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Introduction

In this lecture, we review the basics of Limit Order Books
(LOBs). These are the electronic trading platforms now used by
financial markets worldwide.

We will see how they operate and how they differ from
traditional markets.

We will also look at some simple ideas for modelling them.
Other lectures will look at strategies for trading in such
markets.



Types of market

The simplest way of trading is an individual transaction
between a buyer and a seller, perhaps with the help of an
agent. Example: buy a house. This is, roughly, the
over-the-counter (OTC) market. In finance it’s only used for
one-off items or complex contracts.

Standardized items such as shares, bonds, commodities etc
are mostly traded centrally.

I Quote-driven markets (also broker-dealer);
I Open outcry markets;
I Limit Order Book (LOB) platforms.



Quote-driven markets

Dealers, also called market-makers, buy and sell stock from
clients, usually via a broker. The dealers try to buy low and sell
high. They post quotes indicating their prices for buying and
selling.

I Dealers have to have capital and access to the market.
I Dealers have to hold the stock (risky).
I Not transparent, can be uncompetitive.
I Clients can trade whenever they like (they can be patient

or impatient) but dealers have to be patient and wait for
trades.

I Tick sizes1 can be large (large transaction costs).

1The tick size is the smallest price division used.



I We see the FX market with dealers at the airport offering
to change your money. Note the difference between the
price to buy and to sell a given currency.

I They make profit from crossing the bid-ask spread
I Market Makers offer a crucial service: provision of liquidity

https://www1.oanda.com/currency/live-exchange-rates/



The floor of the London Stock Exchange in 1975

Photo: David Buckley on flickr



Open outcry markets

Buyers and sellers all meet and competitively advertise their
prices. This is usually in a space called a pit. It is highly skilled
and technically difficult. Most trade is by hand signals.

I Cuts out the dealers (no need to hold inventory).
I Requires very specialised skills.
I Open to dispute (disputes are surprisingly rare).
I Relatively slow to operate.
I Not very transparent (eg there is a delay between a trade

being made and the information being posted for the
market to see).

I Clients need a trader to act for them (transaction cost!).



Trading on the CME floor.
Photo: www.chicagobusiness.com



Limit Order Books

These electronic platforms bring together all buyers and
sellers.

I Clients can trade directly with relatively easy set-up (no
need for intermediary broker). Clients can be traders
directly!

I Impatient traders can trade immediately.
I Patient traders can post an order to wait for a better price.
I Traders can see the whole market (usually).
I Because it is electronic, trading is very quick

(high-frequency) and algorithmic trading is easy.

All these factors tend to increase market efficiency.





How do they work?

Traders submit (upload) orders to the market. An order is:
I To buy or to sell . . .
I a specified number of assets . . .
I either immediately, at the best price possible

or at a specfied price, if and when possible.

Orders to trade immediately are called market orders. Orders
to wait until the desired price is reached (if ever!) are called
limit orders.

Impatient traders use market orders. They want certainty of
their trade price, even if they might do better by waiting. They
do not want to take the risk of a worse price.

Patient traders are prepared to wait in the hope of getting a
better price. They are prepared to take the risk of a worse price
in return for the possibility of a better one.



The mechanics: (1) Limit orders

First, let’s see how limit orders are arranged.

The price scale is divided up into levels separated by the tick
size. For stocks, with a typical value of $10–$100 the tick size
might be $0.01. For currencies, it is as small as 0.00001 units
of the larger currency (eg for 1 SGD = £0.57, it would be
£0.00001).

The limit orders are put into two sets of queues. There is one
queue (possibly empty) at each price level.



All the buy limit orders are put on the bid side of the book and
the sell limit orders on the ask side.

Bid side

Ask side

Q: Why are all the bid orders below all the ask orders?



The highest bid price level with a non-empty queue is called
the (best) bid price b(t) (or bt ).

The lowest ask price level with a non-empty queue is called the
(best) ask price a(t) (or at ).

The midprice m(t) (or mt ) is defined by

m(t) =
b(t)+a(t)

2
.

This is the price you see on TV.

The spread s(t) (or st ) is

s(t) = a(t)− b(t).

It is a simple measure of transaction cost in the market (the
cost of a buy-sell round trip).

