden in F' are parameters. Equilibrium thermodynamics
results from differentiating F' with respect to them. For example,

P = —g—fj is the pressure
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Amended configurational partition function

We reduce Z to a purely configurational quantity, by integrating out
the momenta components of . For a canonical H, purely quadratic
in p, this amounts to extracting a factor (depending on T') out of Z,
which in turn only affects F' by an inessential additive constant.

1
ZN'

= ﬁ/ e_k%u(q)dq Fn = —kT'InZyn

1 -
mlStO

account for the indistinguishability of the particles comprising the sys-

A classical justification for introducing the correcting factor

tem.

It has long been known (apparently, to Gibbs himself) that failing to
introduce this correcting factor would make the theory vulnerable to
G1bbs’ paradox for the entropy of mixing ideal gases.



Parrwise Interactions

We assume that the N particles only interact 2n pairs

.
Uq) = 5 Z U(qi,q;)
itj—1
U:0x9—=R
U(4i,q5) = Ulgj, )

In general, U(q1,q2) comprises the whole energy involved in the in-
teraction between particles ¢; and go. It includes both slowly varying,
long-range potentials, typically responsible for the attraction between
particles, and rapidly varying, short-range potentials, typically respon-
sible for the repulsion between particles, often steric in nature. We
call soft the former component of U and hard the latter.



typical potential




Soft and Hard Interactions

U can be decomposed into the sum of its attractive (soft) and repul-

sive (hard) components:

Ulg, q2) = U (g1, q2) + U (g1, q2)

Though, to some extent, such a decomposition is arbitrary, the dis-
tinctive feature of U is its abrupt divergence when the interacting

particles tend to come 2n contact with one another.

UR) is often assumed to be arbitrarily close to zero when the interact-
ing particles are close to one another, and to diverge to +o00 as they

touch.

The divergence of UM makes it questionable taking averages of

repulsive interactions.



only attractions

An assumption of the Maier-Saupe theory is to ignore repulsive in-

teractions:

U =0

computing the free energy
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Mean-Field Free Energy

Mathematically, a mean-field theory is an approximation that re-
places complicated expressions, difficult to evaluate, which involve
many individual particles and their mutual interactions, with sim-
pler expressions, easier to evaluate, which involve a single, effective

particle.

Physically, it is as if the actions exchanged by particles were replaced
by an effective field that all particles produce and feel at the same

time.

~ here means “replaced by”
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replacements

N

1

2 Z U“Y (g, q5) =~ E(qn)
j=1,j

Ih(q17 sy QN) ~ I(qh) = e_ﬁgﬁlh)
£ single-particle effective potential

mean-field free energy

1
FN = —kT ln —/ H Ihdq1dQQ qu
QY =4
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upper estimate

It follows from Gibbs-Bogoliubov inequality (and an equivalent ap-
proach to mean-field theory) that the mean-field free energy is larger
than the true free energy it replaces.

GARTLAND & VIRGA (2010)

remark

For a deformable particle the configuration space ©Q will also allow
for extra configurational degrees of freedom in addition to the usual

translational and orientational ones.
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DO |

Density Functional Theory

)

e The mean-field free energy I ](me is a scalar depending on (N, V,T)

only in a parametric form.

e Considering, within the canonical ensemble, how particles
are distributed in the configuration space O, we construct a

theory where the mean-field free energy becomes a functional
# of the distribution density.

distribution (number) density

p=Q—R" /Qp(Q)dqu

effective potential

N
1
Z UM (qn,q;) = E(an) — E(q) 3=—/P(C]')U(A>(q,q’)dq’
j=1,j#h 2 /g
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partitioning O

M
o=|Ja"
1=1

We split the system in a great number, say M, of subsystems

N,; number of particles in the 7th subsystem
¢ € Q) core of the ith subsystem
O c O region occupied by the ith subsystem
Ag; measure of Q)

discretizing p
M
prQoRY pii=p(d?)  Ni=pde Y Ni=N
i=1
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free-energy additivity

pand _ Z )

™ = _kTIn ! / e~ (g -
Ni N;! o)
M N
mf L [Ny _ 1 e\
Fy )z—kTZIHNi!< o= )

c) . ¢ (qu))

