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Why study PDEs with low regularity initial data?

» Global existence of smooth solutions: local (in time)
classical strategy for initial data in a space X such that
the norm in X is essentially preserved by the flow. If it is
possible to solve the equation between t = 0 and
t = T(||uol|x) and if ||u(T)||x < |luo||x then it is
possible to solve between t = T and t = 2T, etc...

» Large time behaviour of solutions with smooth initial data
(scattering), or large time behaviour of the norms of these
solutions (exponential /polynomial increase rate, etc...)

» Informations about the behaviour of the blowing up
solutions in some cases.



Super/sub critical PDEs (in Sobolev spaces)

While solving non linear PDEs, very often a critical threshold
of regularities appears, s, for which

» If the initial data are smooth enough, g € H*,s > s,
then local existence holds (with a time existence
depending only on the norm of wug in H*)

» If the initial data are not smooth enough i.e
up € H*,s < s. (and not better) then the PDE is
unstable, or even ill posed

For example for the Navier-Stokes equation, the critical index
is

» s. = 0 in space dimension 2

» s. = 1/2 in space dimension 3



Some unstabilities

» The solution ceases to exist after a finite time: finite time
blow up.

» No continuous flow (on any ball in H*) ill posedness.
» The flow defined by the PDE (if it exists) is not uniformly
continuous on the balls of H".

» The flow defined by the PDE (if it exists) is not C* on
the balls of H~.

N.B. This latter type of instabilities say very little about the
smooth solutions, but tell essentially that some approaches for
solving the PDE will not work.



The d-dimensional wave equation: a model
dispersive PDE

Let (M, g) be a d-dimensional riemannian manifold (without
boundary) and

1 0 . 0
A= —g" detg—,
ijz1:~.3 Vdetg (?X,-g (x)/de g(?xj/

be the Laplace operator on functions, and

0? ;
(NLW) (@—A)u—ku =0,

(U, 0¢t1) =0 = (Uo(x), tr(x)) € H*(M) x H*~Y(M)

the cubic defocusing non linear wave equation.



Critical index: s, = (d —2)/2
Theorem (Strichartz, Ginibre-Velo, Kapitanskii, ...)

Let s > (d — 2)/2. For any initial data
(ug, 1) € HS(M) = H5(M) x H*"Y(M), there exists T >0
and a unique solution to the system (NLW) in the space

Co([0, T]; H*(M)) n CH([0, T]; HH(M)) N L*((0, T) x M)

Furthermore, if s > s., T = T({|(uo, t1)||75(m))-



The super-critical wave equation is ill posed
Theorem (Lebeau 01, Christ-Colliander-Tao 04,

Burg-Tzvetkov 07)

Assume s < s..
» There exists sequences (U, t1 ,) € C°(M),(t,) € R
such that the solution of (NLW) with initial data (uo, uy)

exists on [0, 1] but
im0, o)y = 0.

Ve >0, lim {[unlli=((0.0)me(my) = +00

» There exists an initial data (uo. u1) € H*(M) such that
any weak solution of (NLW) associated to this initial
data, satisfying the "finite speed of propagation” (or
"light cone dependence property”) principle ceases
instantaneously to belong to H*(M).



s instability a generic situation?

» Unstable initial data are very particular:

3
2

(Uo.n, tr,n) = n27°(d(nx), n Mp(nx)), ¢, € C§°(R?).

» Question: are the initial data exhibiting the pathological
behaviour described by Christ-Colliander-Tao's and
Lebeau’s result rares or on the contrary generic?

» Can we still define solutions for a large class of initial data
with super-critical regularity?

A first answer is that in some sense the situation is much
better behaved than what CCT and Lebeau’s theorems might
let think: the phenomenon described above appears to be rare
(in some sense). We show that for random initial data, the
situation is much better behaved.



Random initial data.
Any function u € H*(M) writes with Ae, = —\2e,

u= Za en(x Z(1+ Anl?)sleal® = sy < +00.

