
Abstract

J. B. McLeod was a brilliant solver of problems in mathematical analy-
sis, primarily differential equations. He received his FRS in 1992, and the
citation reads in part: “Distinguished for many significant contributions to
applied analysis, particularly to the theory of partial differential equations
with applications to practical problems. ... By the exemplary precision
and power of his publications and his lectures, he has become internation-
ally recognized as the leading British authority on the useful applications
of functional analysis.”

Also, in 2011 McLeod was awarded the Naylor Prize and Lectureship
of the London Mathematical Society “in recognition of his important and
versatile achievements in the analysis of nonlinear equations arising in
applications to mechanics, physics, and biology.”He collaborated widely,
and was a resource for many applied mathematicians who wanted to have
a more rigourous foundation for their work. He leaves a hole which will
be hard to fill.
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1 Overview

When Bryce McLeod was ten years old, his home city of Aberdeen was under
threat of German bombs. As a result, his schooling was partially interrupted,
and so his parents sent him to his grandfather, former Head of Mathematics
at Aberdeen Grammar School, for instruction. Apparently, this gentleman had
lost track of what maths a ten-year-old would have been exposed to, and he
began the first lesson with algebra, completing linear equations in around 15
minutes and then delving into the quadratic equation. Young Bryce, having
seen nothing beyond arithmetic before, had no idea what these x’s and y’s were
about, but was too in awe of his grandfather to admit this. He went home
with an assignment, and agonized for hours trying to determine what was going
on. But when he returned the next day he was able to solve every quadratic
equation his grandfather gave him. 1 2

John Bryce McLeod was born on 23 December 1929, in Aberdeen. His
parents were John McLeod, an engineer and Adeline Annie Bryce. His paternal
grandfather was raised on a farm, but had been recognized by his teachers as
bright and encouraged to attend Aberdeen University.
Bryce’s father and one of his uncles were engineers and another uncle read

mathematics at Cambridge, so he was following in a family tradition when he,
at age 16, went off to study maths at Aberdeen University. Upon graduation he
was awarded a stipend enabling him to continue his education at Oxford, where
he received his second First Class undergraduate degree, again in mathematics.
After an interlude for study abroad and National Service he completed his D.
Phil. at Oxford in 1958, under the direction of E. C. Titchmarsh FRS, the
leading analyst there at the time.
He took a position at Edinburgh University, but in 1960 accepted a Fellow-

ship back in Oxford, at Wadham College. He became a University Lecturer,
and his research in what is now called “applied analysis”flourished.

1This story, and some other material in this Memoir, came from the interview McLeod did
with Professor Sir John Ball of Oxford University in January, 2014. Both participants realized
the seriousness of McLeod’s illness at the time of the interview, a video of which is available
online [30].

2Much of this section was taken from (Hastings 2014).

2



Applied analysis is largely the rigorous study of differential equations and op-
timization problems arising in the sciences and engineering. McLeod’s research
in this area was widely recognized in the UK and abroad, but not so much in
Oxford, for reasons I will discuss later. Dissatisfaction with his situation within
Oxford Mathematics, and also the mandatory retirement he saw looming, led to
his departure for the University of Pittsburgh in 1987. Pitt had strong people
in differential equations and neighboring Carnegie Mellon University also had a
first class group in this area.
He stayed in Pittsburgh for 20 productive years. During this period, ironi-

cally, he received an inquiry from a senior mathematician at Cambridge inviting
him to apply for a Chair there. He had to reply that he was beyond the manda-
tory retirement age.
McLeod’s influence did much to resuscitate applied analysis in the UK. One

indication of this was his FRS, awarded in 1992, while he was in Pittsburgh.
Others around Britain, including John Ball, were encouraged in their interest in
differential equations by his work. His Oxford graduate students gained Profes-
sorships at Exeter (later Canterbury), EPFL Lausanne, Heriot-Watt, Michigan,
North Carolina State, and in Brazil.
McLeod collaborated widely in differential equations, where he was recog-

nized as a problem solver of genius. These collaborations frequently developed
when another mathematician had a problem from an applied area which he
found intractable and brought it to McLeod’s attention. Very often the result
would be a new but simple way of looking at the problem which led to an
ingenious solution.
It is symbolic of the revival of applied analysis in the UK in the last 30 years

that the 2011 Naylor Prize and Lectureship of the London Mathematical Society
was presented to J. B. McLeod, “in recognition of his important and versatile
achievements in the analysis of nonlinear equations arising in applications to
mechanics, physics, and biology.”
In addition to the honors mentioned earlier, McLeod was awarded the Whit-

taker Prize of the Edinburgh Mathematical Society in 1965, the Keith Medal
and Prize of the Royal Society of Edinburgh in 1987 and election as a FRSE in
1974. He died on August 20, 2014 and is survived by his wife, four children and
three grandchildren.

2 Student years

Bryce, his father, and very likely his grandfather, were each the top student
(“dux”) in their turn at Aberdeen Grammar School, and hence had their pictures
posted in a hallway. Many years later Bryce paid a return visit to the school,
out of term. He was spotted by a custodian, who ordered this very casually
dressed visitor to leave. Unfortunately, there had been a fire at the school in
which the dux pictures were destroyed, and so Bryce was unable to point out
his photo to the custodian as evidence that he should not be turned out.
It was assumed in those days that bright students from northern Scotland
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would go to Aberdeen University. Bryce had known from his early teens that
he wanted to study mathematics, and at Aberdeen he found a more than com-
petent mathematical faculty. The best known mathematician there during
Bryce’s time was E. M. Wright, co-author with G. H. Hardy of a classic book
on number theory and winner of the Senior Berwick Prize of the London Math-
ematical Society in 1978. It was Wright who encouraged Bryce to go further in
mathematics and probably Wright who found the funds which enabled him to
do so at Oxford. At that time he envisaged a life as a school teacher, following
in the footsteps of his grandfather.
At Oxford Bryce fell under the influence of Theodore Chaundy, a math-

ematician remembered today especially for his work in hypergeometric func-
tions. Bryce admired Chaundy greatly, and nearly twenty years later, having
completed his D. Phil. with Titchmarsh and established himself in research,
he wrote that when he came up to Christ Church as an undergraduate to read
mathematics, he “became exposed to a mathematical mind which for sheer
speed and restlessness, was quite unequalled in my experience then — or, for
that matter, since.”[11]
After completing his first class honours in mathematics at Oxford, Bryce