The logarithmic mid-price return between times t1 and t2 is

Rt1,t2
= log

(
mt2

/mt1

)
.



Limit order arrival and cancellation

New buy limit orders can be made anywhere below the best ask
(NB) price a(t). They are added to the relevant queue, usually
at the back of it (so early orders are traded first).

The same happens on the ask side, above the best bid price
b(t).

Note that this means a new bid (or ask) order can be submitted
inside the spread, above b(t) and below a(t). That price is then
the new best bid (or ask) price.

Bid and ask limit orders can be cancelled at any time. They are
then removed from the book.



Summary of terminology

1. tick size smallest possible interval between consecutive
prices

2. minimum order size (lot) smallest quantity of shares
which can be traded

3. Ask Side all sell orders in the LOB.

4. Ask Price at the lowest price among active sell orders at
time t .

5. Bid Side all buy orders in the LOB.

6. Bid Price bt the highest price among active buy orders at
time t .

7. Mid Price mt = (at + bt)/2

8. BidAsk Spread st = at − bt

9. Depth at a given price level p the aggregate volume of
shares to be traded, that is orders, at price level p .



buy limit order

sell limit order

Bid Side

Ask Side
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The mechanics: (2) Market orders

Market orders are executed immediately. Consider a market
order to buy.
I It is matched against the queue at the best ask price a(t).
I If the order size is smaller than the queue, the order is

fulfilled at a(t).
I If not, the remainder of the order is matched against the

next non-empty queue (at a higher price) and so on.

Large orders may achieve a worse price than small orders.
This is called price impact and it has two effects:
I The average price for a large order may be worse than for

a small one;
I The bid/ask/mid prices may change.



Some trades in a LOB

























Before and after



What will come next?



In real life ...



Modelling LOBs

Why model?

I To understand price formation. Black–Scholes and similar
models are top-down ‘black-box’ models which say
nothing about why and how prices change in response to
new information, or in relation to market conditions and
structure.
For example, can we ‘derive’ a Black–Scholes geometric
Brownian motion model by appropriately scaling a
microstructure model?

I To design trading algorithms. High-frequency trading is
made possible by LOBs. How should one trade, given
knowledge of the market? What are good strategies?

I To understand market dynamics as driven by trading
strategies. This is of interest to regulators, who want to
see robust and stable markets.



Stylized facts

Any model should either reproduce or build in certain stylized
facts (observed across many markets):
I Heavy-tailed distribution of unconditional returns: return

densities are not Normal on short time scales, but tend to
have power-law decay in the tail.

I Aggregational Gaussianity: over longer time scales, return
densities become close to Normal.

I Fast decay of linear auto correlation of returns. Linear
autocorrelations of returns are small.

I Long memory in absolute returns. This is a sort of
volatility clustering.

I Long memory in order flow. That is, imbalances between
buy and sell orders have long persistence.



Depth profiles and order-flow patterns

It is important to look at the ‘shape’ of the order book as well
as the best bid and ask prices.

I The Depth profile is the shape of the volume of orders as a
function of price. It is usually ‘hump-shaped’ with a
maximum near the best bid/ask prices.

I The arrival rates of limit orders also vary with price.
I Almost all limit orders are cancelled, so the cancellation

rate is close to the order arrival rate.





Depth in the FX market (figure: M. Gould)



Arrival rates in the FX market (M. Gould)



Cancellation rates in the FX market (M. Gould).



LOBSTER

Order book data can be obtained from the LOBSTER database.
This has data from the NASDAQ, some of which is freely
accessible.
We discuss the SPDR Trust Series I, an exchange traded fund
which tracks the S& P 500, with data from June 21 2012.

I between 9:30am and 10:30am there were 1154736 order
book events and 3835 price changes.

I between 11:00am and 12:00pm there were 840549 order
book events and 2453 price changes.



The SPDR price from 9:30-10:30.



The SPDR price for the first 36 seconds.



Snapshots of the profile of the order book from 9:30-10:30.



The average profile over the hour from 9:30-10:30.



Some other observations.

I For MSFT we see that order sizes are typically in lots of
100 - over 80%. Other orders are mulitples of 100.
However occasionally there are very large orders of size
10000 or more.

I The time between orders is often very short with a
distribution which is much steeper than an exponential.



