
Extensions to Robust
Vehicle Routing

Brady Metherall

Having groceries delivered to one’s door is becoming quite common.
Tesco has over 700 delivery vans which deliver over 1000 orders on
a typical day. Since household grocery orders are relatively small,
delivery vans can hold many orders, and so, efficient routes must be
found to make home delivery commercially viable. A consequence
of the large number of deliveries per van is that the routes become
much longer, andmuchmore difficult to compute optimal routes due
to the increased number of possibilities. Tesco allows their customers
to choose a time window, typically 1-hour, in which they want their
groceries delivered. This constraint gives an implicit ordering of the
customers, which can be used to our advantage.

Mathematical Model

Figure 1—Example of a Tesco delivery van’s route. The
black node is the depot; red, green, and blue nodes are
customers that specifieda 1-hour timewindow; and the
multi-coloured node is a customer that chose a 4-hour
time window. The distance optimal route is shown.

Initially, the time window constraint seems like
it makes the problem more difficult. However,
the implicit ordering of the customers greatly
reduces the number of feasible solutions to test.
In addition to customers selecting a 1-hour time
window, they also have the option of selecting a
4-hour timewindow. This gives us the flexibility
of assigning such a customer to a particular time
window. Generally, only one or two customers
per van have 4-hour time windows. Figure 1
shows a simplified vehicle routing problemwith
time windows.

To tackle the vehicle routing problem,
we use the mathematical optimization and
programming method dynamic programming.
Dynamic programming is built on two defining
characteristics, recursion and memoization, and guarantees we obtain the optimal solution.
Dynamic programming splits a problem into sub-problems, which are then solved using recursion;
memoization is the practice of storing results in a look-up table. This allows the result of a repeated,
expensive computation to be looked up and reused, instead of recomputed from scratch, in this way,
the programhas a ‘memory’. Although dynamic programming allows us to find the optimal solution,
in the case of several 4-hour customers, actually computing the optimal solution is too computationally
expensive. The number of combinations to test grows exponentially—to combat this, we consider
two classes of heuristics to assign 4-hour customers to time windows. Furthermore, our algorithms
are designed to be compatible with a variety of objective functions. This allows Tesco to use various
objectives under different circumstances; some of the objectives include trip time, distance travelled,
number and severity of late deliveries, and total standby time of customers. Objectives can be added
together to form a more sophisticated objective as well.

Results
We show the timings for a variable number of time windows with four customers in each window
in Figure 2. We are able to find the optimal route for 16–20 customers in only a millisecond or two.
Interestingly, for the smaller systems the unmemoized version is faster than the memoized. This is
actually to be expected—thememoized version has the additional overhead of searching and building
the look-up table on each iteration. However, for the 7 × 4 system, the memoized version is close to
100 times faster.



10−1

100

101

102

3 × 4 4 × 4 5 × 4 6 × 4 7 × 4

M
ed

ia
n

Ti
m

e
(m

s)

Time Windows × Customers per Time Window

Unmemoized
Memoized

Figure 2—Computation time required to find the
optimal vehicle route for a variable number of time
windows.

Finally, we focus on the performance of our
heuristics. Here, we highlight the case of four
timewindowsof three customers each,with four
additional 4-hour customers (Table 1). With four
4-hour customers the optimal solution requires
testing all 44 = 256 possibilities, whereas
the heuristics intelligently allocates the 4-hour
customers to a time window, and only tests
this possibility. The optimal solution takes over
400ms, while the heuristics only require about
2.5ms—and very little memory. In this scenario,
the heuristics find the optimal solution only 25%
of the time, yet, provide a route only 2.6% longer
than optimal on average, while being about 165
times faster and using 1/767 the amount of
memory.

Conclusions
Heuristics

Optimal Rule 1 Rule 2 Rule 3

Time (ms) 415.16 2.54 2.44 2.53
Memory (MiB) 767.0 1.0 1.0 1.0
Relative Speed 1 163 170 164
Relative Memory 1 1/767 1/767 1/767
Accuracy (%) 100 26 25 25
Relative Error (%) 0.0 2.4 2.7 2.5

Table 1—Benchmarks for three heuristics for four time windows
with three customers per time window, and four 4-hour customers.

By taking a dynamic programming
approach we were able to develop
concise algorithms for solving the
vehicle routing problem with time
windows. We also considered two
classes of heuristics for assigning 4-
hour customers to time windows.
Our implementation of our proce-
dures were benchmarked for time
and memory usage, as well as
accuracy and error for the heuristics.
We have shown that this method
yields optimal solutions, or near
optimal in the case of the heuristics, in a reasonable amount of time for Tesco.

There are a few directions to extend this project. It would be of interest to use real-world data to
compare the routes and objectives of our methods to Tesco’s current implementation, and also how
our results might changewith real-world data instead of simulated data. Finally, developing a system
to quickly and efficiently allocate customers’ orders to specific delivery vans would be an essential
step to building a complete logistics system.

Potential Impact
We have shown the algorithms we have developed can optimally solve vehicle routing problems like
those faced by Tesco in only a few milliseconds. Our methods may help Tesco move away from a
fully heuristic search to an optimal one—allowing more efficient delivery routes to be taken.

Una Benlic, Senior Data Scientist at Tesco, said:

The main aim of the project was to investigate whether there is a potential to improve on the
existing Tesco systems that incorporate vehicle routing with delivery windows. At the moment,
all such applications are based on heuristic search approaches, which provide an acceptable
solution within reasonable computing efforts, but without a guarantee on the solution quality.
This project provides an implementation of a Dynamic Programming approach that provides an
optimal solution to the problem within milliseconds. Extensive evaluations of the performance
in terms of memory and computing time requirements were conducted using synthetic data
instances of different sizes. Given that the reported computing time is just a few milliseconds
on average, the conclusion is that the developed approach could perhaps be considered as a
component of a hybrid approach to the real-life problem of distribution to customers.


	Mathematical Model
	Results
	Conclusions
	Potential Impact

