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Abstract. The goal of the paper is to give an optimal transport for-
mulation of the full Einstein equations of general relativity, linking the
(Ricci) curvature of a space-time with the cosmological constant and
the energy-momentum tensor. Such an optimal transport formulation
is in terms of convexity/concavity properties of the Shannon-Bolzmann
entropy along curves of probability measures extremizing suitable opti-
mal transport costs. The result gives a new connection between general
relativity and optimal transport; moreover it gives a mathematical re-
inforcement of the strong link between general relativity and thermody-
namics/information theory that emerged in the physics literature of the
last years.
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1. Introduction

In recent years, optimal transport revealed to be a very effective and in-
novative tool in several fields of mathematics and applications. By way of
example, let us mention fluid mechanics (e.g. Brenier [14] and Benamou-
Brenier [11]), partial differential equations (e.g. Jordan-Kinderleher-Otto
[45] and Otto [54]), random matrices (e.g. Figalli-Guionnet [31]), opti-
mization (e.g. Bouchitté-Buttazzo [17]), non-linear σ-models (e.g. Car-
fora [20]), geometric and functional inequalities (e.g. Cordero-Erausquin-
Nazaret-Villani [23], Figalli-Maggi-Pratelli [32], Klartag [44], Cavalletti- Mon-
dino [22]) Ricci curvature in Riemannian geometry (e.g. Otto-Villani [55],
Cordero Erausquin-McCann-Schmuckenschläger [24], Sturm-VonRenesse [62])
and in metric measure spaces (e.g. Lott-Villani [46], Sturm [59, 60], Ambrosio-
Gigli-Savaré [4]). For more details about optimal transport and its appli-
cations in both pure and applied mathematics, we refer the reader to the
many books on the topic, e.g. [1, 3, 58, 66, 67].

Here let us just quote two of the many applications to partial differen-
tial equations. In the pioneering work of Jordan-Kinderleher-Otto [45] it
was discovered a new optimal transport formulation of the Fokker-Planck
equation (and in particular of the heat equation) as a gradient flow of a
suitable functional (roughly, the Boltzmann-Shannon entropy defined below
in (1.5) plus a potential) in the Wasserstein space (i.e. the space of prob-
ability measures with finite second moments endowed with the quadratic
Kantorovich-Wasserstein distance); later, Otto [54] found a related optimal
transport formulation of the porous medium equation. The impact of these
works in the optimal transport community has been huge, and opened the
way to a more general theory of gradient flows (see for instance the mono-
graph by Ambrosio-Gigli-Savaré [3]).

The goal of the present work is to give a new optimal transport formu-
lation of another fundamental class of partial differential equations: the
Einstein equations of general relativity. First published by Einstein in 1915,
the Einstein equations describe gravitation as a result of space-time being
curved by mass and energy; more precisely, the space-time (Ricci) curva-
ture is related to the local energy and momentum expressed by the energy-
momentum tensor. Before entering into the topic, let us first recall that the
Einstein equations are hyperbolic evolution equations (for a comprehensive
treatment see the recent monograph by Klainerman-Nicoló [43]). Instead
of a gradient flow/PDE approach, we will see the evolution from a geomet-
ric/thermodynamic/information point of view.

Next we briefly recall the formulation of the Einstein equations. Let Mn

be an n-dimensional manifold (n ≥ 3, the physical dimension being n = 4)
endowed with a Lorentzian metric g, i.e. g is a nondegenerate symmetric
bilinear form of signature (−+ + . . .+). Denote with Ric and Scal the Ricci
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and the scalar curvatures of (Mn, g). The Einstein equations read as

(1.1) Ric− 1

2
Scal g + Λg = 8πT,

where Λ ∈ R is the cosmological constant, and T is the energy-momentum
tensor. Physically, the cosmological constant Λ corresponds to the energy
density of the vacuum; the energy-momentum tensor is a symmetric bilinear
form on M representing the density of energy and momentum, acting as the
source of the gravitational field.

1.1. Statement of the main results. Recall that in a Lorentzian manifold
(Mn, g), a non-zero tangent vector v ∈ TxM is said time-like if g(v, v) <
0. If M admits a continuous no-where vanishing time-like vector field X,
then (M, g) is said to be time-oriented and it is called a space-time. The
vector field X induces a partition on the set of time-like vectors, into two
equivalence classes: the future pointing tangent vectors v for which g(X, v) <
0 and the past pointing tangent vectors v for which g(X, v) > 0. The closure
of the set of future pointing time-like vectors is denoted

C = Cl({v ∈ TM : g(v, v) < 0 and g(X, v) < 0}) ⊂ TM.

A physical particle moving in the space-time (M, g, C) is represented by a
causal curve which is an absolutely continuous curve, γ, satisfying

γ̇t ∈ C a.e. t ∈ [0, 1].

If the particle cannot reach the speed of light (e.g. massive particle), then
it is represented by a chronological curve which is an absolutely continuous
curve, γ, satisfying

γ̇t ∈ Int(C) a.e. t ∈ [0, 1],

where Int(C) is the interior of the cone C made by future pointing time-like
vectors. The Lorentz length of a causal curve is

Lg(γ) =

ˆ 1

0

√
−g(γ̇t, γ̇t) dt.

A point y is in the future of x, denoted y >> x, if there is a future oriented
chronological curve from x to y; in this case, the Lorentz distance or proper
time between x and y is defined by

sup{Lg(γ) : γ0 = x and γ1 = y, γ chronological} > 0,

which is achieved by a geodesic which is called a maximal geodesic. See for
example [28, 53, 68]

In this paper, we consider the following Lorentzian Lagrangian on TM
for p ∈ (0, 1):

(1.2) Lp(v) :=

{
−1
p(−g(v, v))

p
2 if v ∈ C

+∞ otherwise.

Note that if p were 1 this would be the negative of the integrand for the
Lorentz length given above. Here we study p ∈ (0, 1) because this Lorentzian
Lagrangian Lp has good convexity properties for such p [see Lemma 2.1].
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Let AC([0, 1],M) denote the space of absolutely continuous curves from
[0, 1] to M. The Lagrangian action Ap, corresponding to the Lagrangian Lp
and defined for any γ ∈ AC([0, 1],M), is given by

(1.3) Ap(γ) :=

ˆ 1

0
Lp(γ̇t)dt ∈ (−∞, 0] ∪ {+∞}.

Observe that Ap(γ) ∈ (−∞, 0] if and only if γ is a causal curve. Note that, if
p were 1, this would be the negative of the Lorentz length of γ or the proper
time along γ. Thus −Ap(γ̇) can be seen as a kind of non-linear p-proper
time along γ, enjoying better convexity properties. The reader may note the
parallel with the theory of Riemannian geodesics, where one often studies
the energy functional

´
|γ̇|2 in place of the length functional

´
|γ̇|, due to

the analogous advantages.
The choice of the minus sign in (1.3) is motivated by optimal transport

theory, in order to have a minimization problem instead of a maximization
one (as in the sup defining the Lorentz distance between points above). It
is readily checked that the critical points of Ap with negative action are
time-like geodesics [see Lemma 2.2]. The advantage of Ap with p ∈ (0, 1) is
that it automatically selects an affine parametrization for its critical points
with negative action.

The cost function, cp : M×M → (−∞, 0]∪{+∞}, relative to the p-action
Ap is defined by

cp(x, y) = inf{Ap(γ) : γ ∈ AC([0, 1],M), γ0 = x, γ1 = y}.

Note that, if p were 1, then this would be the negative of the Lorentz distance
between x and y.

Consider a relatively compact open subset

E ⊂⊂ Int(C) ⊂ TM and r ∈ (0, injg(E)),

where injg(E) > 0 is the injectivity radius of the exponential map of g re-
stricted to E. If we take pTM→M : TM →M to be the canonical projection
map then

∀x ∈ pTM→M (E) and v ∈ TxM ∩ E with g(v, v) = −r2,

we have a maximal geodesic γx : [0, 1]→M defined by

γx(t) = expx((t− 1/2)v) such that γx(1/2) = x.

The Ricci curvature, Ricx(v, v) at a point x ∈ M in the direction v, is a
trace of the curvature tensor so that intuitively it measures the average way
in which geodesics near γx bend towards or away from it. See Section 1.3. In
Riemannian geometry, the Ricci curvature influences the volumes of balls.
Here, instead of balls, we define for any x ∈ pTM→M (E)

Bg,E
r (x) := {expgx(tw) : w ∈ TxM ∩ E, g(w,w) = −1, t ∈ [0, r]}

precisely to avoid the null directions.
Rather than considering individual paths between a given pair of points,

we will consider distributions of paths between a given pair of distributions
of points using the optimal transport approach.
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We denote by P(M) the set of Borel probability measures on M . For any
µ1, µ2 ∈ P(M), we say that a Borel probability measure

π ∈ P(M ×M) is a coupling of µ1 and µ2

if (pi)]π = µi, i = 1, 2, where p1, p2 : M × M → M are the projections
onto the first and second coordinate. Recall that the push-forward (p1)]π is
defined by

(p1)]π(A) := π
(
p−1

1 (A)
)

for any Borel subset A ⊂ M . The set of couplings of µ1, µ2 is denoted by
Cpl(µ1, µ2). The cp-cost of a coupling π is given byˆ

M×M
cp(x, y)dπ(x, y) ∈ [−∞, 0] ∪ {+∞}.

Denote by Cp(µ1, µ2) the minimal cost relative to cp among all couplings
from µ1 to µ2, i.e.

Cp(µ1, µ2) := inf

{ˆ
cpdπ : π ∈ Cpl(µ1, µ2)

}
∈ [−∞, 0] ∪ {+∞}.

If Cp(µ1, µ2) ∈ R, a coupling achieving the infimum is said to be cp-optimal.
For t ∈ [0, 1] denote by et : AC([0, 1],M)→M the evaluation map

et(γ) := γt.

A cp-optimal dynamical plan is a probability measure Π on AC([0, 1],M)
such that (e0, e1)]Π is a cp-optimal coupling from µ0 := (e0)]Π to µ1 :=
(e1)]Π. One can naturally associate to Π a curve

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

of probability measures. The condition that Π is a cp-optimal dynamical
plan corresponds to saying that the curve (µt)t∈[0,1] ⊂ P(M) is a length
minimizing geodesic with respect to Cp, i.e.

Cp(µs, µt) = |t− s|Cp(µ0, µ1) ∀s, t ∈ [0, 1].

We will mainly consider a special class of cp-optimal dynamical plans,
that we call regular : roughly, a cp-optimal dynamical plan is said to be
regular if it is obtained by exponentiating the gradient (which is assumed
to be time-like) of a smooth Kantorovich potential φ:
(1.4)

µt = (Ψt
1/2)]µ1/2, Ψt

1/2(x) := expgx

(
−(t−1/2)|∇gφ|q−2

g ∇gφ(x)
)
,

1

p
+

1

q
= 1,

and moreover µt � volg for all t ∈ (0, 1), where volg denotes the standard
volume measure of (M, g). For the precise notions, the reader is referred to
Section 2.5.

A key role in our optimal transport formulation of the Einstein equations
will be played by the (relative) Boltzmann-Shannon entropy. Denote by volg
the standard volume measure on (M, g). Given an absolutely continuous
probability measure µ = % volg with density % ∈ Cc(M), its Boltzmann-
Shannon entropy (relative to volg) is defined as

(1.5) Ent(µ|volg) :=

ˆ
M
% log % dvolg.
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We will be proving that the second order derivative of this entropy along a
cp-optimal dynamical plan,
(1.6) ∣∣∣ 4

r2

[
Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg)

]
− T̃ (v, v)

∣∣∣ ≤ ε(r)
is equivalent to the Einstein Equation in Theorem 4.9. See Figure 1. Through-
out the paper we will assume the cosmological constant Λ and the energy
momentum tensor T to be given, say from physics and/or mathematical
general relativity. Given g,Λ and T it is convenient to set

(1.7) T̃ :=
2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g.

so that the Einstein Equation can be written as Ric = T̃ , see Lemma 4.1.

Theorem 1.1 (Theorem 4.9). Let (M, g, C) be a space-time of dimension
n ≥ 3. Then the following assertions are equivalent:

(1) (M, g, C) satisfies the Einstein equations (1.1), which can be rewrit-

ten in terms of T̃ of (1.7) as Ric = T̃ .
(2) For every p ∈ (0, 1) and for every relatively compact open subset

E ⊂⊂ Int(C) there exist R = R(E) ∈ (0, 1) and a function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0 such that

∀x ∈ pTM→M (E) and v ∈ TxM ∩ E with g(v, v) = −R2

the next assertion holds. For every r ∈ (0, R), setting y = expgx(rv),
there exists a regular cp-optimal dynamical plan Π = Π(x, v, r) with
associated curve of probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that
• µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x),

• supp(µ1) ⊂ {expgy(r2w) : w ∈ TyM ∩ C, g(w,w) = −1}
and which has convex/concave entropy in the sense described in
(1.6).

(3) There exists p ∈ (0, 1) such that the assertion as in (2) holds true.

Remark 1.2 (A heuristic thermodynamic interpretation of Theorem 1.1).
A curve (µt)t∈[0,1] ⊂ P(M) associated to a cp-optimal dynamical plan can

be interpreted as the evolution (a) of a distribution of gas passing through a
given gas distribution µ1/2 (that in Theorem 1.1 is assumed to be concen-
trated in the space-time near x). Theorem 1.1 says that the Einstein equa-
tions can be equivalently formulated in terms of the convexity properties
of the Bolzmann-Shannon entropy along such evolutions (µt)t∈[0,1] ⊂ P(M).
Extrapolating a bit more, we can say that the second law of thermodynamics
(i.e. in a natural thermodynamic process, the sum of the entropies of the
interacting thermodynamic systems decreases, due to our sign convention)
concerns the first derivative of the Bolzmann-Shannon entropy; gravitation

(a)strictly speaking t is not the proper time, but only a variable parametrizing the
evolution
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Figure 1. The transport in Theorem 1.1

(under the form of Ricci curvature) is instead related to the second order de-
rivative of the Bolzmann-Shannon entropy along a natural thermodynamic
process.

Remark 1.3 (Disclaimer). In Theorem 1.1 we are not claiming to solve the
general Einstein Equations via optimal transport; we are instead proposing a
novel formulation/characterization of the solutions of the Einstein Equations
based on optimal transport, assuming the cosmological constant Λ and the
energy-momentum tensor T being already given (say from physics and/or
mathematical general relativity). The aim is indeed to bridge optimal trans-
port and general relativity, with the goal of stimulating fruitful connections
between these two fascinating fields. In particular, optimal transport tools
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have been very successful to study Ricci curvature bounds in a (low regula-
rity) Riemannian and metric-measure framework (see later in the introduc-
tion for the related literature) and it is thus natural to expect that optimal
transport can be useful also in a low-regularity Lorentzian framework, where
singularities correspond to important physical objects (e.g. black holes).