Comparison of interarrival times for MSFT on 1/11/2018 with
an exponential of the same mean (J. Mackillop)



Times between limit, cancellation and market orders (J.
Mackillop)



Further issues for real LOBs

I the same shares traded on many venues smart routing is
necessary

I consolidated LOB for all venues may (US) or may not (EU)
be readily available

I various execution order conventions: price-time priority
(FIFO), price-size priority, pro-rata priority - strategic order
posting

I hidden (iceberg orders) or invisible (dark pool) liquidity
fishing, price manipulation, predatory trading.



Priority

Price-time priority
I For active buy orders, priority is given to the active orders

with the highest price.
I For active sell orders, priority is given to the active orders

with the lowest price.
I Ties are broken by selecting the active order with the

earliest submission time.

Price-time priority is an effective way to encourage traders to
place limit orders. Without a priority mechanism based on
time, there is no incentive for traders to show their hand by
submitting limit orders earlier than is absolutely necessary.



Priority

Price-size priority

I For active buy orders, priority is given to the active orders
with the highest price.

I For active sell orders, priority is given to the active orders
with the lowest price.

I Ties are broken by selecting the active order with the
largest size. Price-size priority is an effective way to
encourage traders to place large limit orders, thereby
providing liquidity to the market.



Priority

Pro-rata priority
I For active buy orders, priority is given to the active orders

with the highest price.
I For active sell orders, priority is given to the active orders

with the lowest price.
I When a tie occurs at a given price, each relevant active

order receives a share of the matching proportional to the
fraction of the depth available that it represents at that
price.

I Traders in pro-rata priority LOBs are faced with the
substantial difficulty of optimally selecting limit order
sizes, because posting limit orders with larger sizes than
the quantity that is really desired for trade becomes a
viable strategy to gain priority.



Priority

Different priority mechanisms encourage traders to behave in
different ways:

I Price-time priority encourages traders to submit limit
orders early

I Price-size and pro-rata priority reward traders for placing
large limit orders and thus for providing greater liquidity
to the market.

Traders behaviour is closely related to the priority mechanism
used, so LOB models need to take priority mechanisms into
account when considering order flow. Furthermore, priority
plays a pivotal role in models that attempt to track specific
orders.



Hidden Liquidity

An iceberg order is a type of limit order that specifies not only
a total size and price but also a visible size. Other market
participants only see the visible size. Rules regarding the
treatment of the hidden quantity vary greatly from one
exchange to another:
I In some cases, once a quantity of at least the visible size

matches to an incoming market order, another quantity
equal to the visible size becomes visible, with time priority
equal to that of a standard limit order placed at this time.

I Some other trading platforms, such as Currenex and
Hotspot FX, allow entirely hidden limit orders. These
orders are given priority behind both entirely visible active
orders at their price and the visible portion of iceberg
orders at their price, but they give market participants the
ability to submit limit orders without revealing any
information whatsoever to the market.



Dark Pools

Recently, there has also been an increase in the popularity of
so-called dark pools, particularly in equities trading.
I electronic engine matching buy and sell order without

routing to lit exchanges
I no information about market participants trading

intentions is available to other market participants
I some dark pools are essentially LOBs in which all limit

orders are entirely hidden
I other dark pools are time-priority queues of buy/sell

orders (no prices specified), trading at mid-point of a
reference (lit) exchange

I allows the trade of large amounts without impacting the
price over 30% of all trades!



LOB Modelling: A spectrum of approaches

The modeller has to choose what to put into the model and
what to try to get out of it.
I One approach is perfect rationality in an agent-based

framework. The market is populated with agents who have
certain trading goals and act to maximise utility.
I Complex with many unobservable parameters;
I Not easy to construct realistic strategies;
I Tend to come from the economics literature. See Gould et

al. Quantitative Finance 13, 1709–1742, 2013 for a review.



Zero-intelligence models

I Zero-intelligence models are probabilistic models for order
flow based on observed statistical properties.
I Specify processes to depend on the state of the book.
I Much easier to calibrate . . .
I But is it realistic to ignore agents’ intentions and

strategies?

See models by Smith et al (Quantitative Finance 3, 481–514,
2003) and Cont et al. (Operations Research 58, 549–563,
2010).