took a somewhat unusual path. He was, under circumstances which he was
unable to remember during the Ball interview, awarded a Rotary scholarship,
apparently due to actions taken in Aberdeen. This enabled him to travel “any-
where in the world”, presumably to study mathematics. Here, it appears to this
outside observer, Chaundy’s advice was a bit strange, for he recommended going
to the University of British Columbia, not a powerhouse in pure mathematics
at that time. Bryce duly followed this suggestion, and in [30] he expressed no
regrets; on the contrary he was very positive about the contacts he made there,
especially a long time friend who, as I will describe later, proved very helpful in
his subsequent mathematical career.
The time at UBC apparently did cause him to shift his interest permanently

from school teaching to mathematical research. When he returned, he was re-
quired to do national service, which involved low level teaching as an Education
Offi cer in the RAF. After this he started his research with Titchmarsh.
Bryce’s first publication, joint with Chaundy, appeared in print in 1958, the

year of his D. Phil. [1] The reviewer for Math Reviews said: “By an ingenious
sequence of formal manipulations the authors prove that the form of the solution
depends on a quadratic characteristic equation.”His second paper [2] had the
surprising title “On the commutator subring”; surprising because I doubt that
many of his friends realize that he had a publication in algebra. The reviewer
wrote “By a simple but ingenious computation, it is shown that the subring
of S generated by all commutators rs − sr is a two-sided ideal in S.”Again,
“ingenious”, a word not used lightly by mathematicians. But it can be said to
apply to a large number of the proofs of J. B. McLeod (as he preferred to sign
his papers).3

3Co-authors sometimes persuaded him to be less formal, using J. Bryce McLeod or even,
in few instances, Bryce McLeod.
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In [30] Bryce tells this story. Titchmarsh gave regular seminars on his work,
often with Bryce as the only member of the audience, during one of which he
mentioned a point which was still unresolved. Bryce thought he could say
something about this, and after couple of days put some notes on the problem
in Titchmarsh’s “pigeonhole”. In a week he found in his own pigeonhole the
complete manuscript of a paper by McLeod and Titchmarsh. Apparently there
was not one word exchanged between them in the preparation of this paper. In
later years, and in the Ball video, Bryce made it clear that mathematical and
social interchanges with other mathematicians were among his principle rewards
for tackling such a hard topic as mathematics. It seems that there was none of
this with his advisor.

3 Family

Bryce had a happy childhood and his parents, both intelligent people, accepted
his inclination to disappear into his room to study maths. Like Bryce, his
sister Morag obtained a first class degree at Aberdeen University, hers being in
chemistry.
Bryce met his future wife, Eunice, while they were both at school. Eunice

chose to skip University and become a nurse, continuing to work in the medical
field after their marriage in 1956 and the concurrent move to Oxford. Their first
two children, Kevin and Callum, were born in the UK and the last two, twins
Bridget and Patrick, came on the scene in Madison Wisconsin, where Bryce
took a year’s leave in 1964-65.
Kevin was the only child who went into mathematics, obtaining his Ph. D.

at the University of Minnesota under the direction of James Serrin and making
his career at the University of Wisconsin, Milwaukee. He has one joint paper
with his father. Callum became a musician, working in a mixture of classical
music, as conductor and performer, and theatrical music, conducting the or-
chestra at the Phantom of the Opera in London for many years. Bridget went
into school teaching, becoming a head teacher in Berkshire and organizing many
school musical performances. Patrick took a degree in chemical engineering and
became a Vice President at Dow Corning Corporation, working at various times
in Belgium, France, and China. Bryce, with good reason, was proud of all his
children. He was, however, much engrossed in his work, so we should give con-
siderable credit to Eunice for their success. Beyond that, Eunice undoubtedly
made Bryce’s career possible with her so-called “supporting role”at home.
In 1964-65 Bryce took a leave at the Mathematics Research Center at the

University of Wisconsin, Madison, accompanied by his family. He had made
contact with the group there with the help of Tommy Hull, the friend from
Vancouver whom I mentioned earlier [30]. This year was rewarding for Bryce
mathematically and for the whole family socially. He found the MRC a revela-
tion, particularly because he felt that applied analysis was properly appreciated
there. From then until 1986 he spent most summers in Madison, with his family
joining him for parts of these visits.
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During those summers the family journeyed several times across the US in
the Winnebago camper van that Bryce had bought to live in while in the US.
At Bryce’s funeral Patrick spoke of these journeys:
“I look back with great fondness on those road trips around the US —Mexico,

the Canyon lands, Mesa Verde, the Badlands, California and the West Coast,
New England during the bicentenary year, Banff, the Canadian National Parks.
There were times, of course, when the experiences weren’t fully appreciated by
the rest of the family, and that would annoy Dad, but his intentions were always
to provide us with opportunities to learn and to develop interests that many
children of our ages would never have had.”
Bryce was the family photographer and documented their travels. The

photo below is one of the very few the family have of Bryce himself. It was
taken on one of those cross country trips.

Although Bryce and his family travelled to many parts of the world, es-
tablished temporary homes during sabbaticals in Wisconsin, Minnesota, and
Sydney, and moved for 20 years to Pittsburgh, the house they bought in Abing-
don in 1960 remained in many ways the center of their lives together. They
kept this house throughout all of their sojourns abroad.
Nevertheless, from 1987 to 2007 Eunice and Bryce made a home in Pitts-

burgh, enjoying particularly the local classical music scene. Their Pittsburgh
home, like the house in Abingdon, held a grand piano, for Bryce to play and ac-
company Eunice. It was with mixed feelings that they moved back to Abingdon
after his retirement from Pitt.
Bryce was an excellent after dinner speaker. In my experience one of his

best speeches was at the conference which was organized in Oxford for his 70th
birthday. After Bryce died a Pittsburgh colleague, Carson Chow, wrote:

“One of the highlights of my career was being invited to a conference in
his honour in Oxford in 2001. At the conference dinner, Bryce gave the most
perfectly constructed speech I have ever heard. It was just like the way he did
mathematics - elegantly and sublimely.”

His family remembers particularly a speech he gave at his daughter Bridget’s
wedding, which brought her into a family with surname McGregor. His version
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of the history of the McGregors, perhaps not entirely favorable to that ancient
clan, had both families in stitches.
It appears, however, that mathematical audiences were not always so able

to take his wit in stride. On at least two occasions speeches he gave at birth-
day celebrations for a mathematician were interpreted by some in the audience
as veiled criticisms of the celebrant, couched in humor. But his family, who of
course knew Bryce best, are sure that he was much too straight-forward for such
a device. They maintain, for example, that when one honoree was described as
being like Poo Bah in the Mikado, who held many important positions simulta-
neously, this was solely for its humorous effect.

