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Introduction

The Maier-Saupe theory of liquid crystals is perhaps the most success-

ful microscopic theory proposed so far to explain the condensation

of the nematic phase. Maier & Saupe (1958)

In essence, it rests on three conceptual pillars:

• it is a mean-field theory;

• it considers only attractive interactions between molecules;

• it applies only to homogeneous phases.
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Helmholtz Free Energy

We consider a dynamical system with N identical particles in the

Hamiltonian formalism.

Lagrangian

L(q, q̇) := K(q, q̇)− U(q)
q = (q1, . . . , qN ) ∈ QN generalized coordinates

Q single particle configuration space

q̇ = (q̇1, . . . , q̇N ) generalized velocities

K kinetic energy

U potential energy

Hamiltonian

H(q, p) := K + U
pj :=

∂L
∂q̇j

conjugate momenta
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equations of motion

q̇ =
∂H
∂p

ṗ =− ∂H
∂q

QN × R
N ⊂ R

2N phase space

canonical ensemble

Imagine a great many replicas of the system described by the same

Hamiltonian H, but differing in the occupation of the phase space, as a

result, for example, of different initial conditions. Different ensembles

differ in their probability density ̺. Gibbs(1902)

4



In the canonical ensemble,

̺0(q, p) :=
1

Z
e−

1
kT

H(q,p)

k Boltzmann constant

T absolute temperature

partition function

Z :=

∫

RN

dp

∫

QN

dq e−
1

kT
H(q,p)

Helmholtz free energy

F := −kT lnZ.

The number of particles N , the volume V they occupy, and the tem-

perature T hidden in F are parameters. Equilibrium thermodynamics

results from differentiating F with respect to them. For example,

P = − ∂F
∂V

is the pressure
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Amended configurational partition function

We reduce Z to a purely configurational quantity, by integrating out

the momenta components of H. For a canonical H, purely quadratic

in p, this amounts to extracting a factor (depending on T ) out of Z,

which in turn only affects F by an inessential additive constant.

ZN :=
1

N !

∫

QN

e−
1

kT
U(q)dq FN := −kT lnZN

A classical justification for introducing the correcting factor 1
N ! is to

account for the indistinguishability of the particles comprising the sys-

tem.

It has long been known (apparently, to Gibbs himself) that failing to

introduce this correcting factor would make the theory vulnerable to

Gibbs’ paradox for the entropy of mixing ideal gases.
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Pairwise Interactions

We assume that the N particles only interact in pairs

U(q) = 1

2

N∑

i 6=j=1

U(qi, qj)

U : Q×Q → R

U(qi, qj) = U(qj, qi)

In general, U(q1, q2) comprises the whole energy involved in the in-

teraction between particles q1 and q2. It includes both slowly varying,

long-range potentials, typically responsible for the attraction between

particles, and rapidly varying, short-range potentials, typically respon-

sible for the repulsion between particles, often steric in nature. We

call soft the former component of U and hard the latter.
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Soft and Hard Interactions

U can be decomposed into the sum of its attractive (soft) and repul-

sive (hard) components:

U(q1, q2) = U (A)(q1, q2) + U (R)(q1, q2)

Though, to some extent, such a decomposition is arbitrary, the dis-

tinctive feature of U (R) is its abrupt divergence when the interacting

particles tend to come in contact with one another.

U (R) is often assumed to be arbitrarily close to zero when the interact-

ing particles are close to one another, and to diverge to +∞ as they

touch.

The divergence of U (R) makes it questionable taking averages of

repulsive interactions.
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only attractions

An assumption of the Maier-Saupe theory is to ignore repulsive in-

teractions:

U (R) ≡ 0

computing the free energy

FN =− kT ln
1

N !

∫

QN

(

e−
1
2

1
kT

∑N
j=2 U(A)(q1,qj)

)

dq1

× · · ·

×
(

e−
1
2

1
kT

∑N−1
j=1 U(A)(qN ,qj)

)

dqN

=− kT ln
1

N !

∫

QN

N∏

h=1

Ihdq1dq2 . . .dqN

Ih(q1, . . . , qN ) := e−
1
2

1
kT

∑N
j=1,j 6=h U(A)(qh,qj)
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Mean-Field Free Energy

Mathematically, a mean-field theory is an approximation that re-

places complicated expressions, difficult to evaluate, which involve

many individual particles and their mutual interactions, with sim-

pler expressions, easier to evaluate, which involve a single, effective

particle.