Let 2, .A p be a probab|||st|c space and (g,) a sequence of
independent random random variables with mean equal to 0

and super exponential decay at infinity (e.g. Gaussian) :
3C, 5 > 0;Va > 0, supE(e®le) < Ced®

a random function in H*(M) takes the form
=) gamnen(x). D (14 A2)|anf® < +oo,
nez3 n

with possible symetries to keep real functions (in which case
independence is assumed modulo the symetries)



Almost sure local well posedness for random initial
data in H® = H* x H 1. Vs >0
Theorem (Tzvetkov-B. 2008)

Consider s > 0, M = T3, assume
UO; ul — Za en Zﬁnen e H*

and a random initial data

(ug,uy) (Z gnnen(x Z 8nlnen(x >

nez3 neZ3

Notice that a.s. (ug,uy) € H*(M). Then a.s. there exists
T > 0 and a unique solution u(t, x) of (NLW) in a space

X7 C C([0, T]; H(M)) n C*([0, T]; H*}(M)).



From local to global existence

The result above shows that we have a good Cauchy theory at
the probabilistic level in 74°(M),s > 0. and we can almost
surely solve the non linear wave equation on a maximal time
interval (0, T).

Natural question: T = +oc0 a.s.? (global existence).

Theorem (Tzvetkov-B.2011)

Assume M = T3. For any 0 < s, the solution of (NLW)
constructed above exists almost surely globally in time and
satisfies:

(1—s) .
C(K+1t) s ™0 ifs>0
H(U(L ) atu(t7 ))H%S(M) = {e(—(((K*‘g)! )) ifs=0

with P(K > A\) < Ce~ <N’



Rk 1. Almost surely, the initial data (ug,u;) € H*(M), s >0,
but as soon as

D @42 + (14 X2 = 400

nez3

and the random variables g,, g, do not accumulate at 0 (say
they are i.i.d. non trivial), then almost surely

(uo,u1) ¢ H* (M)

and the result provides many initial data for which the classical
Cauchy theory does not apply (even locally in time)

Rk 2. In the deterministic setting, global well posedness below
H* iniciated by Bourgain using high/low decomposition. Then
global well posedness obtained for s > % by Kenig-Ponce-Vega
(see also Gallagher-Planchon), and then for s = 2 by
Bahouri-Chemin, and for s = % by Hani



Rk 3. We also can show that the flow is uniformly continuous
in the following Hadamard-probabilistic sense: recall

P(AB) =P(ANB)/P(B)

Theorem (N.B, N. Tzvetkov, 2011)

Denote by U = (ug, uy), and ®(t)U the solution of the NLW
with initial data U, which exists a.s., then VT A, e > 0,

lim P{(U,V); [©(£)U — S(6)V|i(0, s > €

n—0

(0.1)

In other words, among the couples of initial data (U, V),
which are A-bounded, and 7-close, most of them (the residual
probability is arbitrarily small if 7 > 0 is small) generate
solutions to NLW which remain e-close to each other.



Rk 4. In the continuity property above, one cannot eliminate
the probabilistic side: the property is known to be false
otherwise. Actually, it is possible to show that there exists

¢, A > 0 such that for any 1 > 0 the probability above is non
zero (and consequently the set is non empty! )

Rk 5 This result is linked to results by Colliander-Oh where
global existence for one dimensional NLS.



Higher dimensions, other manifolds

Theorem (Thomann, Tzvetkov-B.2012, Lebeau-B
2012)
Here we need additional assumptions on the coefficients of the

functions (uo, u1) used to build our measures, to avoid
lacunary series phenomena

» Assume dim(M) = 3. Then the previous results hold

» Assume d > 4. For any 0 < s, there exists almost surely
a global weak solution of (NLW) which is obtain as a
weak limit of the solutions to the truncated systems

(02 — A)uy + Pi((Peux)®) = 0

(Px is a (smooth projector on the k first modes of the
Laplace operator)



Rk 6 This result of existence of weak solutions is very much
linked to previous results by Albeveiro-Cruzeiro,
Kuksin-Shirikyan, Da Prato-Debussche and the analog result
by Nahmod-Pavlovic-Staffilani on Navier Stokes.

Rk 7 We actually have similar weak-type results for other
model equations as

» NLS on S3
» Benjamin-Ono equation
» The derivative NLS



Deterministic theory: local Cauchy theory in H™.
The case of the dimension 3.