Zero-intelligence (continued)

Zero-intelligence models are essentially a collection of queues
representing the set of orders at each price tick. Order arrival
is governed by a Poisson process for each queue:

I Buy and sell orders arrive at a rate which, for simplicity,
may be constant;

I Limit orders and cancellations arrive at rates that depend
on position in the book (to mimic the stylized facts above).

The state space is extremely large and the dynamics can be
very complicated. Nevertheless some good outputs can be
obtained. It is possible to incorporate autocorrelation of the
order flows using Hawkes processes.

In particular, over long timescales, in some situations the
mid-price evolution tends to a Brownian Motion.

However, it is not easy to study trading strategies in them.



Hybrid approaches

Hybrid approaches usually have one trader (you!) operating in
a noisy environment. Their main use is to guide optimal
trading: how best to sell a large order given the price impact of
your trade.
A typical set-up has:
I A Brownian Motion representation of the mid-price;
I A simple (summary) representation of the bid and ask

sides of the book, for example
I Simple stochastic processes representing the queues at

the best bid and ask (proxies for the whole order profile);
I Parametrized representations of the price impact of

trading: how does your trading affect the price over and
above its intrinsic noise?

I A notion of optimality for the trader: maximise a measure
of return while achieving the trading goal.

In the next lectures you’ll hear a lot more about these models!



Zero-intelligence models

We consider this now in more detail. As the LOB is considered
as a complex queueing system we recall some queueing thoery
ideas and how they need to be extended to handle the issues
that arise from LOBs.

I We recall Poisson processes and how they can be used in
simple queueing models

I We then think about how this may fit with the overall
modelling objective.

I We consider some approximations via continuous
stochastic processes



Poisson processes

We review the basics of Poisson processes (PPs).

In one dimension, these are the most fundamental
continuous-time processes with a finite number of jumps.

How do you distribute a countable set of points on R so that
every interval of length t has, on average, λt points (here λ > 0
is a constant)?

As usual, we have a probability space (Ω,F ,P) in the
background.



PPs count events

Consider events (example: radioactive decay) such that

1. They can occur independently again and again;

2. An event is equally likely to occur in any small time
interval.

Let Nt be the number of events that occur by time t , with
N0 = 0. We assume Nt+h −Nt is independent of Nt for all
t ,h > 0.
Take any small time interval [t , t +h). Assume that for every n
we have

P[Nt+h = n +1|Nt = n] = λh +o(h)

as h → 0, where the constant λ is called the intensity. Then

P[Nt+h = n |Nt = n] = 1−λh +o(h).

We call Nt a Poisson process with intensity λ.



Basic properties
Clearly:

I Nt takes values in {0,1,2,3, . . .}, with N0 = 0.
I Nt is constant except at times when an event occurs. We

call these the jump times. They are random variables.
Write Ti for the time of the ith occurrence, with T0 = 0. So
Nt has a jump of +1 at time Ti :

NT+
i
= NT−i +1.

(here NT−i means limt↑Ti
Nt and so on). So the process Nt is

cadlag (right-continuous with left limits).

We write dNt for the increment of Nt and then, for each t ,

dNt =

1 with probability λdt ,

0 with probability 1−λdt .



www.probabilitycourse.com



A heuristic calculation for the expectation of Nt is as follows.
Let

et = E[Nt |N0 = 0],

so that e0 = 0. Then,

det = dE[Nt ]

= E[dNt ]

= λdt ,

so we have
et = λt .

This is consistent with the intuition that the events (jumps) are
‘uniformly distributed in time’.



Distribution of the number of jumps

We now calculate the PDF of the number of jumps in an interval
of length t . That is, we want to find

pn(t) = P[Nt = n], n = 0,1,2, . . . .

Use the probability generating function

Gt(s) = E[sNt ]

=
∞∑

n=0

pn(t)s
n .



Note that (i) Nt+h = Nt +Nt+h −Nt , (ii) Nt+h −Nt is independent
of Nt and ‘has the same distribution as’ Nh .
Now we calculate

Gt+h (s)−Gt(s) = E[sNt+h ]−Gt(s)

= Gt(s)E[s
Nh ]−Gt(s) ((i) & (ii) above)

= Gt(s)((1−λh)×1+λh × s)−Gt(s)+o(h)

= λ(s −1)Gt(s)h +o(h).

divide by h and let h → 0 gives the ODE

dGt(s)
dt

= λ(s −1)Gt(s).