Physically, it is as if the actions exchanged by particles were replaced

by an effective field that all particles produce and feel at the same

time.

≈ here means “replaced by”
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replacements

1

2

N∑

j=1,j 6=h

U (A)(qh, qj) ≈ E(qh)

Ih(q1, . . . , qN ) ≈ I(qh) := e−
1

kT
E(qh)

E single-particle effective potential

mean-field free energy

FN = −kT ln
1

N !

∫

QN

N∏

h=1

Ihdq1dq2 . . .dqN

≈ −kT ln
1

N !

(∫

Q

e−
1

kT
E(q)dq

)N

=: F
(mf)
N
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upper estimate

It follows from Gibbs-Bogoliubov inequality (and an equivalent ap-

proach to mean-field theory) that the mean-field free energy is larger

than the true free energy it replaces.

Gartland & Virga (2010)

remark

For a deformable particle the configuration space Q will also allow

for extra configurational degrees of freedom in addition to the usual

translational and orientational ones.
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Density Functional Theory

• The mean-field free energy F
(mf)
N is a scalar depending on (N, V, T )

only in a parametric form.

• Considering, within the canonical ensemble, how particles

are distributed in the configuration space Q, we construct a

theory where the mean-field free energy becomes a functional

F of the distribution density.

distribution (number) density

ρ := Q → R
+

∫

Q

ρ(q)dq = N

effective potential

1

2

N∑

j=1,j 6=h

U (A)(qh, qj) ≈ E(qh) → E(q) := 1

2

∫

Q

ρ(q′)U (A)(q, q′)dq′
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partitioning Q

Q =

M⋃

i=1

Q(i)

We split the system in a great number, say M , of subsystems

Ni number of particles in the ith subsystem

q(i) ∈ Q(i) core of the ith subsystem

Q(i) ⊂ Q region occupied by the ith subsystem

∆qi measure of Q(i)

discretizing ρ

ρ : Q → R
+ ρi := ρ

(

q(i)
)

Ni = ρi∆qi

M∑

i=1

Ni = N
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free-energy additivity

F
(mf)
N =

M∑

i=1

F
(mf)
Ni

F
(mf)
Ni

= −kT ln
1

Ni!

(∫

Q(i)

e−
1

kT
E(q)dq

)Ni

F
(mf)
N = −kT

M∑

i=1

ln
1

Ni!

(
Ni

ρi
e−

1
kT

E(i)

)Ni

E(i) := E
(

q(i)
)

Stirling’s approximation

ln

(
1

Ni!
NNi

i

)

≈Ni
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Free-energy functional

F
(mf)
N ≈− kT

M∑

i=1

Ni

(

ln
1

ρi
− E(i)

kT

)

− kTN

Disregarding the last addendum, as it does not depend on ρ, we justify

the definition

F [ρ] := kT

∫

Q

ρ(q) ln ρ(q)dq +
1

2

∫

Q2

ρ(q′)ρ(q)U (A)(q′, q)dq′dq

E [ρ] :=
1

2

∫

Q2

ρ(q′)ρ(q)U (A)(q′, q)dq′dq

∫

Q

ρ(q)dq = N
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Maier-Saupe Free Energy

Here we apply the general mean-field theory presented so far to Lon-

don dispersion forces interactions between non-polar molecules.

London dispersion forces

• Liquid crystal molecules are thought of as being both neutral

and with no permanent dipole.

• However, instantaneous dipoles can arise in a molecule and

the electric field thus created can polarize a nearby molecule.

• Though the (time) average of dipoles vanishes in each molecule,

the average energy between induced dipoles does not vanish

and results in an attractive interaction.

• This basic interaction mechanism can easily be understood clas-

sically, but the evaluation of the induced dipole can only be

achieved via a quantum mechanics (perturbative) computa-

tion, relying on a number of approximations.
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Unsöld approximation

Assume that all states in the molecules that contribute to their dis-

persion interaction have excitation energies close to E0.