For equivalent formulations of Theorem 1.1, see Remark 4.10 and Remark
4.11.

In the vacuum case T ≡ 0 with zero cosmological constant Λ = 0, the
Einstein equations read as

(1.8) Ric ≡ 0,

for an n-dimensional space-time (M, g, C). Specializing Theorem 1.1 with

the choice T̃ = 0 (plus a small extra observation to sharpen the lower bound
in (1.9) from −ε(r) to 0; moreover the same proof extends to n = 2) gives
the following optimal transport formulation of Einstein vacuum equations
with zero cosmological constant.

Corollary 1.4. Let (M, g, C) be a space-time of dimension n ≥ 2. Then the
following assertions are equivalent:

(1) (M, g, C) satisfies the Einstein vacuum equations with zero cosmo-
logical constant, i.e. Ric ≡ 0.

(2) For every p ∈ (0, 1) and for every relatively compact open subset
E ⊂⊂ Int(C) there exist R = R(E) ∈ (0, 1) and a function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0 such that

∀x ∈ pTM→M (E) and v ∈ TxM ∩ E with g(v, v) = −R2

the next assertion holds. For every r ∈ (0, R), setting y = expgx(rv),
there exists a regular cp-optimal dynamical plan Π = Π(x, v, r) with
associated curve of probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that
• µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x),

• supp(µ1) ⊂ {expgy(r2w) : w ∈ TyM ∩ C, g(w,w) = −1}
and which has almost affine entropy in the sense that

(1.9) 0 ≤ Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg) ≤ ε(r).

(3) There exists p ∈ (0, 1) such that the assertion as in (2) holds true.

1.2. Outline of the argument. As already mentioned, the Einstein Equa-
tions can be written as Ric = T̃ where T̃ was defined in (1.7), see Lemma 4.1.
The optimal transport formulation of the Einstein equations will consist sep-
arately of an optimal transport characterization of the two inequalities

(1.10) Ric ≥ 2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g

and

(1.11) Ric ≤ 2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g,
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respectively. The optimal transport characterization of the lower bound
(1.10) will be achieved in Theorem 4.3 and consists in showing that (1.10) is
equivalent to a convexity property of the Bolzmann-Shannon entropy along
every regular cp-optimal dynamical plan. The optimal transport charac-
terization of the upper bound (1.11) will be achieved in Theorem 4.6 and
consists in showing that (1.11) is equivalent to the existence of a large family
of regular cp-optimal dynamical plans (roughly the ones given by exponenti-
ating the gradient of a smooth Kantorovich potential with Hessian vanishing
at a given point) along which the Bolzmann-Shannon entropy satisfies the
corresponding concavity condition.

Important ingredients in the proofs will be the following. In Theorem
4.3, for proving that Ricci lower bounds imply convexity properties of the
entropy, we will perform Jacobi fields computations relating the Ricci curva-
ture with the Jacobian of the change of coordinates of the optimal transport
map (see Proposition 3.2 and Proposition 3.3); in order to establish the con-
verse implication we will argue by contradiction via constructing cp-optimal
dynamical plans very localized in the space-time (Lemma 3.1).
In Theorem 4.3 we will consider the special class of regular cp-optimal dy-
namical plans constructed in Lemma 3.1, roughly the ones given by ex-
ponentiating the gradient of a smooth Kantorovich potential with Hessian
vanishing at a given point x ∈ M . For proving that Ricci upper bounds
imply concavity properties of the entropy, we will need to establish the
Hamilton-Jacobi equation satisfied by the evolved Kantorovich potentials
(Proposition 3.4) and a non-linear Bochner formula involving the p-Box op-
erator (Proposition A.1), the Lorentzian counterpart of the p-Laplacian. In
order to show the converse implication we will argue by contradiction using
Theorem 4.3.

1.3. An Example. FLRW Spacetimes. We illustrate Theorem 1.1 for
the class of Friedmann-Lemâıtre-Robertson-Walker spacetimes (short FLRW
spacetimes), a group of cosmological models well known in general relativity.
See [53, Chapter 12] for a discussion of the geometry in the case n = 4.

FLRW spacetimes are of the form

(M, g) = (I × Σ,−ds2 + a2(s)σ),

where I ⊂ R is an interval, a : I → (0,∞) is smooth, and (Σ, σ) is a Rie-
mannian manifold with constant sectional curvature k ∈ {−1, 0, 1}. The
Ricci and scalar curvature are given by

Ric = −(n− 1)
ä

a
ds2 +

[
ä

a
+ (n− 2)

(
ȧ2 + k

a2

)]
a2σ

and

Scal = 2(n− 1)
ä

a
+ (n− 1)(n− 2)

ȧ2 + k

a2
,
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respectively, where ȧ := da
ds . The stress-energy tensor is thus (assuming

Λ = 0)

8πT = Ric− 1

2
Scal g

=
(n− 1)(n− 2)

2

ȧ2 + k

a2
ds2 −

[
(n− 2)

ä

a
+

(n− 2)(n− 3)

2

ȧ2 + k

a2

]
a2σ.

The foliation

O := {s 7→ (s, x)}x∈Σ

is a geodesic foliation by cp-minimal geodesics. The orthogonal complement

∂⊥t = TΣ with respect to g is integrable. Consider the projection

S : M = I × Σ→ I

and for r > 0 the function

φ : M → R, x 7→ rp−1S(x).

It is easy to see that

∇qgφ(x) := −|∇gφ|q−2
g ∇gφ(x) = r∂s.

For the cp-transform we have (see Section 2.5)

φcp(s, y) = inf
x∈M

cp(x, (s, y))− φ(x)

= inf
s′<s

cp((s
′, y), (s, y))− φ(s′, y)

= inf
s′<s
−1

p
(s− s′)p − rp−1s′ =

p− 1

p
rp − rp−1s,

where the second equality follows from the fact that the geodesics in O
minimize cp to the level sets of φ. It follows that

φcp(s, y) + φ(s− r, y) = −1

p
rp = cp((s− r, y), (s, y)),

i.e. ∂cpφ(x) = {expx(∇qgφ(x))} for all x ∈ M whenever the right hand side
is well defined (see Section 2.5 for the definition).

It now follows by standard transportation theory (see for instance [1,
Theorem 1.13]) that for a Borel probability measure µ1/2 on I × Σ the

family
(
µt := (Ψt

1/2)]µ1/2

)
t∈[0,1]

, where

Ψt
1/2 : I × Σ→ I × Σ, (s, x) 7→

(
s+ r

(
t− 1

2

)
, x

)
defines a cp-optimal dynamical plan as long as it is defined in accordance with
the notation in (1.4) and φ is a smooth Kantorovich potential for (µt)t∈[0,1].
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If µ1/2 � volg with density ρ1/2 ∈ Cc(M), we get (compare with the proof
of Theorem 4.3)

Ent(µt|volg) =

ˆ
M

log ρt (y) dµt (y) =

ˆ
M

log ρt(Ψ
t
1/2(x)) dµ1/2(x)

=

ˆ
M

log[ρ1/2(x)(Detg(DΨt
1/2)(x))−1] dµ1/2(x)

= Ent(µ1/2|volg)−
ˆ
M

log[Detg(DΨt
1/2)(x))] dµ1/2(x).

We have Detg(DΨt
1/2)((s, x))) = an−1(s+r(t−1/2))

an−1(s)
and thus obtain

d2

dt2
log[Detg(DΨt

1/2)(x))] = (n− 1)
äa− ȧ2

a2
r2.

Neglecting the term ȧ2

a2 ≥ 0 we conclude (compare with the proof of Propo-
sition 3.3)

d2

dt2
Ent(µt|volg) = − d2

dt2

ˆ
M

log[Detg(DΨt
1/2)(x))] dµ1/2(x)

≥
ˆ
M

Ric(r∂s, r∂s)Ψt
1/2

(x) dµ1/2(x),

(1.12)

which implies

4
r2

[
Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg)

]
≥
ˆ
M

Ric(∂s, ∂s)dµ1/2

for r → 0, i.e. one side of (1.6).
Note that the gap in (1.12) is

(n− 1)r2

ˆ
M

ȧ2

a2
dµ1/2.

From this we see that the bound from above
4
r2 [Ent(µ1|volg)− 2Ent(µ1/2|volg)+Ent(µ0|volg)]

≤
ˆ
M

Ric(∂s, ∂s)dµ1/2 + ε(r),
(1.13)

in (1.6) for the aforementioned transports holds for r → 0 if µ1/2 is con-
centrated on {(s, x)| ȧ(s) = 0} or, more generally, if µ1/2 = µr1/2 satisfies

limr→0

´
M

ȧ2

a2 dµ
r
1/2 = 0.

The Levi-Civita connection ∇ of g satisfies

∇X∂s = ∇∂sX =
ȧ

a
X

for all vector fields X tangent to Σ. Thus the Hessian of φ is given by

(1.14) Hessφ = rp−1HessS = rp−1∇.∇gS = −rp−1∇.∂s = −rp−1 ȧ

a
(Id−ds).

It vanishes at (s, x) if and only if ȧ(s) = 0. Thus the inequality (1.13)
follows for these transports if the Hessian of φ vanishes on supp(µ1/2) or,

more generally, if limr→0

´
M ‖r

1−pHessφ‖2dµr1/2 = 0.
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1.4. Related literature.

1.4.1. Ricci curvature via optimal transport in Riemannian setting. In the
Riemannian framework, a line of research pioneered by McCann [48], Cordero-
Erausquin-McCann-Schmuckenschläger [24, 25], Otto-Villani [55] and von
Renesse-Sturm, has culminated in a characterization of Ricci-curvature lower
bounds (by a constant K ∈ R) involving only the displacement convex-
ity of certain information-theoretic entropies [62]. This in turn led Sturm
[59, 60] and independently Lott-Villani [46] to develop a theory for lower
Ricci curvature bounds in a non-smooth metric-measure space setting. The
theory of such spaces has seen a very fast development in the last years, see
e.g. [2, 4, 5, 6, 7, 18, 21, 22, 29, 34, 35, 51]. An approach to the comple-
mentary upper bounds on the Ricci tensor (again by a constant K ′ ∈ R)
has been recently proposed by Naber [52] (see also Haslhofer-Naber [37])
in terms of functional inequalities on path spaces and martingales, and by
Sturm [61] (see also Erbar-Sturm [30]) in terms of contraction/expansion
rate estimates of the heat flow and in terms of displacement concavity of the
Shannon-Bolzmann entropy.

1.4.2. Optimal transport in Lorentzian setting. The optimal transport prob-
lem in Lorentzian geometry was first proposed by Brenier [13] and further in-
vestigated in [12, 63, 41]. An intriguing physical motivation for studying the
optimal transport problem in Lorentzian setting called the “early universe
reconstruction problem” [15, 33]. The Lorentzian cost Cp, for p ∈ (0, 1), was
proposed by Eckstein-Miller [26] and thoroughly studied by Mc Cann [49]
very recently. In the same paper [49], Mc Cann gave an optimal transport
formulation of the strong energy condition Ric ≥ 0 of Penrose-Hawking
[57, 38, 39] in terms of displacement convexity of the Shannon-Bolzmann
entropy under the assumption that the space time is globally hyperbolic.

We learned of the work of Mc Cann [49] when we were already in the
final stages of writing the present paper. Though both papers (inspired by
the aforementioned Riemannian setting) are based on the idea of analyzing
convexity properties of entropy functionals on the space of probability mea-
sures endowed with the cost Cp, p ∈ (0, 1), the two approaches are largely
independent: while Mc Cann develops a general theory of optimal trans-
portation in globally hyperbolic space times focusing on the strong energy
condition Ric ≥ 0, in this paper we decided to take the quickest path in
order to reach our goal of giving an optimal transport formulation of the
full Einstein’s equations. Compared to [49], in the present paper we remove
the assumption of global hyperbolicity on the space-time, we extend the op-
timal transport formulation to any lower bound of the type Ric ≥ T̃ for any
symmetric bilinear form T̃ , and we also characterize general upper bounds
Ric ≤ T̃ .

1.4.3. Physics literature. The existence of strong connections between ther-
modynamics and general relativity is not new in the physics literature; it has
its origins at least in the work Bekenstein [10] and Hawking with collabora-
tors [8] in the mid-1970s about the black hole thermodynamics. These works
inspired a new research field in theoretical physics, called entropic gravity
(also known as emergent gravity), asserting that gravity is an entropic force
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rather than a fundamental interaction. Let us give a brief account. In 1995
Jacobson [36] derived the Einstein equations from the proportionality of en-
tropy and horizon area of a black hole, exploiting the fundamental relation
δQ = T δS linking heat Q, temperature T and entropy S. Subsequently,
other physicists, most notably Padmanabhan (see for instance the recent
survey [56]), have been exploring links between gravity and entropy.

More recently, in 2011 Verlinde [65] proposed a heuristic argument sug-
gesting that (Newtonian) gravity can be identified with an entropic force
caused by changes in the information associated with the positions of ma-
terial bodies. A relativistic generalization of those arguments leads to the
Einstein equations.

The optimal transport formulation of Einstein equations obtained in the
present paper involving the Shannon-Bolzmann entropy can be seen as an
additional strong connection between general relativity and thermodyna-
mics/information theory. It would be interesting to explore this relationship
further.

Acknowledgement. The authors wish to thank Christina Sormani for sev-
eral comments that improved the exposition of the paper.

2. Preliminaries

2.1. Some basics of Lorentzian geometry. Let M be a smooth manifold
of dimension n ≥ 2. It is convenient to fix a complete Riemannian metric
h on M . The norm | · | on TxM and the distance dist(·, ·) : M ×M → R+

are understood to be induced by h, unless otherwise specified. Recall that
h induces a Riemannian metric on TM . Distances on TM are understood
to the induced by such a metric. The metric ball around x ∈M with radius
r, with respect to h, is denoted by Bh

r (x) or simply by Br(x).
A Lorentzian metric g on M is a smooth (0, 2)-tensor field such that

g|x : TxM × TxM → R
is symmetric and non-degenerate with signature (−,+, . . . ,+) for all x ∈
M . It is well known that, if M is compact, the vanishing of the Euler
characteristic of M is equivalent to the existence of a Lorentzian metric; on
the other hand, any non-compact manifold admits a Lorentzian metric. A
non-zero tangent vector v ∈ TxM is said

• Time-like: if g(v, v) < 0,
• Light-like (or null): if g(v, v) = 0 as well as v 6= 0,
• Spacelike: if g(v, v) > 0 or v = 0.

