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The question and its motivation

We focus on two important limits used to derive evolution laws
from microscopic dynamics:

» The classical limit (sometimes called semiclassical limit)
when Planck’s constant & (which measures the strength of
quantum effects) is small with respect to the scale of
observation as discussed later. It is closely related to the
high-frequency limit of PDEs.

» The mean-field limit (one form of many-body limits, also
called sometimes thermodynamical limits) when the number
of bodies-particles N is sent to infinity, under some
appropriate assumption of low correlations.

In many situations the two regimes are involved: we want to study
how they interact. More precisely we want to quantify the
convergence of the mean-field limit uniformly along the
classical limit.



The two limits

Starting point: N-body Schrodinger equation for bosons
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on symmetric N-body wave function WV (¢, x1,...,xn), xx € RY.

Binary interaction potential V: measurable and even on RY.

Rescaling: X = x/L, t = t/T, V(2) = (NT?)/(mL?)V(z)
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The quantum mean-field limit (Hartree equation)

A N goes to infinity while € is kept fixed A

. . . N N
Assuming initial decorrelation Wain ~ [1x—q1 Ye,in(xk) and under
various assumptions on V:
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where 9 solves the Hartree equation
. € 1
i0pe = =5 D+ = (V [Ue) b, (Ye)je=0 = Vein
Coulomb potential V' or even more singular (cf. cubic NLS)

covered by existing results, but most of the time non-quantitative
apart from restricted cases and degenerates as ¢ — 0



The classical limit (N-body Liouville equation)

A € goes to zero while N is kept fixed A

High-frequency limit = one needs to localise oscillations

Wigner transform at scale e:

W.[®](X,Z) = (;T)n /ch (x — 2:)¢ <X + 2Y6> e =Y dy

If the initial conditions satisfy WE[\IJéV,-n ~ Fi’,\,’ as ¢ — 0, and under
appropriate conditions on V:

W [WN(t, )] ~ FN(t,-) at later times t > 0

where FN satisfies the N-body Liouville equation
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The mean-field limit in classical mechanics

A N —=ocowhilee=0 A

. C . — N
Assuming initial decorrelation FV(X,=) ~ [1,_; fin(xk, &) and
under various assumptions on V:

N
FN(t, X,Z) ~ H f(t,xx,&k) at later times t > 0 and
k=1
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X2,8250 XN EN

— f(ta X, 5)
N—oo

where f solves the Vlasov equation
Oif +&-Vif —(VV x, F)Vef =0, fit=0 = fin-

Quantitative results for V € C?, partial results for some singular
V, open for Coulomb-Newton potentials



The classical limit in mean-field mechanics

A e—=0while N=oco A

High frequency limit again = localise oscillations

Wigner transform at scale e:

W,[®](X,Z) = (271T) /ch <X — zgcb <X + 2Y€> e =Y dy

If the initial conditions satisfy W[t in](x,&) ~ fin(x,&) as € = 0,
and under appropriate conditions on V:

Welte(t, )] ~ f(t,x,&) at later times t > 0

with 1), satisfies the Hartree equation, where f satisfies the Vlasov
equation
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The diagram of limits
Schrodinger %

e—0 e—0

Liouville Vlasov
———| Vlasov]

Quantum mean-field limit:
Spohn'80, Bardos-Golse-Mauser'90s, Erdés-Schlein-Yau'00s,
Frohlich-Knowles-Schwarz, Rodnianski-Schlein, Pickl. . .

Classical limit by Wigner transform (finite or infinite N ):
Lions-Paul'90s, Gérard-Markowich-Poupaud-Mauser'90s

Classical mean-field limit:
Neunzert-Wick'74, Braun-Hepp'77, Dobrushin'79, Hauray-Jabin’07,
Golse-Mouhot-Ricci'13, Mischler-Mouhot-Ricci



The conceptual difficulties

(1) Classical mean-field limit traditionally reframed as the
convergence of empirical measures

N
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k=1

It is based on the use of weak topologies and either compactness
arguments or stability estimates in associated metrics (e.g.
Monge-Kantorovich-Wasserstein distances)

(2) Quantum mean-field limit based most often on the BBGKY
hierarchy written on the wave function, on compactness
arguments and in the topology of the trace-norm which
corresponds as € — 0 to total variation norm

— quantitative results rare and restricted at quantum level
— conflict of topologies (weak vs strong topology)

< no equivalent of empirical measure at quantum level

— Schrédinger equation ~ Newton equations not Liouville!