Stirling’s approxrimation

1 N
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Free-energy functional

(4)
FM~ kTZN (m - iT) _ kTN
pi

Disregarding the last addendum, as it does not depend on p, we justify
the definition

Fp| == kT /Q p(q) lnp(Q)dq+% /Q p(a)p(9U M (d', g)dg'dg

£lol = /Q @)U D (¢, 0)dqdg

/Qp(q)dq =N
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Maier-Saupe Free Energy

Here we apply the general mean-field theory presented so far to Lon-
don dispersion forces interactions between mnon-polar molecules.
London dispersion forces

e Liquid crystal molecules are thought of as being both neutral
and with no permanent dipole.

e However, instantaneous dipoles can arise in a molecule and
the electric field thus created can polarize a nearby molecule.

e Though the (time) average of dipoles vanishes in each molecule,
the average energy between induced dipoles does mot vanish
and results in an attractive interaction.

e This basic interaction mechanism can easily be understood clas-
sically, but the evaluation of the induced dipole can only be
achieved via a quantum mechanics (perturbative) computa-
tion, relying on a number of approxrimations.
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Unsold approximation

Assume that all states in the molecules that contribute to their dis-
persion interaction have excitation energies close to Fj.

UNsSOLD (1927), LoNDON (1930,1937)
dispersion energy

C 3 Ej
Udisp — _T_GU(eT)amolU(er) ) a;nol C = Z (47.‘.)2
r distance between molecular centres
Qmol, O, molecular polarizability tensors

U(e,) =e Qe — %I

e, unit vector along the line joining molecular centres
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degrees of freedom

Molecules are treated as rigid particles:

Q=X x )
% region in space of volume V

() orientational manifold

q=(z,w)
x position vector of molecular centre

w orientational degrees of freedom (e.g. Euler angles)

attractive potential

UM (g,q') :=
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spatially homogeneous density

N
vV

/ g =N [ o= = [ ow)

effective potential

1
g(iI},W) — _/93 QIOOQ( )U<A)(w,w;m’,w’)da:’dw'
X

/ (/ Opo U (er)amor(w )U(er)dfrdA(er)) ot (W) 0(w)de!

27‘(’0,00

— _ Qmol (W) * el (W) o(w')dw” + constant
135R3 /Q

in the thermodynamaic limit, N,V — oo with pg unchanged.
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unzaxial molecules

0 =S5

mor(w) = (o) — a1 )a(w) + %(2% o)

q(w) = m(w) ® m(w) — 5I molecular tensor

£@w) = 300 [ aw) aWew)ds U= s By,
_ —%Ué /S Po(m(w) - m())e(w)d'  Uf = gUO

£ is independent of x

() = 500 [ a() - a(w)o)des
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Free-energy functional

ZkT/Qp )In p(q)dq + = /Qg p(d)p(@U™ (¢, q)dq'dg

:kT/p )In p(q dq—i—/é’ (q)dgq
Q

q — (wv w)
p(q) = poo(w)

Fuslp] = kTN . o(w) In(poo(w))dw

—SUN [ ow)ow)ale) - alw)de/de
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(dimensionless) free-energy per particle

1
Fussle) = spPuslel = [ o) n o(w)de
1
- 58 [ ele)e)a) - alw)ds/d
2>< 2
Uo .. . .
B = T dimenionless reciprocal temperature

first variation

5 Fuis(0)[50] = /

SQ

(-0 +n0w) = 5 ( [ a@)e)ds’) - aw)] sofw)de

A Lagrange multiplier for [, o(w)dw =1
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equilibrium density

oB(Js2 a(w)geq(w)dw’) -a(w) efQ-a(w)
Oeq(w) = [ oB(fiz alw)oeq(w)dw’)-a(w) g, Js» PQal@)dw
Q= [ ale)ow(e)as

e The integral equilibrium equation for geq becomes the self-
consistency equation for the order tensor Q.

e Q =0, and geq = 00 = ﬁ, is a solution for all 3.
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fMS(B?Q) :