4 His Mathematics

McLeod’s mathematical specialty, applied analysis, is a bridge between pure and
applied mathematics. In the 40’s and 50’s, major figures in this area in the UK
included Titchmarsh, M. L. Cartwright FRS, and J. E. Littlewood FRS, but
then the subject fell in stature as compared to such areas as abstract algebra
and topology. After Titchmarsh’s death in 1966 no specialist in differential
equations held a Chair at Oxford (or Cambridge) until John Ball FRS was
appointed Sedleian Professor thirty years later. I have included below a section
about the reasons for the lack of interest in applied analysis at Oxford in the
70s and 80s, but first I will describe a selection of McLeod’s most influential
papers.4

4.1 Linear problems

Of McLeod’s first 34 published papers 30 were in differential equations, and
of these, most were on linear ordinary differential equations. This was to be
expected for a student of Titchmarsh, whose mastery of the linear ODE domain
was unsurpassed. Of his subsequent 128 papers, from 1968 to 2015, only 10
can be characterized as linear. And among his most cited papers, including two
before 1968, all but one are on nonlinear problems. So my relative incompetence
in linear ODEs is not the only reason that I will emphasize the nonlinear work
here.
However some of McLeod’s papers on linear problems do bear particular

mention. A striking indication of the importance of his early work is that
many of these papers continue to be cited in the 21st century. Using Google
Scholar I have found that about half of McLeod’s 34 papers published before
1968 had citations from the year 2000 or later. Among those on linear topics
were papers on Schrödinger’s equation [8], [3], and the number of L2 solutions

4A suggestion to readers not trained in mathematics, taken from the excellent book (Yan-
dell, 2002): If you come to material you don’t understand, “skip a bit if you want —the
biographical narrative will pick up again. Pretend you are reading Moby Dick, and have
come to another chapter on whaling.”
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of a class of ODEs [6], [4]. Some of the early papers had citations 50 years or
more after they were written.
The best known of McLeod’s papers on linear equations is work he did

around 1970 with Tosio Kato of the University of California at Berkeley [13].
Kato, one of the most eminent of McLeod’s collaborators, visited Oxford in the
early’70s. The problem he and McLeod worked on was about “wave motion
in the overhead supply line to an electrified railway system”. They obtained a
number of results, but the work was unfinished when Kato returned to Berkeley.
Later, when McLeod sent him a solution to the problem they had been stuck on,
he wrote back: “How on earth did you think of that?” [30] Many of McLeod’s
collaborators over the years had the same question.

THE FUNCTIONAL-DIFFERENTIAL EQUATION

y′ (x) = ay (λx) + by (x) for x > 0 (1)

lim
x→0+

y (x) = 1. (2)

This equation, derived in Ockendon & Taylor 1971, is not an ordinary dif-
ferential equation unless λ = 1. In [13] a may be complex, b is real, and λ is
real and non-negative, but here I will only consider the physical case of real
solutions with a real.
The cases λ = 0 and λ = 1 being trivial, we assume that 0 < λ < 1 or λ > 1.5

The theory is more complete if λ < 1. In this case, setting x = es, λ = ec, and
y (x) = z (s) gives a delay equation in standard form,

z′ (s) = az (s+ c) + bz (s)

where c < 0 since λ < 1. From this it is seen that the standard existence and
uniqueness theory for linear delay-differential equations applies. The interest
then is in the asymptotic behavior of solutions for large x.
In the case b < 0, for example, McLeod and Kato are able to show that if

λ < 1 then every solution of (1) can be written in the form

y (x) = xk[g (log x) + o (1)] as x→∞

where

k = log

(
− b
a

)
/ log λ

and g is a C∞ periodic function of period |log λ| . There is such a solution for
any such g.
Perhaps the most interesting twist in this paper is a relation which is revealed

between the asymptotic behaviors for λ < 1 and λ > 1. This result is too
technical to give here but I suspect that it was the cause of Kato’s laudatory
question mentioned above.

5Both cases are discussed in (Ockendon & Taylor 1971).
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4.2 Non-linearity - before and after Edinburgh

4.2.1 Coagulation

But still, most of McLeod’s influence eventually is likely to be from his papers on
nonlinear differential equations, all but two published after a 1968 conference in
Edinburgh which he helped organize and where he met James Serrin. It was in
Serrin’s Edinburgh lectures that McLeod first began to appreciate the interest
and importance of nonlinearity in applied analysis. I start, though, with the
paper [5] from 1962.

ON AN INFINITE SET OF NONLINEAR DIFFERENTIAL EQUATIONS

This paper was far ahead of its time. It received almost four times as many
citations in the years 2011-2014 as it did up to 1980. In the video (see footnote
1), McLeod tells the story of meeting the theoretical chemist William Byers
Brown, later Professor at the University of Manchester, while each was fulfilling
his national service requirement by teaching at the Royal Air Force Technical
College in Henlow, Bedforshire. Byers Brown, a friend for many years thereafter,
introduced McLeod to coagulation theory, and this was the subject of his first
paper on nonlinear differential equations.
The title above is rather general but now it might be “On the discrete form

of Smoluchowski’s equation”. This equation was developed in 1916 by a pioneer
in statistical physics, Marian Smoluchowski, who worked at the University of
Lwów in Poland. It is usually written as a single integral equation:

∂n (x, t)

∂t
=

1

2

∫ x

0

K (x− y)n (x− y, t)n (y, t)−
∫ ∞

0

K (x, y)n (x, t)n (y, t) dy.

The discrete version considered by McLeod in the first of his papers on the topic
is, as his title indicates, an infinite system:

dn1
dt = −n1

∑∞
i=1K1ini

dni
dt = 1

2

∑i−1
j=1Kj,i−jnjni−j − ni

∑∞
j=1Kijnj , i ≥ 2.

(3)

The standard initial conditions are

n1 (0) = 1
ni (0) = 0 if i ≥ 1

. (4)

Smoluchowski’s model has been studied extensively by mathematicians for the
last 30 years, but in 1962 it was all but unknown in the mathematical com-
munity. McLeod states that the only previous pure mathematical work on the
equation was for cases where the kernel K is bounded.
He first considered a distinctly unbounded case, K (i, j) = ij. What moti-

vated him to do so is not made clear, but it is this part of the paper that has
been most influential in the subsequent decades. His analysis of this case can
be repeated in full:
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For i ≥ 2 multiply the equations by i and then sum over i, giving

∞∑
i=1

i
dni
dt

=
1

2

∞∑
i=1

i

i−1∑
j=1

j (i− j)njni−j −
∞∑
i=1

i2ni

∞∑
j=1

ji nj (5)

Proceed “by noting that”if either term is multiplied out, then the total coeffi -
cient of ninj is (i+ j) ij.”(for i 6= j).

This and (4) imply that

∞∑
i=1

i
dni
dt

= 0

∞∑
i=1

i ni = 1

and so

n′1 = n1

n1 (t) = et.