Back to microscopic Hamiltonian dynamics

> Binary interactions through a potential V' depending only on
the distance between two interacting bodies

» External forces with some potential ¢(time, position)

» Hamilton equations (Newton laws)

Ao OHY  dg  oHV
dt Ok dt Oxx

=

N €2
HY(X,Z) = Z—k D V0a—xa)+ Y o(t )
k=1 k<l k=1

kinetic energy interaction energy potential energy

» This corresponds to the set of N second-order ODEs in R?

%= bk, k= _ZVXV(X/( —x1) = Vxd(xx), 1<k<N
Py



The N-body Liouville equation (1)

Statistical solution to the previous ODEs, i.e. evolution of a
distribution of trajectories:

OFN G~ (OHN OFN _9HN 9FNY
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on joint microscopic probability distribution function FN(t, X, Z)

Liouville's theorem

For any t € R one has FY(t,S:(X,=Z)) = FN(0, X, =), where S; is
the flow of the Hamilton equations, and S; preserves volume

Consequence: statistical Casimir invariants (for © : R — R)

/R2dN@<FN(t,X,E)) dXdV:/RQdN@<,_-N(O,X7E)> X dy

including Boltzmann's entropy for ©(r) = rlogr



The N-body Liouville equation (1)

Proof: Differentiate in time FN(t,S:(X,=)) = FN(t, X, =)

0 N — 0 0 _n —
<8tF > (t, Xe,=¢) + <8tXt) ‘ <8XF > (t, Xt,=t)
0 _ 0 —
+ (f)t:t) : (a_F’V> (t,Xe,Z¢) =0
which means, using the equations on X; and =;:
0 _n — 0 0 _n —
(&F ) (taXta—t) + <6EH) (8)(,: > (t7Xt7—t)
0 0 _n -\
(8XH> <a_F > (t7Xt7—t)_0

which is the desired equation at the point (t, X¢, =¢).



The N-body Liouville equation (I11)

Then compute time derivative of J(t, X, =) := det Vx =5:(X, =):

OPHN  92HN
Z <5Xkafk a 3fk3Xk)

i

d
—J(t,X,Z) =
dtJ(t’ =)

J(t,X,Z) =0

Together with J(0, X, =) = detld = 1, it yields J(t,X,=) =1
One deduces by change of variable

/deN@<FN(t’X’E)) dXdV:/R%N@(,_—N(O,X?E)) X dy

— conservation of Lebesgue norms, Boltzmann entropy. . .

This reflects the time-reversibility of the Liouville equation:
invariance under the change of variable (t, X, =) — (—t, X, —V)
Cf. reversibility of Newton laws at microscopic level



The BBGKY hierarchy (1)

» N-particle Liouville equation allows for considering
superpositions of all trajectories at once, still contains same
amount of information as the Newton equations

» Desirable to simplify description of the system by throwing
away information: (Hopefully) the system is described by a
one-particle distribution (first marginal):

fV(t,x,v) = / FN(t, X,Z)dxpdxz ... dxydva... dvy
R2d(N—1)

(Observe that it still depends on N)

» Why the marginal according to the first variable? No loss of
generality since FN symmetric (invariant under permutations)
by indistinguability of the particles



The BBGKY hierarchy (1)

» How can we interpret this equation?

» Binary collisions = evolution of first marginal (£V) depends
on second marginal £V: interactions = correlations

» Similarly £V's evolution depends on £V and so on:

OFN
ailt = Li(AY) + Bu(£Y)
9FN
8712 = Ek(ka)‘FBk(kaJlrl)
oy OFN [ n
ot Ot _{H F }

» This is the BBGKY hierarchy (Bogoliubov, Born, Green,
Kirkwood, Yvon) for

AR R = Fa



The Many-particle or “Thermodynamic” Limit

» Goal of thermodynamical limit: perform N — oo and recover
closed equations on reduced distribution fV ~ f; as N ~ oo

» Natural to ask whether (low correlations)
fZN = fi.N ® fi.N = le(taXa V)le(tvyv W)?