A non-zero tangent vector v ∈ TxM which is either time-like or light-like,
i.e. g(v, v) ≤ 0 and v 6= 0, is said causal (or non-spacelike). A Lorentzian
manifold (M, g) is said to be time-oriented if M admits a continuous no-
where vanishing time-like vector field X. The vector field X induces a
partition on the set of causal vectors, into two equivalence classes:

• The future pointing tangent vectors v for which g(X, v) < 0,
• The past pointing tangent vectors v for which g(X, v) > 0.

The closure of the set of future pointing time-like vectors is denoted

C = Cl({v ∈ TM : g(v, v) < 0 and g(X, v) < 0}) ⊂ TM.
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Note that the fiber Cx := C ∩ TxM is a closed convex cone and the open
interior Int(C) is a connected component of {v : g(v, v) < 0}. A time-
oriented Lorentzian manifold (M, g, C) is called a space-time.

An absolutely continuous curve γ : I →M is said (C)-causal if γ̇t ∈ C for
every differentiability point t ∈ I. A causal curve γ : I →M is said time-like
if for every s ∈ I there exist ε, δ > 0 such that dist(γ̇t, ∂C) ≥ ε|γ̇t| for every
t ∈ I for which γ̇t exists and |s− t| < δ. In [16, Section 2.2] time-like curves
are defined in terms of the Clarke differential of a Lipschitz curve. Whereas
the definition via the Clarke differential is probably more satisfying from
a conceptual point of view, the definition given here is easier to state. All
relevant sets and curves used below are independent of the definition, [16,
Lemma 2.11] and Proposition 2.4, though.

We denote by J+(x) (resp. J−(x)) the set of points y ∈ M such that
there exists a causal curve with initial point x (resp. y) and final point y
(resp. x), i.e. the causal future (resp. past) of x. The sets I±(x) are defined
analogously by replacing causal curves by time-like ones. The sets I±(p)
are always open in any space-time, on the other hand the sets J±(p) are in
general neither closed nor open.

For a subset A ⊂M , define J±(A) := ∪x∈AJ±(x), moreover set

(2.1) J+ := {(x, y) ∈M ×M : y ∈ J+(x)}.

2.2. The Lagrangian Lp, the action Ap and the cost cp. On a space-
time (M, g, C) consider, for any p ∈ (0, 1), the following Lagrangian on TM :

(2.2) Lp(v) :=

{
−1
p(−g(v, v))

p
2 if v ∈ C

+∞ otherwise.

The following fact appears in [49, Lemma 3.1]. We provide a proof for
the readers convenience.

Lemma 2.1. The function Lp is fiberwise convex, finite (and non-positive)
on its domain and positive homogenous of degree p. Moreover Lp is smooth
and fiberwise strictly convex on Int(C).

Proof. It is clear from its very definition that the restriction of Lp to Int(C)
is smooth. A direct computation gives

∂Lp
∂vi

= (−g(v, v))
p−2

2 gikv
k, i = 1, . . . , n

(2.3)

∂2Lp
∂vi∂vj

= (−g(v, v))
p−4

2

(
−g(v, v)gij + (2− p)gikvkgjlvl

)
, i, j = 1, . . . , n.

(2.4)
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Fix v ∈ Int(C). Decompose w ∈ TxM into w‖ the part parallel to v and w⊥

the part orthogonal to v, all with respect to g. Then we have

D2
vvLp(w,w) = (−g(v, v))

p−4
2

(
− g(w⊥, w⊥)g(v, v)− g(w‖, w‖)g(v, v)

(2.5)

+ (2− p)g(v, w‖)2
)

(2.6)

= (−g(v, v))
p−4

2

(
−g(w⊥, w⊥)g(v, v) + (1− p)g(v, w‖)2

)
.(2.7)

Since g(w⊥, w⊥) ≥ 0 and p < 1 we have

D2
vvLp(w,w) > 0

for w 6= 0. �

We define the Lagrangian action Ap associated to Lp as follows:

(2.8) Ap(γ) :=

ˆ 1

0
Lp(γ̇t)dt ∈ (−∞, 0] ∪ {+∞}.

Note that if Ap(γ) ∈ R, then γ is causal. A causal curve γ : [0, 1] → M is
an Ap-minimizer between its endpoints x, y ∈M if

Ap(γ) = inf{Ap(η) : η ∈ AC([0, 1],M), η0 = x, η1 = y}.

Lemma 2.2. Any Ap-minimizer with finite action is either a future point-
ing time-like geodesic of (M, g) or a future pointing light-like pregeodesic of
(M, g), i.e. an orientation preserving reparameterization is a future pointing
light-like geodesic of (M, g).

Proof. Let γ : [0, 1]→M be a Ap-minimizer with finite action. Then γ̇(t) ∈
C for a.e. t. By Jensen’s inequality we haveˆ 1

0
−1

p
(−g(η̇, η̇))

p
2 dt ≥ −1

p

(ˆ 1

0

√
−g(η̇, η̇)dt

)p
,

for any causal curve η : [0, 1]→M with equality if and only if η is parametrized
proportionally to arclength.

Recall that the restriction of a minimizer to any subinterval of [0, 1] is a
minimizer of the restricted action. Since any point in a spacetime admits a
globally hyperbolic neighborhood, see [50, Theorem 2.14], the Avez-Seifert
Theorem [53, Proposition 14.19] implies that every minimizer of A1 with
finite action is a causal pregeodesic.

Combining both points we see that if the action of γ is negative, the curve
is a time-like pregeodesic parameterized with respect to constant arclength,
i.e. a time-like geodesic. If the action of γ vanishes, the curve is a light-like
pregeodesic. �

Consider the cost function relative to the p-action Ap:
cp : M ×M → R ∪ {+∞}

(x, y) 7→ inf{Ap(η) : η ∈ AC([0, 1],M), η0 = x, η1 = y}.
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Remark 2.3. We will always assume that:

(i) The cost function is bounded from below on bounded subsets of
M ×M . By transitivity of the causal relation this follows from the
assumption that cp(x, y) > −∞ for all x, y ∈M .

(ii) The cost function is localizable, i.e. every point x ∈ M has a
neighborhood U ⊂ M such that the cost function of the space-time
(U, g|U , C|U ) coincides with the global cost function.

Note since the main results of this paper are local in nature, the assump-
tions can always be satisfied by restricting the space-time to a suitable open
subset.

Proposition 2.4. Fix p ∈ (0, 1) and let (M, g, C) be a space-time. Then
every point has a neighborhood U such that the following holds for the space-
time (U, g|U , C|U ). For every pair of points x, y ∈ U with (x, y) ∈ J+

U , the
causal relation of (U, g|U , C|U ), there exists a curve γ : [0, 1] → U with
γ0 = x, γ1 = y, and minimizing Ap among all curves η ∈ AC([0, 1],M) with
η0 = x and η1 = y. Moreover γ is a constant speed geodesic for the metric
g, γ̇ ∈ C whenever the tangent vector exists, and Ap(γ) ∈ R.

Proof. It is well known that in a space-time every point has a globally hy-
perbolic neighborhood. Let U be such a neighborhood. If (x, y) ∈ J+

U there
exists a curve with finite action Ap between x and y. At the same time the
action is bounded from below, e.g. by a steep Lyapunov function, see [16].
Therefore any minimizer γ : [0, 1] → U has finite action, i.e. γ̇(t) ∈ C for
almost all t. By Jensen’s inequality we have

ˆ 1

0
−1

p
(−g(η̇, η̇))

p
2 dt ≥ −1

p

(ˆ 1

0

√
−g(η̇, η̇)dt

)p
,

for any causal curve η : [0, 1]→ U with equality if and only if η is parametrized
proportionally to arclength. By the Avez-Seifert Theorem [53, Proposition
14.19] every minimizer of the right hand side is a causal pregeodesic. Com-
bining both it follows that every Ap-minimizer is a causal geodesic. �

2.3. Ricci curvature and Jacobi equation. We now fix the notation
regarding curvature for a Lorentzian manifold (M, g) of dimension n ≥ 2.
Called∇ the Levi-Civita connection of (M, g), the Riemann curvature tensor
is defined by

(2.9) R(X,Y )Z = ∇X∇Y Z −∇Y∇XX −∇[X,Y ]Z,

where X,Y, Z are smooth vector fields on M and [X,Y ] is the Lie bracket
of X and Y .
For each x ∈ M , the Ricci curvature is a symmetric bilinear form Ricx :
TxM × TxM → R defined by

(2.10) Ricx(v, w) :=

n∑
i=1

g(ei, ei)g(R(ei, w)v, ei),

where {ei}i=1,...,n is an orthonormal basis of TxM , i.e. |g(ei, ej)| = δij for
all i, j = 1 . . . , n.
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Given a endomorphism U : TxM → TxM and a g-orthonormal basis
{ei}i=1,...,n of TxM , we associate to U the matrix

(2.11) (Uij)i,j=1,...,n, Uij := g(ei, ej) g(Uei, ej).
The trace Trg(U) and the determinant Detg(U) of the endomorphism U
with respect to the Lorentzian metric g are by definition the trace tr(Uij)
and the determinant det(Uij)) of the matrix (Uij)i,j=1,...,n, respectively. It
is standard to check that such a definition is independent of the chosen
orthonormal basis of TxM . Note that Ricx(v, w) is the trace of curvature
endomorphism R(·, w)v : TxM → TxM .

A smooth curve γ : I → M is called a geodesic if ∇γ̇ γ̇ = 0. A vector
field J along a geodesic γ is said to be a Jacobi field if it satisfies the Jacobi
equation:

(2.12) ∇γ̇(∇γ̇J) +R(J, γ̇)γ̇ = 0.

2.4. The q-gradient of a function. Finally let us recall the definition of
gradient and hessian. Given a smooth function f : M → R, the gradient of
f denoted by ∇gf is defined by the identity

g(∇gf, Y ) = df(Y ), ∀Y ∈ TM,

where df is the differential of f . The Hessian of f , denoted by Hessf is
defined to be the covariant derivative of df :

Hessf := ∇(df).

It is related to the gradient through the formula

Hessf (X,Y ) = g(∇X∇gf, Y ), ∀X,Y ∈ TM,

and satisfies the symmetry

(2.13) Hessf (X,Y ) = Hessf (Y,X) ∀X,Y ∈ TM.

Next we recall some notions for the causal character of functions.

• A function f : M → R ∪ {±∞} is a causal function if f(x) ≤ f(y)
for all (x, y) ∈ J+;
• it is a time function if f(x) < f(y) for all (x, y) ∈ J+ \∆, where ∆

denotes the diagonal in M ×M .
• Following [16] we call a differentiable (Ck-) function f : M → R

(k ∈ N ∪ {∞}) a (Ck-) Lyapunov or (Ck-) temporal function if
dfx|Cx\{0} > 0 for all x ∈M .

Let q be the conjugate exponent to p, i.e.

1

p
+

1

q
= 1, or equivalently (p− 1)(q − 1) = 1.

Notice that, since p ranges in (0, 1) then q ranges in (−∞, 0). In order
to describe the optimal transport maps later in the paper, it is useful to
introduce the q-gradient (cf. [40])

(2.14) ∇qgφ := −|g(∇gφ,∇gφ)|
q−2

2 ∇gφ
for differentiable Lyapunov functions φ : M → R; in particular, ∇qgφ(x) ∈
Cx \ {0}. Notice that,

For v ∈ Cx \ {0}, ∇gφ(x) = −|g(v, v)|
p−2

2 v if and only if ∇qgφ(x) = v.



18 A. MONDINO AND S. SUHR

Moreover

x 7→ ∇qgφ(x) is continuous (resp. Ck, k ≥ 1) on U ⊂ {|g(∇qgφ,∇qgφ)| > 0}

if and only if

x 7→ ∇gφ(x) is continuous (resp. Ck, k ≥ 1) on U ⊂ {|g(∇gφ,∇gφ)| > 0}.

The motivation for the use of the q-gradient comes from the Hamiltonian
formulation of the dynamics; let us briefly mention a few key facts that will
play a role later in the paper. For α ∈ T ∗xM , let

(2.15) Hp(α) = sup
v∈TxM

[α(v)− Lp(v)]

be the Legendre transform of Lp. Denote with g∗ the dual Lorentzian metric
on T ∗M and C∗ ⊂ T ∗M the dual cone field to C. Then Hp satisfies

(2.16) Hp(α) :=

{
−1
q (−g∗(α, α))

q
2 if α ∈ C∗ \ T ∗,0M

+∞ otherwise
,

for (p−1)(q−1) = 1. By analogous computations as performed in the proof
of Lemma 2.1, one can check that

(2.17) ∇qgφ(x) = DHp(−dφ(x)).

By well known properties of the Legendre transform (see for instance [19,
Theorem A.2.5]) it follows that DHp is invertible on Int(C∗) with inverse
given by DLp. Thus (2.17) is equivalent to

(2.18) DLp(∇qgφ(x)) = −dφ(x).

2.5. cp-concave functions and regular cp-optimal dynamical plans.
We denote by P(M) the set of Borel probability measures on M . For any
µ1, µ2 ∈ P(M), we say that a Borel probability measure

π ∈ P(M ×M) is a coupling of µ1 and µ2

if (pi)]π = µi, i = 1, 2, where p1, p2 : M × M → M are the projections
onto the first and second coordinate. Recall that the push-forward (p1)]π is
defined by

(p1)]π(A) := π
(
p−1

1 (A)
)

for any Borel subset A ⊂ M . The set of couplings of µ1, µ2 is denoted by
Cpl(µ1, µ2). The cp-cost of a coupling π is given byˆ

M×M
cp(x, y)dπ(x, y) ∈ [−∞, 0] ∪ {+∞}.

Denote by Cp(µ1, µ2) the minimal cost relative to cp among all couplings
from µ1 to µ2, i.e.

Cp(µ1, µ2) := inf

{ˆ
cpdπ : π ∈ Cpl(µ1, µ2)

}
∈ [−∞, 0] ∪ {+∞}.

If Cp(µ1, µ2) ∈ R, a coupling achieving the infimum is said to be cp-optimal.
We next define the notion of cp-optimal dynamical plan. To this aim, it is

convenient to consider the set of Ap-minimizing curves, denoted by Γp. The
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set Γp is endowed with the sup metric induced by the auxiliary Riemannian
metric h. It will be useful to consider the maps for t ∈ [0, 1]:

et : Γp →M, et(γ) := γt

∂et : Γp → TM, ∂et(γ) := γ̇t ∈ TγtM.

A cp-optimal dynamical plan is a probability measure Π on Γp such that
(e0, e1)]Π is a cp-optimal coupling from µ0 := (e0)]Π to µ1 := (e1)]Π.
We will mostly be interested in cp-optimal dynamical plans obtained by
“exponentiating the q-gradient of a cp-concave function”, what we will call
regular cp-optimal dynamical plans. In order to define them precisely, let us
first recall some basics of Kantorovich duality (we adopt the convention of
[1]).