This allows one to solve successively for n2, n3, · · · and there results the exact
solution

nj (t) =
tj−1jj−2

j!ej t
, 0 ≤ t < 1.

It is remarkable that one can find an exact solution for such a complicated
system. Perhaps the major step here was to hope that one could do so.

4.2.2 One of Serrin’s problems

THE EXISTENCE OF SIMILAR SOLUTIONS FOR SOME LAMINAR
BOUNDARY VALUE PROBLEMS

(1968, with James Serrin)

The equations are those of K. Stewartson (Stewartson 1949) for similarity
solutions of the boundary layer equations for compressible flow over a surface.
They are:

f ′′′ + ff ′′ + µ
(
h− f ′2

)
= 0

h′′ + fh′ = 0
(6)

with boundary conditions

f (0) = f ′ (0) = 0, h (0) = a
limx→∞ f ′ (x) = limx→∞ h (x) = 1

. (7)

The problem addressed by McLeod and Serrin in [9] was the existence of a
solution to this problem.
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This was the first of many uses by McLeod of the so-called “shooting
method”for proving the existence of a solution to an ODE boundary value prob-
lem. Although the method had been used earlier, for example by Wazewski, I
suspect that McLeod was not aware of this and came up with it himself, devel-
oping a more straight-forward version.
In the shooting method, one assumes enough additional initial conditions to

specify a unique solution, and then tries to find values for these additional initial
conditions such that the boundary conditions at infinity are satisfied. Thus,
suppose that

f ′′ (0) = α, h′ (0) = β. (8)

The goal is to choose α and β so that (7) is satisfied. The idea is to sort out
various ways in which the solution can go wrong, and fail to satisfy the boundary
conditions at infinity. Based on numerical computations one can expect graphs
of (f ′)

2 and h for a solution satisfying (7) to look like this:

In particular, we look for a solution with f ′ increasing. My presentation below
is slightly simplified from that of McLeod and Serrin because they treated a
more general class of systems, including one other important application. For
the problem (6)-(7), one can find two specific ways that the solution (f, h) to
(6)-(8) can go wrong and not solve (7), or even the conditions f ′′ ≥ 0 and
f ′ (∞)

2
= h (∞) .

(i) f ′′ > 0 and (f ′)
2 increases above h. This happens if, for a given β = h′ (0) ,

α is very large
(ii) f ′′ becomes negative. This happens if α is zero, because f ′′′ (0) < 0.

Suppose that A is the set of initial conditions (α, β) ∈ R2 such that (i)
occurs, and B is the set of (α, β) such that (ii) occurs.
McLeod and Serrin show, essentially, that there is a rectangle R in the (α, β)

plane such that the left side of R is contained in A and the right side of R is
contained in B. Also, A and B are disjoint and open. Then they use the following
result from point set topology.
Lemma: Under the given conditions on A and B there is a continuum Γ ⊂ R

which intersects neither A nor B and which connects the top and the bottom of
R.6

6Topologists today would prove this using some form of degree theory or algebraic topology.
Mcleod and Serrin give an elementry proof “from scratch”.
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It is easy to show that if (α, β) ∈ Γ then f ′ (∞)
2 and h′ (∞) exist and are

equal.
Their final step, relatively straight forward, is to show that the limits above

are continuous functions of (α, β) in Γ and that R can be chose so that at every
point in the top of R ∩ Γ the two limits are above 1 and at every point in the
bottom of R ∩ Γ these limits are below 1. The result follows.

4.3 Swirling flow

In the period 1969-1975 McLeod wrote seven papers on the general problem
of the symmetric flow above an infinite rotating disk, or between two infinite
rotating disks. These problems were introduced by von Karman and are called
problems in “swirling flow”. Here I will briefly describe the results in two of
these papers.

4.3.1 Flow between two disks

ON THE FLOW BETWEEN TWO COUNTER-ROTATING INFINITE
PLANE DISKS

(1969, with S. Parter)

One of the contacts McLeod made at the Math Research Center in Madison
was S. V. Parter, with whom he wrote two papers on swirling flow. One of these,
[14], resolved a dispute between two distinguished applied mathematicians about
the boundary layer behavior of the flow.
In the situation where the angular velocities of the two rotating disks were

of equal magnitude but opposite in signs, K. Stewartson had maintained that
the main body of the flow was at rest, with boundary layers at each plate
(Stewartson 1953), while G. K. Batchelor argued that the transition between
the angular velocities of the two plates occurred in a narrow region in the middle
(Batchelor 1951). By making the asymptotic analysis of Stewartson rigorous,
McLeod and Parter disproved the conjecture of Batchelor.

To me this paper beautifully illustrates one role that applied analysis can
play for applied mathematicians. Other papers of McLeod in which rigorous
mathematics was used to disprove “results”which had been obtained by formal
asymptotic arguments include [20] and [26]. Among papers where he confirmed
the results of more applied researchers I can mention [10], [27], and, I presume,
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most of the papers which he co-authored with applied mathematicians, such as
[28], [22], and [19].

4.3.2 Flow above a single disk —use of continuation

THE EXISTENCE OF AXIALLY SYMMETRIC FLOW ABOVE A
ROTATING DISK

(1971)

The paper [12] solved perhaps the most basic problem in the area, one which
had eluded some excellent mathematicians since von Karman developed the
model in 1921. I chose it to discuss for two reasons: it is an impressive piece
of analysis, and it marks McLeod’s first use of a technique which he was to use
again in some important work in areas unrelated to fluid mechanics, that is, the
technique of continuation.
The idealized physical problem studied here is that of single infinite disk

rotating with angular velocity Ω0, and fluid occupying the half-space x > 0
above this disk. The fluid is assumed to have an imposed angular velocity of
Ω∞ at x = ∞. Von Karman showed that the problem reduces to the study of
two ODEs with boundary conditions:

f ′′′ + ff ′′ +
1

2
(g2 − f ′2) =

1

2
Ω2
∞ (9)

g′′ + fg′ = f ′g (10)

f(0) = a, f ′(0) = 0 (11)

g (0) = Ω0, f
′ (∞) = 0, g (∞) = Ω∞ (12)

Here a is a parameter measuring possible suction at the plate. The problem
with this term in it was brought to McLeod’s attention by his colleague Hilary
Ockendon.
The relation of x, f, and g to physical quantities is via a similarity substi-

tution in the original partial differential equations and we omit those details.
McLeod had previously proved existence of a solution to this problem when

Ω∞ = 0. In this paper he proves existence if Ω0 and Ω∞ have the same sign,
for any value of a. In assessing this proof we must remember that this was done
in the years before “bifurcation” theory became a prominent topic in applied
analysis. What he does here anticipates this theory by analyzing the bifurcation
curve of solutions in, for example, the (Ω0, f