Theorem
Assume that
lluol|r + |lun]| 2 < A

There exists a unique solution of (NLW)

u € L=([0, CIAT3], HY x [A(M))
Moreover the solution satisfies

[, Oeu) || oo fo,cn-3), Hx12) < CA
and (u, Oyu) is unique in the class

([0, CA73], HY x L)



Proof: Fixed point in the ball centered on S(t)(uo, 1) in
L=((0, T); Hy)

Use that v satisfies (0?7 — A)u = —u?, and hence Duhamel
formula gives

u=S(t)(uo, u1) — /O NN

= 5(t)(uo, tn) + K(t)(v)

where K(t) satisfies (using Sobolev embeddings H! < L°)

1K () ()]l oo, st iy < 116l 2o, Tysez(uy
< Tlullfso, oy < CT Nl i o, 71 (my



Deterministic theory in H': a remark

Theorem
Assume that

ol + [funl 2 + ([l oo rirsmy < A
There exists a unique solution in L>([0, CA=3], H* x L?) of
(07 — A)u+ (f +u)® =0, (v, 0¢t) |e—o= (uo, u1)
Moreover the solution satisfies

| (u, Orur)[| oo (0,71, Hx12) < CA

(same proof as before)



A result by Paley and Zygmund (1930)

Consider a sequence () ken € (2
2
> lonl? < +oc.
k
Let u be the trigonometric series on T

U= E akelke
k

This series is convergent in L2(T) but "in general” (generically
for the /2 topology), the function u is in

no LP(T), p > 2 space.



If one changes the signs in front of the coefficients a
randomly and independently, i.e. if one considers

ng()ékeike = U(@)
k
where gy are Bernouilli independent random variables,

1
P(gx = *1) = 5
Theorem (Paley-Zygmund 1930-32, also
Rademacher, Kolmogorov 30’)
iké

For any p < 400, almost surely, the seriesu =), gy e is
convergent in LP(T).
Furthermore, large deviation estimate:

P({|lullirry > A}) < Ce=N



Local existence, M = T3
We look for the solution u under the form

u=5(t)(up,u1) +v=us+v
v is solution of an equation of the form
(02 — A + (S(t)(ug,uy) +v)* =0, (v, 0¢v) |t=0= (0,0)

which is essentially a cubic non linear wave equation with a
source term (S(t)(ug,uy)*. According to Paley-Zygmund, a.s.
this source term is admissible, and according to the
deterministic H! theory, there exists a time T > 0 such that
this equation is well posed in H': notice that

LP3((0,T); LA(M)) C Ly; L2
In some sense, this result shows that the seemingly
super-critical problem is in fact sub-critical



Global existence M = T3

Fix 7 > 0. Want to prove almost surely existence up to time
T of a solution. Fix N > 1. Seek u as

u=w-+v=>5(t)(ug,u;) +v
(02 — A)v + (S(t)(ug,u;) +v)* =0,
(v, 0:v) |t=0= (0,0)

AIM: Prove that v exists on [0, T] with probability 1.
H!-norm controls local Cauchy theory, hence enough to prove
that H! norm of v remains bounded on [0, T]



A priori bound

1 1 1
E(v):/M§|8tv\2+E\VXV|2+Z|V\4dX
d

EE(t)

= / (v — (w® +v)*)dx = / Oru(—3v2w — 3w?v — w?)dx
M M
< 3)0evllizIvlisliwlieze + 3ll0eviizlIvilsliwlize + 10:v ] ellwlix
< CE(t)lIwllee + E(@)*|lwlie + E()2(|wlfZ)
< C(f(t)E(t) + g(t)
Paley-Zugmund gives
P(lIwllis(o, Ty > A) < P([wllyer > A) < CemN
= f(t),g(t) € Lic(R:)

loc
Conclude using Gronwall



General manifolds

In the case of tori, Paley-Zygmund uses in an essential way the
trivial estimate for eigenfunctions of the Laplace operator

Hein.XH[_oc(Td S 1

In the case of a general manifold, this is no more true. Have
to find a substitute, the precised Weyl's formula

Theorem (Hormander, 1968)

D e3P~ AT H{mA S A < A+ MY~ A

ALSA<A+M

This results implies ||e,]| (=~ < C)\,% and if x is fixed, there is
essentially only one eigenfunction which can be this large at x
As a consequence, in a "mean-value” meaning, the
eigenfunctions of the Laplace operator behave as if they were
bounded. Exploit this phenomenon in Paley-Zygmund.



Further developments

» Extends to other non-linearities (but requires the use of
Strichartz estimates for the proof)

» Allow correlations in the random variables (using some
slack in the arguments)

» Relax the mean equal to 0 assumption on the random
variables i.e. perform the randomization around a given
solution (e.g. smooth, or given by the preceding
procedure) instead of the trivial (vanishing) solution

» Extend to other dispersive equations such as non linear
Schrodinger equations with or without harmonic potential
(with L. Thomann), see also the work by Yu Deng