Fix two subsets X,Y ⊂ M . A function φ : X → R ∪ {−∞} is said cp-
concave (with respect to (X,Y )) if it is not identically −∞ and there exists
u : Y → R ∪ {−∞} such that

φ(x) = inf
y∈Y

cp(x, y)− u(y), for every x ∈ X.

Then, its cp-transform is the function φcp : Y → R ∪ {−∞} defined by

(2.19) φcp(y) := inf
x∈X

cp(x, y)− φ(x),

and its cp-superdifferential ∂cpφ(x) at a point x ∈ X is defined by

(2.20) ∂cpφ(x) := {y ∈ Y : φ(x) + φcp(y) = cp(x, y)}.

Note that

(2.21)

{
φ(x) = cp(x, y)− φcp(y), for all x ∈ X, y ∈ ∂cpφ(x)

φ(x) ≤ cp(x, y)− φcp(y), for all x ∈ X, y ∈ Y.

From the definition it follows readily that if φ is cp-concave, then for (x, z) ∈
J+ ∩ (X ×X) we have

φ(z) = inf
y∈Y

cp(z, y)− u(y) ≥ inf
y∈Y

cp(x, y)− u(y) = φ(x),

i.e. φ is a causal function. The same argument gives that −φcp is a causal
function as well.

Definition 2.5 (Regular cp-optimal dynamical plan). A cp-optimal dynam-
ical plan Π ∈ P(Γp) is regular if the following holds.
There exists U, V ⊂ M relatively compact open subsets and a smooth cp-
concave (with respect to (U, V )) function φ1/2 : U → R such that

• ∇qgφ1/2(x) ∈ K ⊂⊂ Int(C) for every x ∈ U and(
− g(∇qgφ1/2,∇qgφ1/2)

)1/2 ≤ Injg(U),

where Injg(U) is the injectivity radius of g on U ;
• Setting

Ψt
1/2(x) = expgx((t− 1/2)∇qgφ1/2(x))

and µt := (et)]Π for every t ∈ [0, 1], it holds that

supp(µ1/2) ⊂ U, µt = (Ψt
1/2)]µ1/2 and µt � volg ∀t ∈ [0, 1].
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Roughly, the above notion of regularity asks that the Ap-minimizing
curves performing the optimal transport from µ0 := (e0)]Π to µ1 := (e1)]Π
have velocities contained in K, i.e. they are all “uniformly” time-like future
pointing. Moreover it also implies that ∪t∈[0,1]supp(µt) ⊂M is compact; in
addition the optimal transport is assumed to be driven by a smooth poten-
tial φ1/2. Even if these conditions may appear a bit strong, we will prove in
Lemma 3.1 that there are a lot of such regular plans; moreover in the paper
we will show that it is enough to consider such particular optimal trans-
ports in order to characterize upper and lower bounds on the (causal-)Ricci
curvature and thus characterize the solutions of Einstein equations.

3. Existence, regularity and evolution of Kantorovich
potentials

We first show that for every point x̄ ∈M and every v ∈ Cx̄ “small enough”
we can find a smooth cp-concave function φ defined on a neighbourhood of
x̄, such that ∇qgφ = v and the hessian of φ vanishes at x̄. This is well known
in the Riemannian setting (e.g. [66, Theorem 13.5]) and should be compared
with the recent paper by Mc Cann [49] in the Lorentzian framework. The
second part of the next lemma shows that the class of regular cp-optimal
dynamical plans is non-empty, and actually rather rich.

Lemma 3.1. Let (M, g, C) be a space-time, fix x̄ ∈ M and v ∈ Cx̄ with
g(v, v) < 0. Then

(1) There exists ε = ε(x̄, v) > 0 with the following property: for every
t ∈ (0, ε), for every C2 function φ : M → R satisfying

(3.1) ∇qgφ(x̄) = tv, Hessφ(x̄) = 0,

there exists a neighbourhood Ux̄ of x̄ and a neighbourhood Uȳ of ȳ :=
expgx̄(tv) such that φ is cp-concave relatively to (Ux̄, Uȳ).

(2) Let

Ψt
1/2(x) := expx((t− 1/2)∇qgφ(x)), ∀x ∈ Ux̄

Ψ̃ : Ux̄ → AC([0, 1],M), x 7→ Ψ
(·)
1/2(x).

Then, for every µ1/2 ∈ P(M) with supp(µ1/2) ⊂ Ux̄, the measure

Π := (Ψ̃)]µ1/2 is a cp-optimal dynamical plan.

Proof. (1) Calling ȳ = ȳ(tv) := expgx̄(tv), notice that ∇qgφ(x̄) = tv is equiv-
alent to

(3.2) dφ(x̄) = Dxcp(x̄, ȳ),

where Dxcp(x̄, ȳ) denotes the differential at x̄ of the function x 7→ cp(x, ȳ).
Indeed, a computation shows that Dxcp(x̄, ȳ) = −DLp(tv) and thus the
claim follows from (2.18).

Let φ : M → R be any smooth function satisfying

(3.3) ∇qgφ(x̄) = tv, Hessφ(x̄) = 0.

In what follows we denote with Hessx,cp(x̄, ȳ)(resp. Hessv,Lp(tv) the Hessian
of the function x 7→ cp(x, ȳ) evaluated at x = x̄ (resp. the Hessian of the
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function Tx̄M 3 w 7→ Lp(tv+w)). By taking normal coordinates centred at
x̄ one can check that the operator norm

‖Hessx,cp(x̄, ȳ)−Hessv,Lp(tv)‖ → 0 as t→ 0.

Recalling that from (2.7) there exists Cp,v > 0 such that Hessv,Lp(tv) ≥
Cp,vt

−2+p as quadratic forms, we infer
(3.4)

Hessx,cp(x̄, ȳ)−Hessφ(x̄) > 0 as quadratic forms, for every t ∈ (0, ε),

for some ε = ε(x̄, v) > 0 small enough. Since by construction we have
Dxcp(x̄, ȳ) − dφ(x̄) = 0, by the Implicit Function Theorem there exists a
neighbourhood Ux̄×Uȳ of (x̄, ȳ) ∈M ×M and a smooth function F : Uȳ →
Ux̄ such that F (ȳ) = x̄ and

Dxcp(F (y), y)− dφ(F (y)) = 0, for every y ∈ Uȳ.

Differentiating the last equation in y at ȳ and using that Hessφ(x̄) = 0, we
obtain

(3.5) D2
yxcp(x̄, ȳ) + Hessx,cp(x̄, ȳ)DF (ȳ) = 0.

Using normal coordinates centred at x̄ and (2.4) one can check that the
operator norm∥∥∥D2

yxcp(x̄, ȳ)− (−g(tv, tv))
p−4

2 (−g(tv, tv)g + (2− p)(tv)∗ ⊗ (tv)∗)
∥∥∥→ 0

as t→ 0, where (tv)∗ = g(tv, ·) is the covector associated to tv.
Since by assumption g(v, v) < 0 and p ∈ (0, 1), it follows from the reverse

Cauchy-Schwartz inequality that det[D2
yxcp(x̄, ȳ)] > 0 for t ∈ (0, ε). Recall-

ing that det[Hessx,cp(x̄, ȳ)] 6= 0, from (3.5) we infer that det(DF (ȳ)) 6= 0.
By the Inverse Function Theorem, up to reducing the neighbourhoods, we
get that F : Uȳ → Ux̄ is a smooth diffeomorphism. Define now

u : Uȳ → R, u(y) := cp(F (y), y)− φ(F (y)).

For every fixed y ∈ Uȳ, the function Ux̄ 3 x 7→ cp(x, y) − φ(x) − u(y)
vanishes at x = F (y); moreover, from (3.4), it follows that x = F (y) is
the strict global minimum of such a function on Ux̄. In other words, the
function Ux̄ × Uȳ 3 (x, y) 7→ cp(x, y) − φ(x) − u(y) is always non-negative
and vanishes exactly on the graph of F . It follows that

(3.6) φ(x) = inf
y∈Uȳ

cp(x, y)− u(y), for every x ∈ Ux̄,

i.e. φ : Ux̄ → R is a smooth cp-concave function relative to (Ux̄, Uȳ) satisfying
(3.1).

Proof of (2). We have to show that (e1/2, et)]Π (respectively (et, e1/2)]Π) is
a cp-optimal coupling for (µ1/2, µt) and every t ∈ [1/2, 1] (resp. for (µt, µ1/2)
and every t ∈ [0, 1/2]); we discuss the case t ∈ [1/2, 1], the other being
analogous.
It is convenient to define

Ψ′t(x) := expx(t∇qgφ(x)), ∀x ∈ Ux̄
Ψ̃′ : Ux̄ → AC([0, 1],M), x 7→ Ψ′(·)(x).
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Setting Π′ := (Ψ̃′)]µ1/2, we have (et)]Π
′ = (et+1/2)]Π for every t ∈ [0, 1/2].

If we show that

(3.7) (e0, e1)]Π
′ is a cp-optimal coupling for

(
(e0)]Π

′, (e1)]Π
′),

then, by the triangle inequality, it will follow that (e0, et)]Π
′ is a cp-optimal

coupling for
(
(e0)]Π

′, (et)]Π
′) for every t ∈ [0, 1]; in particular our claim

that (e1/2, et)]Π is a cp-optimal coupling for (µ1/2, µt), t ∈ [1/2, 1], will be
proved. Thus, the rest of the proof will be devoted to establish (3.7).

Since by construction cp : Ux̄ × Uȳ → R is smooth, by classical optimal
transport theory it is well know that the cp-superdifferential ∂cpφ ⊂ Uȳ is
cp-cyclically monotone (see for instance [1, Theorem 1.13]). Therefore, in
order to have (3.7), it is enough to prove that

(3.8) ∂cpφ(x) = {expx(∇qgφ(x))} for every x ∈ Ux̄.

Let us first show that ∂cpφ(x) 6= ∅, for every x ∈ Ux̄. From the proof of (1),
there exists a smooth diffeomorphism F : Uȳ → Ux̄ such that

(3.9)

{
φ(F (y)) = cp(F (y), y)− u(y), for all y ∈ Uȳ
φ(x) ≤ cp(x, y)− u(y), for all x ∈ Ux̄, y ∈ Uȳ.

From the definition of φcp in (2.19), it is readily seen that φcp = u on
Uȳ. Thus (3.9) combined with (2.21) gives that y ∈ ∂cpφ(F (y)) for every
y ∈ Uȳ or, equivalently, F−1(x) ∈ ∂cpφ(x) for every x ∈ Ux̄. In particular,
∂cpφ(x) 6= ∅, for every x ∈ Ux̄.

Now fix x ∈ Ux̄ and pick y ∈ ∂cpφ(x) ⊂ Uȳ. Since z 7→ cp(z, y) is
differentiable on Ux̄, we get
(3.10)

cp(z, y) = cp(x, y)+(Dxcp(x, y))[(exphx)−1(z)]+o(dh(z, x)), for every z ∈ Ux̄.

From y ∈ ∂cpφ(x), we have

φ(z)− φ(x)
(2.21)

≤ cp(z, y)− cp(x, y)

(3.10)
= (Dxcp(x, y))[(exphx)−1(z)] + o(dh(z, x)), for every z ∈ Ux̄.

Since φ is differentiable at x ∈ Ux̄, it follows that

dφ(x) = Dxcp(x, y) = −DLp(w),

where w ∈ Int(Cx) is such that y = expgx(w), which by (2.17) is equivalent
to

w = DHp (−dφ(x)) = ∇qgφ(x),

which yields y = expgx(w) = expgx(∇qgφ(x)), concluding the proof of (3.8).
�

We next establish some basic properties of cp-optimal dynamical plans
which will turn out to be useful for the OT-characterization of Lorentzian
Ricci curvature upper and lower bounds.
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Proposition 3.2. Let (M, g, C) be a space-time and let Π be a regular cp-
optimal dynamical plan with

(et)]Π = µt = (Ψt
1/2)]µ1/2 � volg,

Ψt
1/2(x) = expgx((t− 1/2)∇qgφ(x)).

Then

(1) ∇∇qgφ(x) : TxM → TxM is a symmetric endomorphism, i.e.

g(∇X∇qgφ, Y ) = g(∇Y∇qgφ,X), ∀X,Y ∈ TxM, ∀x ∈ supp(µs).

(2) Calling µt = ρtvolg, the following Monge-Ampère inequality holds
true:

(3.11) ρ1/2(x) ≤ Detg[DΨt
1/2(x)]ρt(Ψ

t
1/2(x)), µ1/2-a.e. x, ∀t ∈ [0, 1].

In particular Ψt
1/2 is µ1/2-a.e. non-degenerate. Moreover (3.11)

holds with equality if t ∈ (0, 1).

Proof. (1) By construction, φ1/2 is smooth on U and g(∇gφ1/2,∇gφ1/2) < 0.

Thus also ∇qgφ : M → TM is a smooth section of the tangent bundle and
the symmetry of the endomorphism ∇∇qgφ(x) : TxM → TxM follows by
Schwartz’s Lemma.

(2) This part should be compared with [42, Lemma 3.9]. Since by con-
struction (Ψt

1/2)]µ1/2 = µt, it follows that for an arbitrary Borel subset

A ⊂M it holds

(3.12) µ1/2(A) ≤ µ1/2

(
(Ψt

1/2)−1(Ψt
1/2(A))

)
= µt

(
Ψt

1/2(A)
)
.

Equality holds for t ∈ (0, 1) as the map Ψt
1/2 is µ1/2-essentially injective. By

the area formula we infer that

µt

(
Ψt

1/2(A)
)

=

ˆ
Ψt

1/2
(A)

ρt dvolg

≤
ˆ

Ψt
1/2

(A)
ρt(y)H0((Ψt

1/2xA)−1(y)) dvolg(y)

=

ˆ
A
ρt(Ψ

t
1/2(x))Detg

[
DΨt

1/2(x)
]
dvolg(x),(3.13)

with equality if t ∈ (0, 1) as the map Ψt
1/2 is µ1/2-essentially injective. The

combination of (3.12) and (3.13) gives that for an arbitrary Borel subset
A ⊂M it holdsˆ

A
ρ1/2 dvolg = µ1/2(A) ≤ µt(Ψt

1/2(A)) ≤
ˆ
A
ρt(Ψ

t
1/2)Detg

[
DΨt

1/2

]
dvolg.