′′ (0)) plane. I point out the
following remark in the paper:
“There is evidently a close affi nity between this pattern of proof and the

general existence theorem of Leray & Schauder (1934). There the existence
of a non-zero index (which is closely allied to the idea of an odd number of
solutions) for one value of a parameter is used to prove the existence for other
values of the parameter. It must be possible, if not probable, that the existence
theorem of the present paper can be treated as an application (although a highly
non-trivial one) of the Leray-Schauder result, but it does seem that the work
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involved in approaching the problem from this angle leads to a more complicated
presentation rather than a simpler one, and it is not attempted here.”
In this sentence we can see the essence of McLeod’s approach to problems of

this sort. He believes, and often shows, that in many cases getting to the heart
of a particular problem with standard analysis yields more insights and easier
proofs than application of wide-ranging theories.
In McLeod’s proof Ω∞ is considered fixed, and positive for definiteness, and

Ω0 is a parameter. There is a trivial (constant) solution when Ω0 = Ω∞. He
shows, importantly, that this solution is unique, and by methods akin to the
implicit function theorem, but in infinite dimensions, he then shows that there
is a locally unique solution for Ω0 − Ω∞ small. Assuming that Ω0 > Ω∞ and
a solution exists for Ω0 in some interval (Ω∞,Ω

∗) , he concludes that a solution
exists if Ω0 = Ω∗. Further, he proves that these solutions can be chosen so that
g > 0, meaning that the whole body of fluid is rotating in the same direction.
He wishes to show that solutions exist for Ω0 > Ω∗ and close to Ω∗. Using

series expansions and some deep but classical results from analysis, he finds that
if this is not the case then there must be a second branch of solutions which
goes back from Ω∗ and merges with the first branch at Ω0 = Ω∞. But this
contradicts the local uniqueness near Ω∞ proved earlier, and this is the basic
step in proving existence for all Ω0 > Ω∞. A similar proof gives existence for
0 < Ω0 < Ω∞.

5 Two important papers on PDEs.

The term differential equation is usually taken to refer to one of two types, or-
dinary differential equations, in which there is only one independent variable,
often time, and partial differential equations, where there are several indepen-
dent variables, such as the three spatial coordinates. The majority of McLeod’s
work in differential equations involved ODEs, though often these are of a type
derived from a PDE. However of his six most cited papers, only one can be
considered purely a problem in ODEs. The three with the greatest number of
citations are all on partial differential equations, which is an indication of the
greater importance attached by much of the modern applied analysis commu-
nity to work in multivariable problems. I will now give some details on two of
these three.

5.1

THE APPROACH OF SOLUTIONS OF NONLINEAR DIFFUSION
EQUATIONS TO TRAVELLING FRONT SOLUTIONS

(with Paul Fife, 1977)

Many authors refer to this article, [15], as the “classic paper of Fife and
McLeod". The general topic is nonlinear diffusion in a homogeneous medium
where there can also occur chemical reactions. Fife and McLeod considered
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so-called “excitable media”, in which an initial stimulus at one point develops
into a wave traveling out from the initial point at a steady speed. With one
spatial variable the relevant pde is of the form used by R. FitzHugh and by J.
Nagumo:

ut = uxx + u (1− u) (u− a) (13)

where 0 < a < 1
2 and initial conditions are assumed:

u (x, 0) = φ (x) , −∞ < x <∞ .

First one looks for travelling wave solutions, by which is meant a solution of
the form u (x, t) = U (x+ ct) . A physically relevant solution must be bounded,
and it is not hard to show that if 0 < a < 1

2 and c > 0 then a non-constant
bounded travelling wave solution must satisfy

lim
ζ→−∞

U (ζ) = 0, lim
ζ→∞

U (ζ) = 1

front moves to the left

The following result is straightforward using the “shooting method”men-
tioned above:

Theorem: There is a unique value of c for which such a solution exists.

We can then ask: Is this wave front stable?
Stability theorems for nonlinear partial differential equations are almost all

local. If the initial condition is “suffi ciently close” in some sense to the exact
wave form, then solutions tend to a translation of this wave as t → ∞. The
result of Fife and McLeod is very different.
Theorem: Suppose that φ is continuous and 0 < φ (x) < 1 for all x .

Suppose also that

lim supφ (x) < a, lim inf φ (x) > a

x→ −∞ x→∞
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Then for some x0 and positive constants K and ω ,

|u (x, t)− U (x+ ct− x0) | < Ke−ωt

for all x and all t > 0.

This is a very strong result because the initial condition has only the restric-
tion that it be physically reasonable (0 < φ (x) < 1) and lie at least some small
amount below the “threshold” a for large negative x and at least some small
amount above a for large positive x . As shown in the figure, this allows a wide
variety of initial conditions. The principle tools used in the proof are a priori
estimates and comparison theorems for parabolic equations.

5.2

BLOW-UP OF POSITIVE
SOLUTIONS OF SEMILINEAR HEAT EQUATIONS

(with Avner Friedman, 1985)

McLeod wrote two papers with Friedman on this topic. Both have been
widely cited. Here we will discuss one of their results for the following class of
problems.

ut = ∆u+ f (u) in Ω,

u (x, 0) = φ (x) if x ∈ Ω

u (x, t) = 0 if x ∈ ∂Ω, 0 < t < T

Ω ⊂ Rn bounded, C2 boundary

Denote the closure of Ω by Ω̄ and assume that

lim
t→T−

max
x∈Ω̄

u (x, t) =∞

Then the problem is to identify the blow-up set:{
x | lim

t→T−
u (x, t) =∞

}
.

A special case is when the domain and initial data are radially symmetric:

Ω = BR

φ = φ (r)

and with
f (u) = up
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for some p > 1.

Theorem: If φ′ (r) < 0 for r > 0 then blowup occurs only at r = 0.

The proof uses the maximal principle four times. Friedman and McLeod
introduce the function w (r) = rn−1ur , showing by the maximal principle that
it is negative for r > 0 and 0 < t < T . They then consider a function

J = w + c (r)F (u)

where c and F are to be determined. They impose several conditions on the
functions c and F , including for example that

f ′F − fF ′ − 2c′

rn−1
F ′F +

2 (n− 1)

rn
cF ′F +

(
cn − n− 1

r
c′
)
F

c
≥ 0.

They eventually find that if c (r) = εrn and F (u) = uγ with 1 < γ < p then
their conditions are satisfied. Further use of the maximal principle allows them
to conclude that for any γ ∈ (1, p) there is an ε > 0 such that if r > 0 then∫ ∞

u(r,t)

1

sγ
ds ≥ 1

2
εr2

for 0 < t < T . This beautiful inequality implies that for r > 0 , u (r, t) is
bounded on (0, T ) , proving the Theorem.