Unsöld (1927), London (1930,1937)

dispersion energy

Udisp = −C

r6
U(er)αmolU(er) ·α′

mol C =
3

4

E0

(4π)2

r distance between molecular centres

αmol, α
′
mol molecular polarizability tensors

U(er) := er ⊗ er − 1
3I

er unit vector along the line joining molecular centres
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degrees of freedom

Molecules are treated as rigid particles:

Q = B × Ω

B region in space of volume V

Ω orientational manifold

q = (x, ω)

x position vector of molecular centre

ω orientational degrees of freedom (e.g. Euler angles)

attractive potential

U (A)(q, q′) :=







Udisp r ≧ R

0 r < R
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spatially homogeneous density

ρ(q) = ρ0
︸︷︷︸

N
V

̺(ω)

∫

Q

ρ(q)dq = N

∫

Ω

̺(ω)dω = N ⇒
∫

Ω

̺(ω)dω = 1

effective potential

E(x, ω) = 1

2

∫

B×Ω

ρ0̺(ω
′)U (A)(x, ω;x′, ω′)dx′dω′

= −1

2

∫

Ω

(∫ ∞

R

Cρ0

r4

∫

S2

U(er)αmol(ω)U(er)drdA(er)

)

·αmol(ω
′)̺(ω′)dω′

= −2πCρ0

135R3

∫

Ω

αmol(ω) ·αmol(ω
′)̺(ω′)dω′ + constant

in the thermodynamic limit, N, V → ∞ with ρ0 unchanged.
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uniaxial molecules

Ω = S
2

αmol(ω) = (α‖ − α⊥)q(ω) +
1

3
(2α⊥ + α‖)I

q(ω) = m(ω)⊗m(ω)− 1
3I molecular tensor

E(x, ω) = −1

2
U0

∫

S2

q(ω) · q(ω′)̺(ω′)dω′ U0 :=
π

45R3

(α‖ − α⊥)
2

(4π)2
E0ρ0

= −1

2
U ′
0

∫

S2

P2(m(ω) ·m(ω′))̺(ω′)dω′ U ′
0 :=

2

3
U0

E is independent of x

E(ω) = −1

2
U0

∫

S2

q(ω) · q(ω′)̺(ω′)dω′
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Free-energy functional

F [ρ] : = kT

∫

Q

ρ(q) ln ρ(q)dq +
1

2

∫

Q2

ρ(q′)ρ(q)U (A)(q′, q)dq′dq

= kT

∫

Q

ρ(q) ln ρ(q)dq +

∫

Q

E(ω)ρ(q)dq

q = (x, ω)

ρ(q) = ρ0̺(ω)

FMS[ρ] = kTN

∫

S2

̺(ω) ln(ρ0̺(ω))dω

−1

2
U0N

∫

S2×S2

̺(ω′)̺(ω)q(ω′) · q(ω)dω′dω

∫

S2

̺(ω)dω = 1

23



(dimensionless) free-energy per particle

FMS[̺] :=
1

NkT
FMS[ρ] =

∫

S2

̺(ω) ln ̺(ω)dω

− 1

2
β

∫

S2×S2

̺(ω′)̺(ω)q(ω′) · q(ω)dω′dω

β :=
U0

kT
dimenionless reciprocal temperature

first variation

δFMS(̺)[δ̺] =

∫

S2

[

(1− λ) + ln ̺(ω)− β

(∫

S2

q(ω′)̺(ω′)dω′

)

· q(ω)
]

δ̺(ω)dω

λ Lagrange multiplier for
∫

S2
̺(ω)dω = 1
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equilibrium density

̺eq(ω) =
eβ(

∫
S2

q(ω′)̺eq(ω
′)dω′)·q(ω)

∫

S2
eβ(

∫
S2

q(ω′)̺eq(ω′)dω′)·q(ω)dω
=

eβQ·q(ω)

∫

S2
eβQ·q(ω)dω

Q =

∫

S2

q(ω′)̺eq(ω
′)dω′

• The integral equilibrium equation for ̺eq becomes the self-

consistency equation for the order tensor Q.