The Monge-Ampère inequality (3.11) follows, with equality for t ∈ (0, 1). �

It will be convenient to consider the matrix of Jacobi fields

(3.14) Bt(x) := DΨt
1/2(x) : TxM → TΨt

1/2
(x)M, for µ1/2-a.e. x,

along the geodesic t 7→ γt := Ψt
1/2(x); recalling (2.12), Bt(x) satisfies the

Jacobi equation

(3.15) ∇t∇tBt(x) +R(Bt(x), γ̇t)γ̇t = 0,
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where we denoted ∇t := ∇γ̇t for short.
Since by Proposition 3.2 we know that Bt is non-singular for µ1/2-a.e. x,

we can define

(3.16) Ut(x) := ∇tBt ◦ B−1
t : TγtM → TγtM, for µ1/2-a.e. x.

The next proposition will be key in the proof of the lower bounds on causal
Ricci curvature. It is well known in Riemannian and Lorentzian geometry,
see for instance [25, Lemma 3.1] and [27]; in any case we report a proof for
the reader’s convenience.

Proposition 3.3. Let Ut be defined in (3.16). Then Ut is a symmetric en-
domorphism of TγtM (i.e. the matrix (Ut)ij with respect to an orthonormal
basis is symmetric) and it holds

∇tUt + U2
t +R(·, γ̇t)γ̇t = 0.

Taking the trace with respect to g yields

(3.17) Trg(∇tUt) + Trg(U2
t ) + Ric(γ̇t, γ̇t) = 0.

Setting y(t) := log DetgBt, it holds

(3.18) y′′(t) +
1

n
(y′(t))2 + Ric(γ̇t, γ̇t) ≤ 0.

Proof. Using (3.15) we get

∇tUt = (∇t∇tBt)B−1
t +∇tBt∇t(B−1

t ) = −R(·, γ̇t)γ̇t − (∇tBt)B−1
t (∇tBt)B−1

t

= −R(·, γ̇t)γ̇t − U2
t .

Taking the trace with respect to g yields the second identity.
The rest of the proof is devoted to show (3.18). Let (ei(t))i=1,...,n be an
orthonormal basis of TγtM parallel along γ. Setting y(t) = log detBt, we
have that

y′(t0) =
d

dt

∣∣∣∣
t=t0

log Detg
(
BtB−1

t0

)
=

d

dt

∣∣∣∣
t=t0

log det
[(
g(ei(t), ej(t))g(BtB−1

t0
ei(t), ej(t))

)
i,j

]
= Trg

[
(∇tBt)B−1

t0

]
|t=t0 = Trg(Ut0).(3.19)

We next show that Ut is a symmetric endomorphism of TγtM , i.e. the matrix
(Ut)ij is symmetric. To this aim, calling U∗t the adjoint, we observe that

(3.20) U∗t − Ut = (B∗t )−1 [(∇tB∗t )Bt − B∗t (∇tBt)]B−1
t ,

and that

(3.21) ∇t [(∇tB∗t )Bt − B∗t (∇tBt)] = (∇t∇tB∗t )Bt − B∗t (∇t∇tBt).

Now the Jacobi equation (3.15) reads

(3.22) ∇t∇tBt = −R(Bt, γ̇t)γ̇t = −R(t)Bt,

where

R(t) : TγtM → TγtM, R(t)[v] := R(v, γ̇t)γ̇t
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is symmetric; indeed, in the orthonormal basis (ei(t))i=1,...,n, it is represented
by the symmetric matrix(

g(ei(t), ej(t)) g(R(ei(t), γ̇t)γ̇t, ej(t))
)
i,j=1,...,n

.

Plugging (3.22) into (3.21), we obtain that

(∇tB∗t )Bt − B∗t (∇tBt)

is constant in t. But B0 = IdTγ1/2
M and ∇tBt|t=1/2 = −∇∇qgφ is symmetric

by assertion (1) in Proposition 3.2. Taking into account (3.20), we conclude
that Ut is symmetric for every t ∈ [0, 1].
Using that Ut is symmetric, by Cauchy-Schwartz inequality, we have that

(3.23) Trg
[
U2
t

]
= tr

[
(U2)ij

]
≥ 1

n

(
tr
[
Uij
])2

=
1

n

(
Trg
[
Uij
])2

.

The desired estimate (3.18) then follows from the combination of (3.17),
(3.19) and (3.23). �

In order to characterize Lorentzian Ricci curvature upper bounds, it will
be useful the next proposition concerning the evolution of Kantorovich po-
tentials along a regularAp-minimizing curve of probability measures (µt)t∈[0,1]

given by exponentiating the q-gradient of a smooth cp-concave function with
time-like gradient. To this aim it is convenient to consider, for 0 ≤ s < t ≤ 1,
the restricted minimal action

cs,tp (x, y) := inf

{ˆ t

s
Lp(γ̇(τ))dτ

∣∣∣∣ γ ∈ AC([s, t],M), γ(s) = x, γ(t) = y

}
.

Proposition 3.4. Let (M, g, C) be a space-time, fix p ∈ (0, 1) and let q ∈
(−∞, 0) be the Hölder conjugate exponent, i.e. 1

p + 1
q = 1 or equivalently

(p − 1)(q − 1) = 1. Let U, V ⊂ M be relatively compact open subsets and
φ1/2 be a smooth cp-concave function relative to (U, V ) such that

• φ1/2 is a smooth Lyapunov function on U ,

•
(
− g(∇qgφ1/2,∇

q
gφ1/2)

)1/2 ≤ Injg(U), the injectivity radius of g on
U .

For t ∈ [0, 1], let

Ψt
1/2 : U →M, Ψt

1/2(x) := expx((t− 1/2)∇qgφ1/2(x))

be the cp-optimal transport map associated to φ1/2. For every x ∈ U , define
(3.24)

φt(Ψ
t
1/2(x)) = φ(t,Ψt

1/2(x)) :=

{
φ1/2(x)− c1/2,t

p (x,Ψt
1/2(x)) for t ∈ [1/2, 1]

φ1/2(x) + c
t,1/2
p (Ψt

1/2(x), x) for t ∈ [0, 1/2)
.

Then the map (t, y) 7→ φ(t, y) defined on
⋃
t∈[0,1] {t} × Ψt

1/2(U) is C∞ and

satisfies the Hamilton-Jacobi equation
(3.25)

∂tφt(t, y) +
1

q
(−g(∇gφt(y),∇gφt(y)))q/2 = 0, ∀(t, y) ∈

⋃
t∈[0,1]

{t} ×Ψt
1/2(U)
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with

(3.26)
d

dt
Ψt

1/2(x) = ∇qgφt(Ψt
1/2(x)), ∀(t, x) ∈ [0, 1]× U.

Proof. Step 1: smoothness of φ.
The fact that t 7→ Ψt

1/2 is a smooth 1-parameter family of maps performing

cp-optimal transport gives that φ defined in (3.24) satisfies (cf. [19, Theorem
6.4.6])
(3.27)
φt(Ψ

t
1/2(x)) = φs(Ψ

s
1/2(x))−cs,tp (Ψs

1/2(x),Ψt
1/2(x)), ∀x ∈ U, 0 ≤ s < t ≤ 1.

In particular it holds

φt(Ψ
t
1/2(x)) = φ0(Ψ0

1/2(x))− c0,t
p (Ψ0

1/2(x),Ψt
1/2(x)) ∀x ∈ U, t ∈ [0, 1],

(3.28)

φt(Ψ
t
1/2(x)) = φ1(Ψ1

1/2(x)) + ct,1p (Ψt
1/2(x),Ψ1

1/2(x)) ∀x ∈ U, t ∈ [0, 1].

(3.29)

Since by construction everything is defined inside the injectivity radius and
all the transports rays are non-constant, from (3.28) (respectively (3.29))
it is manifest that the map (t, y) 7→ φ(t, y) is C∞ on

⋃
t∈(0,1]{t} × Ψt

1/2(U)

(resp.
⋃
t∈[0,1){t}×Ψt

1/2(U)). The smoothness of φ on
⋃
t∈[0,1]{t}×Ψt

1/2(U)

follows.
Step 2: validity of the Hamilton-Jacobi equation (3.25).

We consider t ∈ (1/2, 1], the case t ∈ [0, 1/2] being analogous. Fix y =
Ψt

1/2(x) for some arbitrary x ∈ U and t ∈ (1/2, 1], and let γ : [0, s]→M be

a smooth curve with γ̇(0) = v ∈ TyM . From (3.24) we have

φ(t+ s, γs) ≥ −
ˆ s

0
Lp(γ̇τ ) dτ + φ(t, γ0),

with equality for γ(τ) = Ψt+τ (x) for all τ ∈ [0, s]. Dividing by s and taking
the limit for s→ 0, we obtain

lim
s→0

φ(t+ s, γs)− φ(t, γ0)

s
≥ −Lp(v),

which in turn implies

∂tφt(y) ≥ −dφt(v)− Lp(v), for every v ∈ TyM.

Note that equality holds for v = ∇qgφ1/2(x). For α ∈ T ∗yM , let

Hp(α) = sup
v∈TyM

[α(v)− Lp(v)]

denote the Legendre transform of Lp. Thus we get

(3.30) ∂tφt(y) = Hp(−d(φt)y).

Recalling that Hp has the representation (2.16), we have

Hp(−d(φt)y) = −1

q
(−g(∇gφt(y),∇gφt(y)))q/2 ,

which, together with (3.30), implies (3.25).
Step 3: validity of (3.26).

Since Ψt
1/2 is a smooth 1-parameter family of maps performing cp-optimal
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transport and the function φ defined in (3.24) is smooth, it coincides with
the viscosity solution (resp. backward solution)

(3.31) φt(y) =

{
supz∈Ψs

1/2
(U) φs(z)− c

s,t
p (z, y) for t ∈ [s, 1]

infz∈Ψs
1/2

(U) φs(z) + ct,sp (y, z) for t ∈ [0, s)
,

for every s ∈ (0, 1), y ∈ Ψt
1/2(U).

Let us discuss the case t ∈ (s, 1], the other is analogous. From (3.27) it
follows that Ψs

1/2(x) is a maximum point in the right hand side of (3.31)

corresponding to y = Ψt
1/2(x). Thus

dφs(Ψ
s
1/2(x)) = d

[
cs,tp (·,Ψt

1/2(x))
]

(Ψs
1/2(x)) = −DLp

(
d

ds
Ψs

1/2(x)

)
.

By construction d
dsΨ

s
1/2(x) ∈ Int(C) and, as already observed, DLp is invert-

ible on Int(C) with inverse given by DHp. We conclude that

d

ds
Ψs

1/2(x) = DHp
(
−dφs(Ψs

1/2(x))
)

= ∇qgφs(Ψs
1/2(x)).

�

4. Optimal transport formulation of the Einstein equations

The Einstein equations of General Relativity for an n-dimensional space-
time (Mn, g, C), n ≥ 3, read as

(4.1) Ric− 1

2
Scal g + Λg = 8πT,

where Scal is the scalar curvature, Λ ∈ R is the cosmological constant, and
T is the energy-momentum tensor.

Lemma 4.1. The space-time (Mn, g, C), n ≥ 3, satisfies the Einstein Equa-
tion (4.1) if and only if

(4.2) Ric =
2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g.

Proof. Taking the trace of (4.1), one can express the scalar curvature as

(4.3) Scal =
2nΛ

n− 2
− 16π

n− 2
Trg(T ).

Plugging (4.3) into 4.1 gives the equivalent formulation (4.2) of Einstein
equations just in terms of the metric, the Ricci and the energy-momentum
tensors. �

The optimal transport formulation of the Einstein equations will consist
separately of an optimal transport characterization of the two inequalities

Ric ≥ 2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g

and

Ric ≤ 2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g,

respectively. Subsection 4.1 will be devoted to the lower bound and Subsec-
tion 4.2 to the upper bound on the Ricci tensor.
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A key role in such an optimal transport formulation will be played by the
(relative) Boltzmann-Shannon entropy defined below. Denote by volg the
standard volume measure on (M, g). Given an absolutely continuous prob-
ability measure µ = % volg with density % ∈ Cc(M), define its Boltzmann-
Shannon entropy (relative to volg) as

(4.4) Ent(µ|volg) :=

ˆ
M
% log % dvolg.

4.1. OT-characterization of Ric ≥ 2Λ
n−2g+ 8πT − 8π

n−2Trg(T ) g. In estab-
lishing the Ricci curvature lower bounds, the next elementary lemma will
be key (for the proof see for instance [66, Chapter 16] or [6, Lemma 9.1])

Lemma 4.2. Define the function G : [0, 1]× [0, 1]→ [0, 1] by

(4.5) G(s, t) :=

{
(1− t)s if s ∈ [0, t],

t(1− s) if s ∈ [t, 1],

so that for all t ∈ (0, 1) one has

(4.6) − ∂2

∂s2
G(s, t) = δt in D ′(0, 1), G(0, t) = G(1, t) = 0.

If u ∈ C([0, 1],R) satisfies u′′ ≥ f in D ′(0, 1) for some f ∈ L1(0, 1) then

u(t) ≤ (1− t)u(0) + tu(1)−
ˆ 1

0
G(s, t) f(s) ds, ∀t ∈ [0, 1].(4.7)

In particular, if f ≡ c ∈ R then

u(t) ≤ (1− t)u(0) + tu(1)− ct(1− t)
2

, ∀t ∈ [0, 1].(4.8)

The characterization of Ricci curvature lower bounds (i.e. Ric ≥ Kg for
some constant K ∈ R) via displacement convexity of the entropy is by now
classical in the Riemannian setting, let us briefly recall the key contributions.
Otto & Villani [55] gave a nice heuristic argument for the implication “Ric ≥
Kg ⇒K-convexity of the entropy”; this implication was proved forK = 0 by
Cordero-Erausquin, McCann & Schmuckenschläger [24]; the equivalence for
everyK ∈ R was then established by Sturm & von Renesse [62]. Our optimal
transport characterization of Ric ≥ 2Λ

n−2g + 8πT − 8π
n−2Trg(T ) g is inspired

by such fundamental papers (compare also with [42] for the implication
(3)⇒(1)). Let us also mention that the characterization of Ric ≥ Kg for
K ≥ 0 via displacement convexity in the globally hyperbolic Lorentzian
setting has recently been obtained independently by Mc Cann [49]. Note
that Corollary 4.4 extends such a result to any lower bounds K ∈ R and to
the case of general (possibly non globally hyperbolic) space times.

The next general result will be applied with n ≥ 3 and

T̃ =
2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g.

Theorem 4.3 (OT-characterization of Ric ≥ T̃ ). Let (M, g, C) be a space-

time of dimension n ≥ 2 and let T̃ be a quadratic form on M . Then the
following are equivalent:

(1) Ric(v, v) ≥ T̃ (v, v) for every causal vector v ∈ C.
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(2) For every p ∈ (0, 1), for every regular dynamical cp-optimal plan Π
it holds

(4.9)

Ent(µt|volg) ≤ (1−t)Ent(µ0|volg)+tEnt(µ1|volg)−
ˆ ˆ 1

0
G(s, t)T̃ (γ̇s, γ̇s)ds dΠ(γ),

where we denoted µt := (et)]Π, t ∈ [0, 1], the curve of probability
measures associated to Π.