5.3 A partial success

I suspect that the problem McLeod most wanted to solve among those where
he was unsuccessful was the Stokes conjecture on the “wave of greatest height”.
This conjecture was made by Lord Stokes (Stokes 1880) and involves waves in
deep water. Stokes’conjecture is the existence of a wave of greatest height and
the validity of a clever formal argument he gave showing that the angle formed
at the crest of this wave is 2π

3 .
An important step in proving this conjecture was taken in 1921 by A.

Nekrasov (Nekrasov 1921). By what is known in fluid mechanics as a hodo-
graph transformation, the region under one period, with wavelength λ, can be
mapped onto the unit disk in the complex plane. Nekrasov showed that if φ(s)
is the slope of the wave profile at the point corresponding to the point eis on
the unit circle, then φ satisfies the integral equation

φ(s) =
1

3

∫ π

−π

1

π
log

sin 1
2 (s+ t)

sin 1
2 |s− t|

sinφ(t)
1
µ +

∫ t
0

sinφ(w)dw
dt. (14)

Here µ is defined in terms the wave speed c and other physical parameters.
In 1961 Y. Krasovski (Krasovski 1961) showed that for each β with 0 < β <

π
6 there is a µ and a corresponding solution of (14) such that φ ≥ 0 and

sup
0≤s≤π

φ(s) = β. (15)
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However this does not give the range of µ for which there are solutions to (14).
In 1978 it was shown by G. Keady and J. Norbury (Keady & Norbury 1978)
that there is a solution for every µ > 3. Each of the resulting waves is smooth
at the crest.
The case µ =∞ corresponds to a stagnation point at the wave crest, and it

is the case where, for a given c, the wave reaches the greatest height. Note that
the equation (14) makes sense without the term 1

µ . The Stokes conjecture is
that (14) has a solution φ∞ in this case, the wave slope φ∞ (s) is discontinuous
at the crest (s = 0), and lim|s|7→0 φ∞ (s) = ±π6 . _Krasovski conjectured that
|φ∞(s)| ≤ π

6 for all s in [−π, π], but in [16] McLeod showed that φ∞ takes on
values above π

6 for large µ. In that paper as well he greatly improved on a

proof the year before by Toland (Toland, 1978) that the solution φ∞ exists.
The validity of Stokes’limiting argument remained a challenge, however.

The full Stokes conjecture was finally proved in a paper by C. Amick, E.
Fraenkel, and J. Toland (Amick et al, 1982), in which the authors made use of
the following approximation to (14):

θ(x) =
1

3

∫ ∞
0

k(x, y)
sin θ(y)∫ y

0
sin θ(t)dt

dy, 0 < x <∞ (16)

where k(x, y) = 1
π log x+y

|x−y| . (McLeod had used a similar approximation in
[16].)
The advantage of (16) is that it admits the exact solution Θ(x) = π

6 . A key
step in (Amick et al, 1982) is their

Theorem 2.1: If φ(x) = π
6 is the only solution of (16) taking values in

(0, π3 ], then any solution satisfying

liminf
s→0

θ (s) > 0, sup
sε(0,∞)

θ (s) ≤ π

3
(17)

has the property θ (s) 7→ π
6 as s 7→ 0.

Of this result the authors of (Amick et al, 1982) wrote in a prominently
displayed Acknowledgement:
“We are heavily indebted to J. B. McLeod for an emphatic statement of

Theorem 2.1 (for λ < ∞) to one of us, during a conversation in January 1980.
Although we were aware already of the usefulness of the approximate kernel k,
it was McLeod’s remark that ultimately led us to concentrate attention on the
approximate integral equation.”

6 The Painlevé equations

McLeod wrote seven papers on a now famous set of six nonlinear ordinary
differential equations due to Painlevé. I was fortunate to be involved in the first
of these [17].
This is not the place to explain the background or theory of these equations,

which have become an important part of mathematical physics. See for example
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the article “Painlevé equations —nonlinear special functions”by Peter Clarkson
(Clarkson 2003), a student of Bryce who has become the leading authority on
Painlevé equations since writing his D. Phil. thesis on one of them in 1984.
Here I will describe how I came upon the problem we wrote about, and how
Bryce solved it.
In 1978 I spent some time at Cornell, where I talked with G. S. S. Ludford,

a leading applied mathematical authority on combustion theory. He showed
me the equation

y′′ − xy = 2y2τ+1

where τ is a positive constant, which he had encountered in work with C. deBoer
(Ludford & deBoer 1975). The simplest version of the problem they posed “for
a mathematician”was to prove that this equation has exactly one non-constant
solution which exists on (−∞,∞) . Ludford and deBoer also pointed out that
when τ = 1 this is the so-called “second Painlevé transcendent”.
I had been using the “shooting method”, mentioned earlier, for about as

long as Bryce, having learned a rudimentary form of the technique from an off-
hand remark of my Ph. D. advisor, N. Levinson. I thought the problem could
be done that way, and perhaps, though my memory is unclear, had an outline
of a proof before I talked about it with Bryce when I visited him in Madison
later that year. But during that Madison visit I learned of some numerical work
being done by students of Whitham at Cal Tech which raised the problem to a
different level.
This work was for the Painlevé case of τ = 1 :

y′′ − xy = 2y3 (18)

It is not hard to show that the solution being sought, call it y∗, tends to zero at
infinity, and it is reasonable to conclude that its asymptotics for large x resemble
those for the well known Airy equation

y′′ − xy = 0 (19)

One expects that

lim
k→∞

y (x)

Ai (x)
= k,

Ai being the so-called Airy function from mathematical physics and k some
positive constant. What the Cal Tech group had shown numerically was that,
to many decimal places, the solution of (18) which exists on (−∞,∞) is char-
acterized by having k = 1. The obvious question is: why?

Bryce, as a student of Titchmarsh, knew all about Airy functions. I will
never forget the question he asked me when I arrived at his offi ce one morning:
“Did you notice that by using the Airy transform you can get an exact

solution of the Painlevé?”
No, I had not noticed. But this insight, plus Bryce’s unparalleled technical

competence in handling asymptotic analysis of this sort, led to a proof that
k = 1, a remarkable result on what can be called the “connection”problem of
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relating the behavior of the solution as x → ∞ to its continued existence as
x → −∞. The importance of this result in the area of solitons only seems to
grow over time.