• Q = 0, and ̺eq = ̺0 ≡ 1
4π , is a solution for all β.
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(rescaled) equilibrium free energy

fMS(β,Q) :=
1

β
(FMS[̺eq]+ln 4π) =

1

2
Q·Q− 1

β
ln

(
1

4π

∫

S2

eβQ·q(ω)dω

)

fMS(β,0) = 0 for all β

critical points

∂fMS

∂Q
= Q−

∫

S2
q(ω)eβQ·q(ω)dω
∫

S2
eβQ·q(ω)dω

∂fMS

∂Q
= 0 ⇔ Q = 〈q〉̺eq

The critical points of fMS are solutions to the self-consistency equa-

tion for Q and have necessarily admissible eigenvalues.
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critical point properties

• We regard fMS(β, ·) as defined in the whole space of symmetric

traceless tensors.

• But fMS(β,Q) represents the mean-field free energy only at its

critical points Q. Its non-critical values are physically irrele-

vant.

• For given β, the order tensor Q at which fMS(β, ·) attains its

least critical value represents the stable equilibrium phase.

• Q = 0 is a critical point of fMS(β, ·) for all values of β.
• fMS(β, ·) is an isotropic function:

fMS(β,RQRT) = fMS(β,Q) ∀ R ∈ O(3).

• If Q 6= 0 is a critical point of fMS(β, ·), then Q is uniaxial.

Fatkullin & Slastikov (2005)

Liu, H. Zhang & P. Zhang (2005)
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scalar order parameters

Q = S

(

ez ⊗ ez −
1

3
I

)

+ T (ex ⊗ ex − ey ⊗ ey) .

reduced free energy

fMS(β,Q) = fs(β, S, T )

fs(β, S, T ) :=
1

3
S2 + T 2 − 1

β
ln

1

4π

∫ 2π

0

dϕ

∫ π

0

eβgs(ϑ,ϕ;S,T ) sinϑdϑ

gs(ϑ, ϕ;S, T ) = S

(

cos2ϑ− 1

3

)

+ T sin2ϑ cos 2ϕ

coercivity

|gs| <
2

3
|S|+ |T | ⇒ fs(β, S, T ) >

1

3
S2 + T 2 − 2

3
|S| − |T |
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• fs(β, ·, ·) enjoys a 6-fold symmetry in the admissible triangle.

• All critical points of fs(β, ·, ·) lie on the uniaxial lines.
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We shall restrict the search for the critical values of fs to T = 0.
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restricted free energy

∂fs

∂T
(β, S, 0) = 0 ∀ β, S

⇓

All critical points (S0, 0) of fs(β, ·, ·) are critical points of

fu(β, S) := fs(β, S, 0) =
1

3
S2 − 1

β
ln

1

2

∫ π

0

eβS(cos
2 ϑ− 1

3 ) sinϑdϑ

fu(β, S) =
1

3
S2 − 2

3
S − 1

β
ln

(

daw
(√

βS
)

√
βS

)

daw(x) := e−x2

∫ x

0

et
2

dt
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Dawson’s integral
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change of variables

x :=βS

fu

(

β,
x

β

)

=
1

β

{
1

3β
x2 − 2

3
x− ln

(
daw (

√
x)√

x

)}

equilibria

∂fu

∂S
=

2x

3

(
1

β
−G(x)

)

G(x) :=
3

4x
√
x daw (

√
x)

− 3

4x2
− 1

2x

lim
x→0

G(x) =
2

15

G(x) ≈ 1

x
for x → +∞ G(x) ≈ − 1

2x
for x → −∞
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local uniaxial stability

• For 1
β

> G∗
.
= 0.149 there is only one equilibrium solution,

S = 0.

• For 1
β
< G∗

.
= 0.149 there are two extra equilibrium solutions.

• One of the extra solutions has S < 0 for 1
β
< 2

15 .

∂2fu

∂S2
=

2β

3







(
1

β
−G(x)

)

︸ ︷︷ ︸

0 at equilibrium

−xG′(x)






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local biaxial stability

fs(β, S, T ) = fu(β, S) + β

(
1

β
− g (βS)

)

︸ ︷︷ ︸

G(βS)−g(βS)

T 2 +O
(
T 4
)

g(x) :=
1

4
+

1

4x
+

3

16x2
− 1

8
√
x daw (

√
x)

− 3

16x
√
x daw (

√
x)

.
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absolute minimizer

• The free energy vanishes on the isotropic phase:

fu(β, 0) = 0

• The free energy of the competing locally stable nematic phase

is negative whenever

G(x) < F (x)

F (x) :=
1

x
+

3

x2
ln

(
daw (

√
x)√

x

)
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