(3) There exists p ∈ (0, 1) such that for every regular dynamical cp-
optimal plan Π the convexity property (4.9) holds.

Proof. (1)⇒ (2)
Fix p ∈ (0, 1). Let Π be a regular dynamical cp-optimal coupling and let
(µt := (et)]Π)t∈[0,1] be the corresponding curve of probability measures with
µt = ρt volg � volg compactly supported. By definition of regular dynamical
cp-optimal coupling there exists a smooth function φ1/2 such that, calling

Ψt
1/2(x) = expgx((t− 1/2)∇qgφ1/2(x)),

it holds µt = (Ψt
1/2)]µ1/2 for every t ∈ [0, 1]. Moreover the Jacobian DΨt

1/2

is non-singular for every t ∈ [0, 1] on supp(µ1/2). Recall the definition of Bt
and Ut along the geodesic t 7→ γt := Ψt

1/2(x).

Bt(x) := DΨt
1/2(x) : TxM → TΨt

1/2
(x)M, for µ1/2-a.e. x,

Ut(x) := ∇tBt ◦ B−1
t : TγtM → TγtM, for µ1/2-a.e. x.

Calling yx(t) := log DetgBt(x) and γxt := Ψt
1/2(x), from Proposition 3.3 we

get

(4.10) y′′x(t) + T̃ (γ̇xt , γ̇
x
t ) ≤ y′′x(t) + Ric(γ̇xt , γ̇

x
t ) ≤ 0, µ1/2-a.e. x.

Now, for t ∈ (0, 1) we have

Ent(µt|volg) =

ˆ
log ρt(y) dµt(y) =

ˆ
M

log ρt(Ψ
t
1/2(x)) dµ1/2(x)

=

ˆ
log[ρ1/2(x)(Detg(DΨt

1/2)(x))−1] dµ1/2(x)

= Ent(µ1/2|volg)−
ˆ
yx(t) dµ1/2(x),(4.11)

where the second to last equality follows from Proposition 3.2(2). Using
(4.10) we obtain
(4.12)
d2

dt2
Ent(µt|volg) ≥

ˆ
T̃ (γ̇xt , γ̇

x
t )dµ1/2(x) =

ˆ
T̃ (γ̇t, γ̇t)dΠ(γ), ∀t ∈ (0, 1).

Using Lemma 4.2, we get (4.9).
(2)⇒ (3): trivial.
(3)⇒ (1)

We argue by contradiction. Assume there exist x0 ∈ M and v ∈ Tx0M ∩ C
with g(v, v) < 0 such that the Ricci curvature at x0 in the direction of v ∈ Cx
satisfies

(4.13) Ric(v, v) ≤ (T̃ + 3εg)(v, v),
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for some ε > 0. Thanks to Lemma 3.1, for η ∈ (0, η̄(x0, v)] small enough,
there exists δ̄ > 0 and a cp-convex function φ1/2, smooth on Bδ̄(x0) and
satisfying

(4.14) ∇qgφ1/2(x0) = ηv 6= 0 and Hessφ1/2
(x0) = 0.

From now on we fix η ∈
(
0,min(η̄(x0, v), injg(Bδ̄(x0)))

]
, where injg(Bδ̄(x0))

is the injectivity radius of Bδ̄(x0) with respect to the metric g. It is easily
checked that, for δ ∈ (0, δ̄), small enough the map

x 7→ Ψt
1/2(x) = expgx((t− 1/2)∇qgφ1/2(x))

is a diffeomorphism from Bδ(x0) onto its image for any t ∈ [0, 1]. Moreover,
since ∇qgφ1/2(x0) ∈ Int(C) and arguing by continuity and by parallel trans-

port along the geodesics t 7→ Ψt
1/2(x), x ∈ Bδ(x0), for δ > 0 small enough

we have that

(4.15)
⋃

t∈[0,1]

⋃
x∈Bδ(x0)

d

dt
Ψt

1/2(x) ⊂⊂ Int(C).

Define µ 1
2

:= volg(Bδ(x0))−1 volgxBδ(x0). Let Π be the cp-optimal dynami-

cal plan representing the curve of probability measures
(
µt := (Ψt

1/2)]µ 1
2

)
t∈[0,1]

.

Note that (4.15) together with (4.14) ensures that Π is regular, for δ > 0
small enough.
Calling γxt := Ψt

1/2(x) = expgx
(
(t − 1/2)∇qgφ1/2(x)

)
for x ∈ Bδ(x0) the ge-

odesic performing the transport, note that by continuity there exists δ > 0
small enough such that

(4.16) Ric(γ̇xt , γ̇
x
t ) < (T̃ + 2εg)(γ̇xt , γ̇

x
t ), ∀x ∈ Bδ(x0), ∀t ∈ [0, 1] .

The identity (3.17) proved in Proposition 3.3 reads as
(4.17)

[Trg(Uxt )]′ + Trg[(Uxt )2] + Ric(γ̇xt , γ̇
x
t ) = 0, ∀x ∈ Bδ(x0), ∀t ∈ [0, 1].

Since by construction Ux0

1/2 := ∇tBx0

1/2(Bx0

1/2)−1 = ∇∇qgφ1/2(x0) = 0 and

g(∇qgφ1/2(x0),∇qgφ1/2(x0)) < 0, again by continuity we can choose δ > 0
even smaller so that

Trg[(Uxt )2] < −εg(γ̇xt , γ̇
x
t ), ∀x ∈ Bδ(x0), ∀t ∈ [0, 1].(4.18)

The combination of (4.16), (4.17) and (4.18) yields

[Trg(Uxt )]′ + (T̃ + εg)(γ̇xt , γ̇
x
t ) > 0, ∀x ∈ Bδ(x0), ∀t ∈ [0, 1] .

Recalling (3.19), the last inequality can be rewritten as

yx(t)′′ + (T̃ + εg)(γ̇xt , γ̇
x
t ) > 0, ∀x ∈ Bδ(x0), ∀t ∈ [0, 1] .

The combination of the last inequality with (4.11) gives

(4.19)
d2

dt2
Ent(µt|volg) <

ˆ
(T̃ + εg)(γ̇xt , γ̇

x
t ) dµ1/2(x), ∀t ∈ (0, 1).
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By applying Lemma 4.2 we get that

Ent(µt|volg) ≥ (1− t) Ent(µ0|volg) + tEnt(µ1|volg)

−
ˆ ˆ 1

0
G(s, t)(T̃ + εg)(γ̇s, γ̇s)ds dΠ(γ),

= (1− t) Ent(µ0|volg) + tEnt(µ1|volg)−
ˆ ˆ 1

0
G(s, t)T̃ (γ̇s, γ̇s)ds dΠ(γ)

− εt(1− t)
2

ˆ
g(γ̇, γ̇)dΠ(γ),

where, in the equality we used that for every fixed x ∈ Bδ(x0) the function
t 7→ g(γ̇xt , γ̇

x
t ) is constant (as t 7→ γxt is by construction a g-geodesic).

This clearly contradicts (4.9), as
´
g(γ̇, γ̇)dΠ(γ) < 0. �

In the vacuum case, i.e. T ≡ 0, the inequality Ric ≥ 2Λ
n−2g + 8πT −

8π
n−2Trg(T ) g reads as Ric ≥ Kg with K = 2Λ

n−2 ∈ R. Note that for v ∈ C it

holds g(v, v) ≤ 0 so, when comparing the next result with its Riemannian
counterparts [55, 24, 62], the sign of the lower bound K is reversed.

Corollary 4.4 (The vacuum case T ≡ 0). Let (M, g, C) be a space-time of
dimension n ≥ 2 and let K ∈ R. Then the following are equivalent:

(1) Ric(v, v) ≥ Kg(v, v) for every causal vector v ∈ C.
(2) For every p ∈ (0, 1), for every regular dynamical cp-optimal plan Π

it holds

Ent(µt|volg) ≤ (1− t)Ent(µ0|volg) + tEnt(µ1|volg)−K
t(1− t)

2

ˆ
g(γ̇, γ̇)dΠ(γ)

= (1− t)Ent(µ0|volg) + tEnt(µ1|volg)−Kt(1− t)
ˆ
A2(γ)dΠ(γ),(4.20)

where we denoted µi := (ei)]Π, i = 0, 1, the endpoints of the curve
of probability measures associated to Π.

(3) There exists p ∈ (0, 1) such that for every regular dynamical cp-
optimal plan Π the convexity property (4.20) holds.

Remark 4.5 (The strong energy condition). The strong energy condition
asserts that, called T the energy-momentum tensor, it holds T (v, v) ≥
1
2Trg(T ) for every time-like vector v ∈ TM satisfying g(v, v) = −1. As-
suming that the space-time (M, g, C) satisfies the Einstein equations (4.1)
with zero cosmological constant Λ = 0, the strong energy condition is equiv-
alent to Ric(v, v) ≥ 0 for every time-like vector v ∈ TM . This corresponds
to the case K = 0 in Corollary 4.4.

The strong energy condition, proposed by Hawking and Penrose [57, 38,
39], plays a key role in general relativity. For instance, in the presence of
trapped surfaces, it implies that the space-time has singularities (e.g. black
holes) [28, 68].

4.2. OT-characterization of Ric ≤ 2Λ
n−2g+ 8πT − 8π

n−2Trg(T ) g. The goal
of the present section is to provide an optimal transport formulation of upper
bounds on causal Ricci curvature in the Lorentzian setting. More precisely,
given a quadratic form T̃ (which will later be chosen to be equal to the right
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hand side of Einstein equations, i.e. 2Λ
n−2g+ 8πT − 8π

n−2Trg(T ) g), we aim to
find an optimal transport formulation of the condition

“Ric(v, v) ≤ T̃ (v, v) for every causal vector v ∈ C”.
The Riemannian counterpart, in the special case of Ric ≤ Kg for some
constant K ∈ R, has been recently established by Sturm [61].

In order to state the result, let us fix some notation. Given a relatively
compact open subset E ⊂⊂ Int(C) let pTM→M : TM →M be the canonical
projection map and injg(E) > 0 be the injectivity radius of the exponential
map of g restricted to E. For x ∈ pTM→M (E) and r ∈ (0, injg(E)) we denote

Bg,E
r (x) := {expgx(tw) : w ∈ TxM ∩ E, g(w,w) = −1, t ∈ [0, r]}.

The next general result will be applied with n ≥ 3 and

T̃ =
2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g.

Theorem 4.6 (OT-characterization of Ric ≤ T̃ ). Let (M, g, C) be a space-

time of dimension n ≥ 2 and let T̃ be a quadratic form on M . Then the
following assertions are equivalent:

(1) Ric(v, v) ≤ T̃ (v, v) for every causal vector v ∈ C.
(2) For every p ∈ (0, 1) and for every relatively compact open subset

E ⊂⊂ Int(C) there exist R = R(E) ∈ (0, 1) and a function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0 such that

∀x ∈ pTM→M (E) and v ∈ TxM ∩ E with g(v, v) = −R2

the next assertion holds. For every r ∈ (0, R), setting y = expgx(rv),
there exists a regular cp-optimal dynamical plan Π = Π(x, v, r) with
associated curve of probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that
• µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x),

• supp(µ1) ⊂ {expgy(r2w) : w ∈ TyM ∩ C, g(w,w) = −1}
and which has T̃ (v, v)-concave entropy in the sense that

(4.21)
4

r2

[
Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg)

]
≤ T̃ (v, v)+ε(r).

(3) There exists p ∈ (0, 1) such that the analogous assertion as in (2)
holds true.

Remark 4.7. Given an auxiliary Riemannian metric h on M , with analo-
gous arguments as in the proof below, the condition (2) in Theorem 4.6 can
be replaced by

(2)’ For every p ∈ (0, 1) and for every x ∈ M there exist R = R(x) > 0
and a function

ε = εx : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0 such that

∀v ∈ Int(Cx) with h(v, v) ≤ R2
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the next assertion holds. For every r ∈ (0, R), setting y = expgx(rv),
there exists a regular cp-optimal dynamical plan Π = Π(x, v, r) with
associated curve of probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that
• µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x),

• supp(µ1) ⊂ {expgy(r2w) : w ∈ TyM ∩ C, g(w,w) = −1}
and satisfying (4.21).

Moreover, both in (2) and (2’) one can replace Bg,E
r4 (x) (resp. {expgy(r2w) :

w ∈ TyM ∩ C, g(w,w) = −1}) by Bh
r4(x) (resp. Bh

r2(y)).

Proof. (1)⇒ (2)
Let (M, g, C) be a space time and let h be an auxiliary Riemannian metric
on M such that

1

4
h(w,w) ≤ |g(w,w)| ≤ 4h(w,w), ∀w ∈ E.

We denote with dTMh the distance on TM induced by the auxiliary Rie-
mannian metric h. Once the compact subset E ⊂⊂ Int(C) is fixed, thanks
to Lemma 3.1 there exist a constant

R = R(E) ∈ (0,min(1, injg(E)))

and a function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0

such that

∀r ∈ (0, R/10), x ∈ pTM→M (E), v ∈ TxM ∩ E with g(v, v) = −R2

we can find a cp-convex function φ : M → R with the following properties:

(1) φ is smooth on Bh
100r(x), ∇qgφ(x) = v, ∇qgφ ∈ E on Bh

10r(x),
dTMh (∇qgφ, v) ≤ ε(r) on Bh

10r(x);

(2) |Hessφ|h ≤ ε(r) on Bh
10r(x).

For t ∈ [0, 1], consider the map

Ψt
1/2 : z 7→ expz(r(t− 1/2)∇qgφ(z)).

Notice that

Ψt
1/2(Bg,E

r4 (x)) ⊂ Bh
10r(x), ∀t ∈ [0, 1].

Let

µ1/2 = volg(B
g,E
r4 (x))−1 volgxB

g,E
r4 (x)

and define

µt := (Ψt
1/2)](µ1/2) ∀t ∈ [0, 1].