7 Oxford

Clearly McLeod was stimulated by the mathematical atmosphere at Oxford.
Initially he interacted mostly with Chaundy and Titchmarsh, but after the
pivotal 1968 conference in Edinburgh mentioned above his horizons broadened
tremendously. We described earlier one of the ODE boundary value problems
from fluid mechanics presented in Edinburgh by James Serrin, and McLeod’s
work on these marked the beginning of his almost complete shift to nonlinear
differential equations.
During much of McLeod’s time at Oxford he was well supported by out-

side funding from the SRC and its successors, enabling him to bring important
visitors to the Mathematical Institute, such as Serrin, Tosio Kato, Paul Fife,
and Avner Friedman. He also benefited from the lively Oxford applied maths
group spearheaded by Alan Tayler, John Ockendon FRS, Hilary Ockendon, Sam
Howison, and later Jon Chapman. In particular, the important collaboration
between McLeod and Kato, which I discussed above, originated from a Study
Group on mathematics in industry, one of a long and on-going series pioneered
by Leslie Fox and Alan Tayler. The particular model studied by McLeod and
Kato was formulated by Tayler and John Ockendon in (Ockendon & Tayler
1971). A number of other papers, such as [22] and [21], were either in col-
laboration with Oxford applied mathematicians or inspired by their work, and
McLeod had some joint grant support with members of this group. In addition
he co-advised some applied maths doctoral students.
He had some outstanding D. Phil. students at Oxford, including Jack Carr,

Peter Clarkson, Joe Conlon, Michael Shearer, Charles Stuart, and others, some
of whom brought their skills to industry and the City. According to his wife
Eunice, the thing Bryce most enjoyed about Oxford was the teaching, both
undergraduate and graduate, because the students were so good. The under-
graduate teaching was through Wadham College, and he said in [30] that life in
Wadham was one of the things that made it diffi cult to leave when they went
to Pittsburgh.
There were two conferences organized in his honor between 2001 and 2007.

The first, mentioned earlier, was for his 70th birthday, and was held in Oxford,
and the second was on the occasion of his retirement from Pittsburgh. At each
one a number of his Oxford students gave talks, and without exception they
began by expressing their gratitude for the positive attitude McLeod brought
to their collaboration. As one said, “Bryce encouraged (his students) ... to get
on with it.”
Oxford, like other major mathematical centers, has an amazing number of

visitors, and these provide constant cross fertilization of mathematical ideas
from around the world. This alone must have made it diffi cult to leave. So why
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did he leave Oxford for Pittsburgh?
As he said in [30],
“The (Oxford University) faculty board in mathematics, I think it has to be

said, just wasn’t interested in applied analysis. .... There was always the feeling
that Oxford wasn’t supporting the subject as it should.”
Research mathematicians, particularly so-called “pure”mathematicians, are

sometimes categorized as either “problem solvers”or “theory builders”. McLeod
was definitely a problem solver, and described himself as such in the introduction
to [29].
An illuminating essay on this subject was written by Timothy Gowers FRS

(Gowers 2000). In this essay Gowers, a Fields Medalist and theory building
mathematician, argues for the importance of both theory building and problem
solving maths. Gowers refers to writings of Sir Michael Atiyah FRS, also a
Fields medalist and perhaps the dominant voice in pure mathematics at Oxford
from 1972 to 1989, and he includes the following quote from an interview for
The Mathematical Intelligencer in 1984:

INTERVIEWER: How do you select a problem to study?

ATIYAH: I think that presupposes an answer. I don’t think that’s the way
I work at all. Some people may sit back and say, “I want to solve this problem”
and they sit down and say, “How do I solve this problem?” I don’t. ...... I’m
interested in mathematics; I talk, I learn, I discuss and then interesting questions
simply emerge. I have never started off with a particular goal, except the goal
of understanding mathematics.”

Gowers says:

“.. the subjects that appeal to theory-builders are, at the moment, much
more fashionable than the ones that appeal to problem-solvers. Moreover, math-
ematicians in the theory-building areas often regard what they are doing as the
central core (Atiyah uses this exact phrase7) of mathematics, with (problem
oriented subjects) thought of as peripheral ... .”

By contrast, the problems that McLeod worked on could often be described
as quite special, and not part of a general theory. He wrote

“ ... differential equations .. are very individual things and have to be tackled
most often in a very individual way.”[11]

Another factor at Oxford was the rather sharp line that was drawn between
pure and applied mathematics. McLeod was the Tutor in Pure Mathematics at
Wadham college, and the senior pure mathematicians Oxford in the 70’s and
80’s did not encourage work of his sort. For example the quotes above show that
Attiyah had a very different view of what constituted important mathematical
research from McLeod.
It is not clear, however, that McLeod would have been happier if he had been

offi cially in the Oxford applied math group. He was a pure mathematician in the

7 in (Atiyah 1988)

21



sense that to him, it was crucial to give rigorous proofs of results. This is usually
not the principle concern of applied mathematicians, particularly of the British
school, who mostly look for what are sometimes called “formal” arguments,
based on sophisticated, sometimes ingenious, manipulations and calculations,
without worrying too much about the analytical details.
Today also there is a very sharp line between pure and applied mathematics

in Oxford. That line, or maybe it is a half-plane, is the one that separates the
“pure maths”wing of the magnificent new Mathematical Institute building from
the “applied maths”wing. What changed from the 1980’s was that for the short
time that McLeod had an offi ce in the new building, it was in the applied wing,
though his mathematics was of the same type as before. Indeed, during all his
years in Pittsburgh he maintained an offi ce for use in the summers in the quarters
occupied by the Oxford Centre for Industrial and Applied Mathematics, led for
much of that time by John Ockendon. Also the Oxford Center for Nonlinear
Partial Differential Equations, headed by John Ball, is housed in the applied
wing of the new building. Thus for several reasons it was natural that Bryce
would have a retirement offi ce in that wing.
Fortunately, the physical separation of pure and applied mathematicians

stops in the basement, where the classrooms and cafeteria are located. From
experience I know that it is possible to descend in one elevator to this level and
then inadvertently take the wrong elevator back up, and find yourself in the
opposite wing from where you started. Let us hope that mathematical ideas
can take the same path. Indeed, McLeod’s work shows that they can.
I end this section with a quote from Gilbert Strang of MIT, a distinguished

mathematician with wide ranging interests and much influence through his writ-
ings.

“Bryce was a true analyst —he solved problems! His papers gave answers
rather than abstractions and they led the subject onward.”

8 Pittsburgh

Bryce published at a greater rate in Pittsburgh than he had in Oxford, prob-
ably because his teaching duties were less. The best known of the Pittsburgh
papers was written with his colleague Bard Ermentrout, a leading mathematical
biologist.