» However the probability independence assumption not
preserved along time for interacting particle systems

» Boltzmann discovered (and Kac formulated
mathematically. .. ) that this could hold in the limit N — oo

N~ NN as N— +oo (" near-product structure”)

— this is the idea of molecular chaos

» Formally chaos = closed equation on f; as N — oo
(Vlasov in mean-field scaling, Boltzmann with Nr(N)? = 1)



Empirical distribution solutions to the Vlasov equation (1)

Crucial property uncovered by Dobrushin: the empirical
distribution following the microscopic trajectories is a weak
solution to the nonlinear Vlasov equation

Let ZV = (X, =) be the solutions to the microscopic equations
with initial data Zév, then the corresponding empirical distribution
ul satisfies

g
ot

T v Vel — [V Vo 1] (£,x) - Vol =0
in the weak sense with

[V e 2] (£, %) = / V(x — y) dul(y.€)
y

)



Empirical distribution solutions to the Vlasov equation (lI)

Proof: in the sense of distribution for a test function ¢ € C2°(E)
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Proof of classical mean-field limit (I)

Convergence of ,uiv by compactness and weak-strong uniqueness
stability of Vlasov equation

= Frontier between classical and statistical mechanics is in the
topology M* / L1 (strong distance is too crude for handling Dirac
masses [|0x — dy[| = 21zy...)

1/p
Wo(p,v) = inf / |Z —Z'|Pdn(Z,2')
me€M(uv) JExE

M(p, v) set of probability with marginals 2 and v (“coupling”)

W) = E(Z - ZV’))UP

inf
(Z,Z2")~meN(p,v)

Observe that W,(0x,d,) = |x — y|, (sensitive to the distance)



Proof of classical mean-field limit (II)

To avoid using empirical measure: new Eulerian proof of
Dobrushin’s estimate in W, on the BBGKY hierarchy

Start from an optimal coupling 7r between fV and gV at time
zero, and derive at later time 7V by the evolution

N MF\®N N _N —
O +{(H )i+ HY T }2N_O
1 N
Study DV(t) := N/ <Z Ik — ylP + &k — 77k|P> dzlN
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Proof of classical mean-field limit (llI)

Use Young inequality to reduce RHS to DM(t) and

1N
v/

j=1
Use Lipschitz constant on V to reduce it to DV(t) and

/‘[VV*f]xJ Zvv Xj — Xk)

N
dm,

N
YV« Fl0g) — 1 D IV~ )
k=1

N
dm,

Use quantitative law of large number at each time on 7

E.v [[VV * f](xk) Zvv xi—x)| =0 (N—min(1/2,P/d)>

[Fournier-Guillin PTRF to appear]



Proof of classical mean-field limit (V)

Finally differential inequality of the form:

d N N — mi
< min(1/2,p/d)
—DM(&) S DY)+ 0 (/v )

= control over time by Gronwall lemma
Then use that

N NP N
W, (1, £2V)" < DV(2)

(particular coupling) to conclude



The quantum N-body Von Neumann-Liouville equation

Functional setting: $ = [2(R9), HV = [?(RN)
L($) bounded linear operators
D($) subset where A* = A and trace(A) =1

Von-Neumann-Liouville equation

N N

. €

I@tpé\l: —§ZA[<+W Z Xk—X/ é\/
k=1 /=1

(commutator bracket) with pV € D($)

In the mean-field limit

i0tpe = [—;A + %V(pe) ; pe} o V(pe) == / V(x = z)pe(t, z, )

z

Concept of marginal replaced by partial traces pév’" € D(H"):

tracegn (Ap?") = trace ((A ® IN_,,)pN> where A€ L($H")



A semi-classical Monge-Kantorovich quasi-distance

Concept of quantum coupling between p; and p;:
R € D($?) with partial traces respectively p; and p»

Monge-Kantorovich quantum quasi-distance:

MK (p1. p2) = inf tracege ((Q"Q + P*P)R)!/?

with Qu = (x1 — x2)¥(x1,x2) and Py = —ie(Vy, — Vi, )0

Properties:

(i) MKa(p1, p2) > 2de

(i) If p1/o Toplitz operators at scale € with symbols (27re)d,u1/2
then

MK2(p1, p2) < Wa(pa, p2) + 2de

(iii) Husimi transforms at scale e: Wg[pl/z] then

MKa(p1, p2) > Wa(We[p1], We[pa]) — 2de



The main result

Similar Gronwall estimate on quantum total cost
DM(t) := traces ((@*Q + P*P)R:)
where the coupling R; evolves according to
9:R: + [(HMF)(;'@’V +H LR =0

and use the same other ingredients. ..