By the properties of φ, the plan Π representing the curve of probability
measures (µt)t∈[0,1] is a regular cp-optimal dynamical plan and

supp(µ1) ⊂ {expgy(r
2w) : w ∈ TyM ∩ C, g(w,w) = −1}.
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By Proposition 3.4 we can find a smooth family of functions (φt)t∈[0,1] defined
on
⋃
t∈[0,1]{t} × supp(µt) with φ1/2 = φ satisfying

(∂tφt)(γt) +
r

q
(−g(∇gφt(γt),∇gφt(γt)))q/2 = 0 for Π-a.e. γ, for all t ∈ [0, 1],

(4.22)

r∇qgφt(γt)− γ̇t = 0 for Π-a.e. γ, for all t ∈ [0, 1].(4.23)

Moreover, using the properties of φ1/2 = φ and the smoothness of the family
(φt)t∈[0,1], we have
(4.24)

dTMh (∇qgφt(γt), v) ≤ ε(r), |Hessφt(γt)|h ≤ ε(r), Π-a.e. γ, for all t ∈ [0, 1],

up to renaming ε(r) with a suitable function

ε = εE : (0,∞)→ (0,∞)

with

lim
r↓0

ε(r) = 0.

The curve [0, 1] 3 t 7→ Ent(µt|volg) ∈ R is smooth and, in virtue of (4.23),
it satisfies
(4.25)
d

dt
Ent(µt|volg) = r

ˆ
M
g(∇qgφt,∇gρt)dvolg = r

ˆ
M

2qgφt dµt, for all t ∈ [0, 1],

where

ρt :=
dµt
dvolg

is the density of µt and

2qgφt := div(−∇qgφt)

is the q-Box of φt (the Lorentzian analog of the q-Laplacian).
For what follows it is useful to consider the linearization of the q-Box at

a smooth function f , denoted by Lqf and defined by the following relation:

(4.26)
d

dt

∣∣∣∣
t=0

2qg(f + tu) = Lqfu, ∀u ∈ C∞c (M).

The map [0, 1] 3 t 7→
´
M 2

q
gφt dµt ∈ R is smooth and, in virtue of (4.22)

and (4.23), it satisfies

d

dt
r

ˆ
M

2qgφt dµt = −r2

ˆ
M
Lqφ

(
1

q
(−g(∇gφt,∇gφt))q/2

)
+g(∇g2qgφt,−∇qgφt) dµt,

for every t ∈ [0, 1]. Using the q-Bochner identity (A.2) together with the

assumption Ric(w,w) ≤ T̃ (w,w) for any w ∈ C and the estimates (4.24) on
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φt, we can rewrite the last formula as

d

dt

1

r

ˆ
M

2qgφt dµt =

ˆ
M
|g(∇gφt,∇gφt)|q−2

[
Ric(∇gφt,∇gφt) + g(Hessφt ,Hessφt)

+

(
(q − 2)

Hessφt(∇gφt,∇gφt)
|g(∇gφt,∇gφt)|

)2

−2(q − 2)
Hessφt

(
(∇gφt,Hessφt(∇gφt)

)
|g(∇gφt,∇gφt)|

]
dµt

≤
ˆ
M

(
T̃ (v, v) + ε(r)

)
dµt = T̃ (v, v) + ε(r) for all t ∈ [0, 1],

up to renaming ε(r) with a suitable function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0.

Thus

Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg)

=

ˆ 1/2

0

(
d

dt
Ent(µt|volg)|t=s+1/2 −

d

dt
Ent(µt|volg)|t=s

)
ds

=

ˆ 1/2

0

ˆ s+1/2

s

d2

dt2
Ent(µt|volg)dt ds

≤ T̃ (v, v) + ε(r)

4
r2.

(2)⇒ (3): trivial.

(3)⇒ (1)
Fix p ∈ (0, 1) given by (3) and assume by contradiction that there exists
x ∈M , ε > 0 and v ∈ TxM ∩ C with −g(v, v) = 1 such that

Ric(v, v) ≥ (T̃ − 2εg)(v, v).

Then, by continuity, we can find a relatively compact neighbourhood E ⊂⊂
Int(C) of v in TM such that

(4.27) Ric(w,w) ≥ (T̃ − εg)(w,w), ∀w ∈ E.

By Lemma 3.1 we can construct a cp-convex function φ : M → R such that
φ is smooth on a neighbourhood of x and

∇qgφ(x) = Rv.

For t ∈ [0, 1], define

Ψt
1/2(z) := expgz(2r(t− 1/2)∇qgφ(z)).

By continuity, for r ∈ (0, R) small enough, we have that
(4.28)
1

r

d

dt
Ψt

1/2(z) ∈ E, dTMh

(
d

dt
Ψt

1/2(z), rv

)
≤ εr, ∀z ∈ Bg,E

r4 (x), ∀t ∈ [0, 1].
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Moreover Ψ1
1/2(Bg,E

r4 (x)) ⊂ Bg,E
r2 (y).

Set µ1/2 := volg(B
g,E
r4 (x))−1 volgxB

g,E
r4 (x) and consider µt := (Ψt

1/2)]µ1/2.

Notice that

supp(µ1) ⊂ Bg,E
r2 (y) ⊂ {expgy(r

2w) : w ∈ TyM ∩ C, g(w,w) = −1}.

By the above construction, we get that (µt)t∈[0,1] can be represented by a
regular cp-optimal dynamical plan Π such that

supp((∂e)]Π) ⊂ E.
Therefore (4.27) together with Theorem 4.3 yields

Ent(µ1/2|volg) ≤
1

2
Ent(µ0|volg) +

1

2
Ent(µ1|volg)

−
ˆ ˆ 1

0
G(s, 1/2)(T̃ − εg)(γ̇s, γ̇s)ds dΠ(γ),

≤ 1

2
Ent(µ0|volg) +

1

2
Ent(µ1|volg)−

r2(T̃ (v, v)− εg(v, v) + Cεr)

8
,(4.29)

where in the second inequality we used (4.28) and that C > 0 is a constant
independent of r and ε. Note that ε > 0 in (4.29) is fixed independently of
r > 0. Clearly (4.29) contradicts the existence of εE(r) → 0 as r → 0 so
that (4.21) holds. �

In the vacuum case when T ≡ 0, the inequality

Ric ≤ 2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g

reads as

Ric ≤ Kg with K =
2Λ

n− 2
∈ R.

Note that for v ∈ C it holds g(v, v) ≤ 0 so, when comparing the next result
with its Riemannian counterpart [61], the sign of the lower bound K is
reversed.

Corollary 4.8. Let (M, g, C) be a space-time of dimension n ≥ 2 and let
K ∈ R. Then the following assertions are equivalent:

(1) Ric(v, v) ≤ Kg(v, v) for every causal vector v ∈ C.
(2) For every p ∈ (0, 1) and for every relatively compact open subset

E ⊂⊂ Int(C) there exist R = R(E) ∈ (0, 1) and a function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0 such that

∀x ∈ pTM→M (E) and v ∈ TxM ∩ E with g(v, v) = −R2

the next assertion holds. For every r ∈ (0, R), setting y = expgx(rv),
there exists a regular cp-optimal dynamical plan Π = Π(x, v, r) with
associated curve of probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that
• µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x),

• supp(µ1) ⊂ {expgy(r2w) : w ∈ TyM ∩ C, g(w,w) = −1}
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and which has −K-concave entropy in the sense that

(4.30)
4

r2

[
Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg)

]
≤ −K + ε(r).

(3) There exists p ∈ (0, 1) such that the analogous assertion as in (2)
holds true.

4.3. Optimal transport formulation of the Einstein equations. Re-
call that Einstein equations of general relativity, with cosmological constant
equal to Λ ∈ R and energy-momentum tensor T , read as

(4.31) Ric =
2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g,

for an n-dimensional space-time (M, g, C). Combining Theorem 4.3 with
Theorem 4.6, both with the choice

T̃ =
2Λ

n− 2
g + 8πT − 8π

n− 2
Trg(T ) g,

we obtain the following optimal transport formulation of (4.31).

Theorem 4.9. Let (M, g, C) be a space-time of dimension n ≥ 2 and let T̃
be a quadratic form on M . Then the following assertions are equivalent:

(1) Ric(v, v) = T̃ (v, v) for every v ∈ TxM
(2) Ric(v, v) = T̃ (v, v) for every causal vector v ∈ C.
(3) For every p ∈ (0, 1) the following holds. For every relatively com-

pact open subset E ⊂⊂ Int(C) there exist R = R(E) ∈ (0, 1) and a
function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0

such that

∀x ∈ pTM→M (E) and ∀v ∈ TxM ∩ E with g(v, v) = −R2

the next assertion holds. For every r ∈ (0, R), setting y = expgx(rv),
there exists a regular cp-optimal dynamical plan Π = Π(x, v, r) with
associated curve of probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that
• µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x),

• supp(µ1) ⊂ {expgy(r2w) : w ∈ TyM ∩ C, g(w,w) = −1}
and satisfying

(4.32)

T̃ (v, v)−ε(r) ≤ 4

r2

[
Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg)

]
≤ T̃ (v, v)+ε(r).

(4) There exists p ∈ (0, 1) such that the analogous assertion as in (3)
holds true.
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Remark 4.10 (µ1/2 can be chosen more general). From the proof of The-
orem 4.9 it follows that one can replace (2) (and analogously (3)) with the
following (a priori stronger, but a fortiori equivalent) statement. For every
p ∈ (0, 1) the following holds. For every relatively compact open subset
E ⊂⊂ Int(C) there exist R = R(E) ∈ (0, 1) and a function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0

such that

∀x ∈ pTM→M (E),∀v ∈ TxM ∩ E with g(v, v) = −R2

the next assertion holds. For every r ∈ (0, R) and every

µ1/2 ∈ P(M) with µ1/2 � volg and supp(µ1/2) ⊂ Bg,E
r4 (x),

setting y = expgx(rv), there exists a regular cp-optimal dynamical plan Π =
Π(µ1/2, v, r) with associated curve of probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that

supp(µ1) ⊂ {expgy(r
2w) : w ∈ TyM ∩ C, g(w,w) = −1}

and satisfying (4.32).

Remark 4.11 (An equivalent statement via an auxiliary Riemannian metric
h). Given an auxiliary Riemannian metric h on M , with analogous argu-
ments as in the proof below, the condition (3) in Theorem 4.9 can be replaced
by

(3)’ For every p ∈ (0, 1) the following holds. For every x ∈M there exist
R = R(x) > 0 and a function

ε = εx : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0

such that

∀v ∈ Int(Cx) with h(v, v) ≤ R2

the next assertion holds. For every r ∈ (0, R), setting y = expgx(rv),
there exists a regular cp-optimal dynamical plan Π = Π(x, v, r) with
associated curve of probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that
• µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x),

• supp(µ1) ⊂ {expgy(r2w) : w ∈ TyM ∩ C, g(w,w) = −1}
and satisfying (4.32).

Moreover, both in (3) and (3’) one can replace Bg,E
r4 (x) by Bh

r4(x) and

{expgy(r
2w) : w ∈ TyM ∩ C, g(w,w) = −1}

by Bh
r2(y).
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Remark 4.12 (The tensor T̃ ). As mentioned above, we will assume the
cosmological constant Λ and the energy momentum tensor T to be given,
say from physics and/or mathematical general relativity. Given g,Λ and T ,

for convenience of notation we set T̃ to be defined in (1.7).

Let us stress that not any symmetric bilinear form T̃ would correspond to
a physically meaningful situation; in order to be physically relevant, it is
crucial that T̃ is given by (1.7) where T is a physical energy-momentum
tensor (in particular T has to satisfy ∇aTab = 0, i.e. be “freely gravitating”,
it has to satisfy some suitable energy condition like the “dominant energy
condition”, etc.).

Proof of Theorem 4.9. (1)⇒ (2): trivial.

(2)⇒ (1): Follows by the identity theorem for polynomials and the fact
that C has non-empty open interior.

(2)⇒ (3): From the implication (1)⇒ (2) in Theorem 4.6, we get a
regular cp-optimal dynamical plan Π = Π(x, v, r) as in (3) such that the
upper bound in (4.32) holds. Moreover, from (4.24) it holds that

(4.33) dTMh (γ̇t, rv) ≤ rε(r), for Π-a.e. γ, for all t ∈ [0, 1].

Recalling that the implication (1)⇒ (2) in Theorem 4.3 gives the convex-
ity property (4.9) of the entropy along every regular cp-optimal dynamical
plan, and using (4.33), we conclude that also the lower bound in (4.32) holds.

(3)⇒ (4): trivial.

(4)⇒ (2).
The fact that

Ric(v, v) ≤ T̃ (v, v) ∀v ∈ C
follows directly from Theorem 4.6. The fact that

Ric(v, v) ≥ T̃ (v, v) ∀v ∈ C
can be showed following arguments already used in the paper, let us briefly
discuss it. Fix p ∈ (0, 1) given by (4) and assume by contradiction that

∃x ∈M, δ > 0 and v ∈ TxM ∩ C with − g(v, v) > 0

such that

Ric(v, v) ≤ (T̃ + 3δg)(v, v).

Thanks to Lemma 3.1, up to replacing v with tv for some t ∈ (0, 1) small
enough, we know that we can construct a cp-convex function φ : M → R,
smooth in a neighbourhood of x and satisfying

∇qgφ(x) = v Hessφ(x) = 0.

Then, by continuity, we can find

• a relatively compact open neighbourhood E ⊂⊂ Int(C) of v in TM
such that

(4.34) Ric(w,w) ≤ (T̃ + 2δg)(w,w), ∀w ∈ E;
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• φ is smooth on Bh
100r(x),

∇qgφ ∈ E on Bh
10r(x),

dTMh (∇qgφ, v) ≤ ε(r) on Bh
10r(x);

• |Hessφ|h ≤ ε(r) on Bh
10r(x);

where
ε(r)→ 0 as r → 0.

For t ∈ [0, 1], consider the map

Ψt
1/2 : z 7→ expz(r(t− 1/2)∇qgφ(z)).

Notice that
Ψt

1/2(Bg,E
r4 (x)) ⊂ Bh

10r(x) ∀t ∈ [0, 1].

Call
µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x)

and define
µt := (Ψt

1/2)](µ1/2) for t ∈ [0, 1].

By the properties of φ, the plan Π representing the curve of probability
measures (µt)t∈[0,1] is a regular cp-optimal dynamical plan and

supp(µ1) ⊂ {expgy(r
2w) : w ∈ TyM ∩ C, g(w,w) = −1}.

Moreover

(4.35)
1

r

d

dt
Ψt

1/2(z) ∈ E ∀z ∈ Bh
r (x), ∀t ∈ [0, 1].

We can now follow verbatim the arguments in (1)⇒(2) of Theorem 4.6 by
using (4.34) and (4.35), obtaining a function ε(r)→ 0 as r → 0 such that

Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg) ≤
(T̃ + δg)(v, v) + ε(r)

4
r2.

The last inequality clearly contradicts the lower bound in (4.32).
�

In the vacuum case T ≡ 0 with cosmological constant Λ ∈ R, the Einstein
equations read as

(4.36) Ric ≡ Λ
n
2 − 1

g,

for an n-dimensional space-time (M, g, C). Specializing Theorem 4.9 with
the choice

T̃ =
Λ

n
2 − 1

g

and using Corollary 4.4 to sharpen the lower bound in (4.37) for the con-
stant case, we obtain the following optimal transport formulation of Einstein
vacuum equations.