8.1 A problem from neurobiology

EXISTENCE OF TRAVELLING WAVES FOR A NEURAL NETWORK
(with Bard Ermentrout, 1991)

Ermentrout brought to McLeod the equation

ut = −u+

∫ ∞
−∞

k (x− y)S (u (y, t)) dy, (20)
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an equation derived from a limiting process in which a large number of neurons
are connected in a one dimensional array, with excitatory “all-to-all” synaptic
interaction. The goal is to obtain a traveling front, as in the Fife-McLeod paper
discussed earlier. But in the generality which they considered, the equation does
not reduce to a system of pde’s, and so the mathematics is even more diffi cult.
In [23] Ermentrout and McLeod obtained existence of fronts for a wide range

of symmetric positive kernels k with
∫∞
−∞ k (s) ds = 1, and firing functions S

which are smooth, increasing, and bounded. The basic method was continu-
ation, which we saw above in McLeod’s work on swirling flow. But here the
setting is infinite dimensional.
This paper has often been cited by subsequent users of continuation in sim-

ilar settings. As Ermentrout and McLeod described it, the idea is to move
continuously “from the general problem to one where everything is known.”
(Actually, they started at the known end and moved to the general problem.)
The starting point is to use the kernel

k (s) =
1

2
e−|s|.

In this case, the equation does reduce to a pde, by use of the Fourier Transform
in the convolution. The resulting equation

ut = uxx + S (u)− u.

turns out to be similar to the problem of Fife and McLeod. Making the traveling
wave substitution u = u (x− ct) gives

−cu′ = u′′ + S (u)− u,

and choosing S so that
∫ 1

0
(S (u)− u) = 0, it is easily shown by a phase plane

argument that there is a standing wave (c = 0) connecting u = 0 to u = 1. (In
dynamical system terms, this is a heteroclinic orbit in the (u, u′) phase plane. )
Then they vary S and k gradually, finding a wave speed c at each point,

until one reaches the given S and k of the problem. The linearized operator in
the continuation is

Lφ =

∫ ∞
−∞

k (x+ cs− y)S′ (u (y))φ (y) dy,

considered on C0 (−∞,∞) . It is shown that this operator is Fredholm with
index 0 and has 1 as a simple eigenvalue, which is what enables continuation to
proceed. The paper illustrates McLeod’s mastery of modern functional analysis
techniques when required.

9 Later work

While the paper with Ermentrout is probably the best known of McLeod’s later
papers, a number of others have achieved significant recognition. In particular
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the papers “On the uniqueness of flow of a Navier-Stokes fluid due to a stretch-
ing boundary”, with K. R. Rajagopal (1989) and “Smooth static solutions of
the Einstein/Yang-Mills equations”with J. Smoller, A. G. Wasserman, and S.
T. Yau (1991) have been particularly influential in their respective areas. We
mention also [20], [25], and [24].
The last of these was written with C-K Law, one of the most active re-

searchers among McLeod’s Pittsburgh doctoral students and a leading applied
analyst in Taiwan. Another active Pitt student, C-B Wang, wrote an excel-
lent dissertation on Painlevé III and continued to work with McLeod through
the 2000’s. His recent well-reviewed monograph (Wang 2013) was published by
Springer.
McLeod collaborated with at least five other Pitt mathematics faculty, most

often W. C. Troy and me, and K. R. Rajagopal, mentioned above, was in the Pitt
Engineering school. He also had many discussions with mathematicians from
neighboring Carnegie Mellon University, and in particular wrote an interesting
paper with D. Kinderlehrer.
In the period after his retirement Bryce and I wrote the book [29]. With a

focus on existence theory for ODE boundary value problems, it was designed
as a text for students with a background which included the basic existence
theorem for initial value problems due to Picard and analysis of phase planes. It
contains some new proofs of known results and also some previously unpublished
theorems. In the course of writing this book Bryce came up with a beautiful
new proof of an important result due to A. C. Lazer and D, E. Leach (Lazer
& Leach 1969), one of several on ODEs and pdes which Lazer wrote with two
collaborators in around 1970 and which have been widely cited in the fifty years
since. I will end this memoir by giving the crux of Bryce’s proof, since to me
it encapsulates his ability to look at a problem from a totally new angle and
thereby obtain deep new insights.
The problem, in simplest form, is about periodic solutions for equations of

the form
y′′ + n2y + g (y) = p (t) (21)

where n is a non-zero integer, p is continuous and periodic, say with period 2π,
g is smooth,

lim
y→∞

g (y) and lim
y→−∞

g (y) exist,

and for all y,
g (−∞) < g (y) < g (∞) .

The Lazer - Leach result is a surprising blend of simple harmonic analysis and
nonlinear ODE theory. It state that a necessary and suffi cient condition for
(21) to have a periodic solution is that√

A2 +B2 < 2 (g (∞)− g (−∞)) ,

where

A =

∫ 2π

0

p (s) sinns ds, B =

∫ 2π

0

p (s) cosns ds.
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The original proof was an elegant application of Schauder’s fixed point the-
orem, and we include it in our book.8 Bryce had not known of the work until
I called it to his attention, sometime around 2010 when he was in England and
I in the US. I wrote to him suggesting that we include it in the book for its
elegance and importance, and attached a copy of the paper. A few weeks later
Bryce wrote back that he had not read the Lazer-Leach proof, for fear of prej-
udicing his view of the problem, but that he had his own proof, which began
with the following result:
Lemma: Suppose that in addition to the hypotheses above g satisfies a local

Lipschitz condition. For any r > 0 consider (21) with the following initial
conditions:

y (0) = r cosβ, y′ (0) = r sinβ.

If r is suffi ciently large, say r > r0, then for every β this solution satisfies

(y (2π)− y (0)) cosβ − (y′ (2π)− y′ (0)) sinβ > 0.

This lemma is not hard to prove, and the local Lipschitz condition is easily
removed at the end of the proof of the theorem. Now assume that there is
no periodic solution. For every r and β there are R and γ, both depending
continuously on r and β, such that

y (2π)− y (0) = R sin γ, y′ (2π)− y′ (0) = R cos γ.

The lemma implies that if r > r0 then sin (γ − β) > 0. As β goes from 0 to 2π,
γ must increase by 2π because the initial conditions at β = 0 and β = 2π are
the same.
If there is no periodic solution then as r decreases from above r0, γ and R

continue to be well-defined, for all β > 0. Also, since γ is continuous in r and β,
it must continue to increase by 2π as β goes from 0 to 2π. As r → 0 however, R
is bounded away from 0; say R ≥ δ > 0, because we are assuming that at R = 0
the solution is not periodic. For very small r the solution varies only a little for
intial conditions on the circle of radius r, so with R ≥ δ, γ cannot increase by
2π, a contradiction.
Bryce found this proof when he was over 80.
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