(rescaled) equilibrium free energy

1 1 1
FrvslOeql+Indn) = —Q-Q—=1In | — fQ-a(w)
(Fus|Qeq)HIn 47) 2QQ n<4 /826 dw)

fvs(8,0) =0 forall p

critical points

1
B

Ofms _ Q- Js2 a(w)e" ¥ dw
8Q fS2 eﬁQ'Q<W)dw
Ofms B
8Q =0 A Q T <q> Oeq

The critical points of fyis are solutions to the self-consistency equa-

tion for Q and have necessarily admaissible eigenvalues.
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critical point properties

e We regard fys(f, -) as defined in the whole space of symmetric
traceless tensors.

e But fus(8, Q) represents the mean-field free energy only at its
critical points Q. Its non-critical values are physically irrele-

vant.

e For given 3, the order tensor QQ at which fys(f3,-) attains its
least critical value represents the stable equilibrium phase.

e Q =0 is a critical point of fyg(S, ) for all values of 5.
e fus(f,+) is an isotropic function:
fus(B, RQRT) = fus(6,Q) VR e O(3).
e If Q £ 0 is a critical point of fys(S3,-), then Q is uniazxial.

FATKULLIN & SLASTIKOV (2005)
Liu, H. ZHANG & P. ZHANG (2005)
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scalar order parameters

1
Q:S(ez@)ez— §I> +T (e, Qe —e, ey).
reduced free energy

fMS(B?Q) — fs(5757T>

1

fs(ﬁasa T) = 3

2T
—S5% 4+ T? — —ln—/ d@/ P9:(1,035.T) gin 94

1
gs(0, 99, T) =8 ((508219 — §> + T sin®¥ cos 2¢

coercivity

1 2
|gs‘< |S|+|T‘ = f8(6757T)> §SQ+T2_§|S|_‘T|

3
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e fi(5,,") enjoys a 6-fold symmetry in the admissible triangle.

e All critical points of fs(3,-,-) lie on the uniaxial lines.

0.6}
/
U,
0.4}
U
02t
T o u’
- @) U_|_
-0.2+
U /!
—0.4} B
U//
-0.6F +
| | | | | | | | | |
-08 -06 -04  -02 0 0.2 0.4 0.6 0.8 1 12
S

We shall restrict the search for the critical values of f5 to 1" = 0.
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restricted free energy

0fs
oT

(8,5,00=0 V8,8
|

All critical points (Sp,0) of f5(83,-,-) are critical points of

)
fu(B,9) = £(8,5,0) = —32 ;m% /Oﬁeﬁs@s 9-3) 4in 9

fu(B,9) = %52 _ %S RS (dawjﬁifg))
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Dawson’s integral

daw

0.6 -

0.4

0.2
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change of variables

x =BS5S
z\ 11 5, 2 daw (/)
Ju (@E)—E{ﬁx 3:1; ln( NG
equilibria
Ofu 22 (1
05 ~ 3 (E G“))
B 3 3 1
T dzrdaw (Vz) 422 2z
, 2
lim G7) = 75
r — 400 G(x) ~ —% for

32
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0.20




local uniaxial stability

e For % > (G, = 0.149 there is only one equilibrium solution,
0.

g —

e For % < G4 = 0.149 there are two extra equilibrium solutions.

e One of the extra solutions has S < 0 for £ < 1—25

p

a2fu 26 1 /

\ - 7
~"

VY

\ 0 at equilibrium y
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local biaxial stability

J(B.5.T) = fu(B.S) + 5 (

1_|_ 1 n 3
4  4xr 1622

1
B —q (ﬁS)) T2 + O <T4)
G(BS)—g(8S)

1 3

8yzdaw (z) 162z daw (v/z)
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0.25 A
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absolute minimaizer

e The free energy vanishes on the isotropic phase:

fu(ﬁvo) =0

e The free energy of the competing locally stable nematic phase

is negative whenever

G(z) < F(x)
F(z) := i + % In (daw\/gﬁ)>
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1/6

0.03 0.06 0.09 0.12 0.15 0.18
x* = 2.923 G* =0.147 S* =a*G* = 0.429
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