Theorem 4.13. Let (M, g, C) be a space-time of dimension n ≥ 3 and let
Λ ∈ R. Then the following assertions are equivalent:

(1) The space-time (M, g, C) satisfies Einstein vacuum equations of Gen-
eral Relativity (4.36) corresponding to cosmological constant equal to
Λ.
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(2) For every p ∈ (0, 1) the following holds. For every relatively com-
pact open subset E ⊂⊂ Int(C) there exist R = R(E) ∈ (0, 1) and a
function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r) = 0

such that

∀x ∈ pTM→M (E) and v ∈ TxM ∩ E with g(v, v) = −R2

the next assertion holds.
For every r ∈ (0, R), setting y = expgx(rv), there exists a regular
cp-optimal dynamical plan Π = Π(x, v, r) with associated curve of
probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that
• µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x),

• supp(µ1) ⊂ {expgy(r2w) : w ∈ TyM ∩ C, g(w,w) = −1}
and satisfying

(4.37)

− Λ
n
2 − 1

≤ 4

r2

[
Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg)

]
≤ − Λ

n
2 − 1

+ε(r).

(3) There exists p ∈ (0, 1) such that the analogous assertion as in (3)
holds true.

It is worth to isolate the case of zero cosmological constant.

Corollary 4.14. Let (M, g, C) be a space-time of dimension n ≥ 2. Then
the following assertions are equivalent:

(1) The space-time (M, g, C) satisfies Einstein vacuum equations of Gen-
eral Relativity with zero cosmological constant, i.e. Ric ≡ 0.

(2) For every p ∈ (0, 1) the following holds. For every relatively com-
pact open subset E ⊂⊂ Int(C) there exist R = R(E) ∈ (0, 1) and a
function

ε = εE : (0,∞)→ (0,∞) with lim
r↓0

ε(r)/r2 = 0

such that

∀x ∈ pTM→M (E) and v ∈ TxM ∩ E with g(v, v) = −R2

the next assertion holds. For every r ∈ (0, R), setting y = expgx(rv),
there exists a regular cp-optimal dynamical plan Π = Π(x, v, r) with
associated curve of probability measures

(µt := (et)]Π)t∈[0,1] ⊂ P(M)

such that
• µ1/2 = volg(B

g,E
r4 (x))−1 volgxB

g,E
r4 (x),

• supp(µ1) ⊂ {expgy(r2w) : w ∈ TyM ∩ C, g(w,w) = −1}
and satisfying

(4.38) 0 ≤ Ent(µ1|volg)− 2Ent(µ1/2|volg) + Ent(µ0|volg) ≤ ε(r).
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(3) There exists p ∈ (0, 1) such that the analogous assertion as in (3)
holds true.

Appendix A. A q-Bochner identity in Lorentzian setting

In this section we prove a Bochner type identity in Lorentzian setting
for the linearization of the q-Box operator, the Lorentzian analog of the
q-Laplacian; let us mention that related results have been obtained in the
Riemannian [47, 64] and Finsler settings [69, 70] but at best our knowledge
this section is original in the Lorentzian Lp framework.

Throughout the section, (M, g, C) is a space-time, U ⊂ M is an open
subset and q ∈ (−∞, 0) is fixed. Let φ ∈ C3(U) satisfy

−∇gφ ∈ Int(C) on U.

Denote by

∇qgφ := −|g(∇gφ,∇gφ)|
q−2

2 ∇gφ
the q-gradient, by

2qgφ := div(−∇qgφ)

the q-Box operator of φ and by Lqφ the linearization of the q-Box operator

at φ defined by the following relation:

(A.1)
d

dt

∣∣∣∣
t=0

2qg(φ+ tu) = Lqφu, ∀u ∈ C∞c (M).

The ultimate goal of the section is to prove the following result.

Proposition A.1. Under the above notation, the following q-Bochner iden-
tity holds:

−Lqφ

(
(−g(∇gφ,∇gφ))

q
2

q

)
= g(∇g2qgφ,−∇qgφ)

+(q − 2)2|g(∇gφ,∇gφ)|q−2

(
Hessφ(∇gφ,∇gφ)

|g(∇gφ,∇gφ)|

)2

+|g(∇gφ,∇gφ)|q−2
(
Ric(∇gφ,∇gφ) + g(Hessφ,Hessφ)

)
−2(q − 2) |g(∇gφ,∇gφ)|q−3Hessφ (∇gφ,Hessφ(∇gφ)) .(A.2)

The proof of Proposition A.1 requires some preliminary lemmas. First of
all we derive an explicit expression for the operator Lqφ.

Lemma A.2. Under the above notation, it holds

Lqφu =
(
− g(∇gφ,∇gφ)

) q−2
2

(
2gu− (q − 2)

Hessu(∇gφ,∇gφ)

−g(∇gφ,∇gφ)

)
+ (2− q)

(
− g(∇gφ,∇gφ)

)−1
g(∇gφ,∇gu)2qgφ

+ 2(2− q)
(
− g(∇gφ,∇gφ)

) q−4
2 Hessφ

(
∇gφ,∇gu+

g(∇gφ,∇gu)

−g(∇gφ,∇gφ)
∇gφ

)
.

(A.3)



AN OPTIMAL TRANSPORT FORMULATION OF THE EINSTEIN EQUATIONS 43

Proof. By the very definitions of Lqφu and 2
q
gφ, we have

Lqφu = div

(
d

dt

∣∣∣∣
t=0

(−g(∇g(φ+ tu),∇g(φ+ tu)))
q−2

2 ∇g(φ+ tu)

)
= div

(
(2− q)

(
− g(∇gφ,∇gφ)

) q−4
2 g(∇gφ,∇gu)∇gφ

+
(
− g(∇gφ,∇gφ)

) q−2
2 ∇gu

)
.(A.4)

In order to explicit the last formula, compute

∇g
(
− g(∇gφ,∇gφ)

)α
= −2α

(
− g(∇gφ,∇gφ)

)α−1
Hessφ(∇gφ)(A.5)

∇g
(
g(∇gφ,∇gu)

)
= Hessu(∇gφ) + Hessφ(∇gu).(A.6)

Plugging (A.5) and (A.6) into (A.4) gives (A.3). �

We next show a q-Bochner identity for the operator Aqφ defined as

(A.7) Aqφ(u) :=
(
− g(∇gφ,∇gφ)

) q−2
2

(
2gu− (q − 2)

Hessu(∇gφ,∇gφ)

−g(∇gφ,∇gφ)

)
.

Lemma A.3. Under the above notation, the following identity holds:

− Lqφ

(
(−g(∇gφ,∇gφ))

q
2

q

)
+ g(∇g2qgφ,∇qgφ) =

= (q − 2)|g(∇gφ,∇gφ)|
q−4

2 2qgφHessφ(∇gφ,∇gφ)

+ |g(∇gφ,∇gφ)|q−2
(
q(q − 2)

(
Hessφ(∇gφ,∇gφ)

|g(∇gφ,∇gφ)|

)2

+ Ric(∇gφ,∇gφ) + g(Hessφ,Hessφ)
)
.

(A.8)

Proof. We perform the computation at an arbitrary point x0 ∈ U . In or-
der to simplify the computations, we consider normal coordinates (xi) in a
neighbourhood of x0 with ∂

∂x1 ∈ C. It holds

− 2g(−g(∇gφ,∇gφ))
q
2

q
= gij∂i

(
(−g(∇gφ,∇gφ))

q−2
2 gkl∂jkφ∂lφ

)
= (−g(∇gφ,∇gφ))

q−2
2

(
− q − 2

−g(∇gφ,∇gφ)
gijgmn∂imφ∂nφg

kl∂jkφ∂lφ

+ gijgkl∂ijkφ∂lφ+ gijgkl∂jkφ∂liφ
)
.

(A.9)

Now, from the symmetry of second order derivatives and the very definition
of the the Riemann tensor (2.9), we have

(A.10) ∂ijkφ = ∂ikjφ = g(R(∂xi , ∂xk)∇gφ, ∂xj ) + ∂kijφ.

Thus

gijgkl∂ijkφ∂lφ = g(∇g2gφ,∇gφ) + Ric(∇gφ,∇gφ),
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and we can rewrite (A.9) as

−2g(−g(∇gφ,∇gφ))
q
2

q
=(−g(∇gφ,∇gφ))

q−2
2

(
(2− q)

g(Hessφ(∇gφ),Hessφ(∇gφ))

−g(∇gφ,∇gφ)

+ g(∇g2gφ,∇gφ) + Ric(∇gφ,∇gφ)

+ g(Hessφ,Hessφ)
)
.(A.11)

We now compute the second part of −Lqφ

(
(−g(∇gφ,∇gφ))

q
2

q

)
. To this aim

observe that

∇g

((
− g(∇gφ,∇gφ)

) q
2

q

)
= −

(
− g(∇gφ,∇gφ)

) q−2
2 Hessφ(∇gφ)

(A.12)

Hess
(−g(∇gφ,∇gφ))

q
2

q

(∇gφ,∇gφ) = (q − 2)
(
− g(∇gφ,∇gφ)

) q−4
2 [Hessφ(∇gφ,∇gφ)]2

−
(
− g(∇gφ,∇gφ)

) q−2
2 g(∇∇gφ∇∇gφ∇gφ,∇gφ).(A.13)

It is useful to express 2
q
g in terms of 2g:

2qgφ := div
((
− g(∇gφ,∇gφ)

) q−2
2 ∇gφ

)
=
(
− g(∇gφ,∇gφ)

) q−2
2

(
2gφ− (q − 2)

Hessφ(∇gφ,∇gφ)

−g(∇gφ,∇gφ)

)
.(A.14)

Using (A.14), we can write

g(∇g2qgφ,∇gφ) =

= g

(
∇g
((
− g(∇gφ,∇gφ)

) q−2
2

(
2gφ− (q − 2)

Hessφ(∇gφ,∇gφ)

−g(∇gφ,∇gφ)

))
,∇gφ

)
=
(
− g(∇gφ,∇gφ)

) q−2
2 g(∇g2gφ,∇gφ)− (q − 2)

Hessφ(∇gφ,∇gφ)

−g(∇gφ,∇gφ)
2qgφ

− (q − 2)
(
− g(∇gφ,∇gφ)

) q−4
2

(
g(∇∇gφ∇∇gφ∇gφ,∇gφ)

+ g(Hessφ(∇gφ),Hessφ(∇gφ)
)

− 2(q − 2)
(
− g(∇gφ,∇gφ)

) q−6
2 [Hessφ(∇gφ,∇gφ)]2.

(A.15)

Plugging (A.11) and (A.13) into (A.7), and simplifying using (A.15), gives
the desired (A.8). �

Proof of Proposition A.1 Combining the expression of Lqφu as in (A.3)

with the definition of Aqφu as in (A.7) we can write

Lqφu =Aqφu+ (2− q)
(
− g(∇gφ,∇gφ)

)−1
g(∇gφ,∇gu)2qgφ

+ 2(2− q)
(
− g(∇gφ,∇gφ)

) q−4
2 Hessφ

(
∇gφ,∇gu+

g(∇gφ,∇gu)

−g(∇gφ,∇gφ)
∇gφ

)
.

(A.16)
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Specializing (A.16) with u =
(−g(∇gφ,∇gφ))

q
2

q and using (A.12) gives

− Lqφ

(
(−g(∇gφ,∇gφ))

q
2

q

)
= −Aqφ

(
(−g(∇gφ,∇gφ))

q
2

q

)

− (q − 2)
(
− g(∇gφ,∇gφ)

) q−2
2

Hessφ(∇gφ,∇gφ)

−g(∇gφ,∇gφ)
2qgφ

− 2(q − 2)
(
− g(∇gφ,∇gφ)

)q−3
Hessφ (∇gφ,Hessφ(∇gφ))

− 2(q − 2)
(
− g(∇gφ,∇gφ)

)q−2
(

Hessφ (∇gφ,∇gφ)

−g(∇gφ,∇gφ)

)2

.

(A.17)

Now, the combination of (A.17) and (A.8) yields

− Lqφ

(
(−g(∇gφ,∇gφ))

q
2

q

)
= −g(∇g2qgφ,∇qgφ)

+ (q − 2)2|g(∇gφ,∇gφ)|q−2

(
Hessφ(∇gφ,∇gφ)

|g(∇gφ,∇gφ)|

)2

+ |g(∇gφ,∇gφ)|q−2
(
Ric(∇gφ,∇gφ) + g(Hessφ,Hessφ)

)
− 2(q − 2) |g(∇gφ,∇gφ)|q−3Hessφ (∇gφ,Hessφ(∇gφ)) .(A.18)

2
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[6] L. Ambrosio, A. Mondino and G. Savaré, Nonlinear diffusion equations and curvature
conditions in metric measure spaces, Memoirs Amer. Math. Soc. (in press), preprint
arXiv:1509.07273.

[7] K. Bacher and K.-T. Sturm, Localization and tensorization properties of the
curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259,
(2010), 28–56.

[8] J.M. Bardeen, B. Carter, and S.W. Hawking, The four laws of black hole mechanics,
Comm. Math. Phys., 31, (1973), 161–170.

[9] J.K. Beem, P.E. Ehrlich, and K.L. Easley, Global Lorentzian geometry, Monographs
and Textbooks in Pure and Applied Mathematics, 202, 2nd edition, Marcel Dekker,
Inc., New York (1996).

[10] J.D. Bekenstein, Black Holes and Entropy, Phys. Rev. D, 7, (1973), 23–33.
[11] J. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-

Kantorovich mass transfer problem, Numerische Math., 84, (2000), 375–393.



46 A. MONDINO AND S. SUHR

[12] J. Bertrand and M. Puel, The optimal transport problem for relativistic costs, Calc.
Var. PDE, 1-2, (2013), 353–374.

[13] Y. Brenier, Extended Monge-Kantorovich Theory. Optimal Transportion and Ap-
plications (Martina Franca, 2001). Lecture Notes in Math., 1813, 91–121. Springer,
Berlin (2003).

[14] , A homogenized model for vortex sheets, Arch. Rational Mech. Anal., 138,
(1977), 319–353.

[15] Y. Brenier, U. Frisch, M. Henon, G. Loeper, S. Matarrese, R. Mohayaee,
A. Sobolevskii, Reconstruction of the early universe as a convex optimization prob-
lem, Mon. Not. Roy. Astron. Soc., 346, (2003), 501–524.

[16] P. Bernard and S. Suhr, Lyapounov Functions of closed Cone Fields: from Conley
Theory to Time Functions, Comm. Math. Phys. 359 (2018), 467–498.
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