As Gt(1) = 1 we solve to find

Gt(s) = eλt(s−1)

=
∞∑

n=0

(
e−λt (λt)n

n!

)
sn .

The number of jumps is Poisson distributed with parameter λt :

Nt ∼ Po(λt).

Q: What is var[Nt ]?

Q: show that the sum of independent Poisson random variables
with parameters λ and µ is Poisson with parameter λ+µ.



Distribution of the waiting times

The waiting times τi = Ti+1 −Ti between jumps are IID and have
the same distribution as τ1.
We can see that

P(τ1 > t) = P(Nt = 0) = e−λt .

Thus τ1 has the exponential distribution

The waiting times are exponentially distributed: τi ∼ Exp(λ).

Q: Show that the waiting times have the ‘lack of memory
property’:

P[τi > s + t |τi > s] = P[τi > t ].



‘Itô’s’ formula

What is the evolution of a function f(Nt)? If we write ft = f(Nt),
then clearly ft is constant between jumps, because Nt is.
If a jump occurs at time t ,

dft = ft+ − ft−

= f(Nt+)− f(Nt−)

= f(Nt− +1)− f(Nt−).

Note that everything is evaluated at time t−: non-anticipating!
Remembering that dNt = 0 except at jumps, we can write

dft = (f(Nt +1)− f(Nt))dNt

because the bracketed term is only evaluated when dNt , 0, ie
at a jump.



Compensated processes

We use martingales a lot in finance. However a standard
Poisson process is not a martingale because, for t > s ≥ 0,

E[Nt |Ns ] = Ns +λ(t − s) > Ns .

The solution is to subtract off the expectation of Nt : the
process

Mt = Nt −λt

in indeed a martingale. The term −λt is called the
compensator of Nt and Mt is called a compensated Poisson
process.

Q: Let ft = (Nt)
2. By Ito what is dft ? Use this and the

compensator to calculate var[Nt ].



Building more complex processes
We can make many models using PPs in various ways:
I Add a deterministic function of time
I Add other processes; for example

Xt = αNt + σWt

where Wt is a Brownian Motion and α,σ are constants.
This is an example of jump-diffusion.

I Let the jumps be different from 1. Eg they could be
independent samples from some distribution. So we could
have a process Xt satisfying

dXt = JtdNt

and every time an event occurs (dNt = 1), Xt changes by
Jt . This is a compound Poisson process.
Q: If the Js are IID with mean µJ , what is the compensator
of Xt ?



I Make the intensity λ into a deterministic function λ(t) of
time t .

Q: What is the compensator of a PP with intensity λ(t)?
I Make the intensity an independent random process itself.

This is a Cox process.
I Make the intensity depend on the process itself. This is a

Hawkes process or self-exciting process because a jump in
the process also causes the intensity to jump. In a simple
version a PP Nt has intensity λt satisfying

dλt = −α(λt −Λ)dt + βdNt , α > 0, β > 0.

This says that a jump causes an increase in the intensity
and makes another jump more likely; but the
mean-reversion to the level Λ balances this.

Q: Let Eλt = E[λt |λ0]. Find Eλt and find conditions on α and
β under which it remains bounded as t →∞.



Top: intensity of a Hawkes Process, bottom: sample path. Note
the ‘clustering’ of jumps (which are IID Exp(1.25)). Pictures by

Xutao Kuang.



I Construct correlated Poisson processes. To construct
correlated processes N (1)

t and N (2)
t , take three

independent PPs N [i ]
t , i = 1,2,3 and then set

N (1)
t = N [1]

t +γN [3]
t ,

N (2)
t = N [2]

t +γN [3]
t ,

and choose the constant γ and the intensities of N [i ] to match
the intensities of N (i) and the correlation coefficient (NB this is
not a unique decomposition).

To match coefficients, you want E[N (i)
t ] = λi t and

cov[N (1)
t ,N (2)

t ] = ρλ1λ2t where ρ is the correlation coefficient.
The easy way to work this out is to note

E[N (1)
t N (2)

t ] = E[E[N (1)
t N (2)

t ] |N [3]
t ].



Levy processes

Note that the Poisson process can be defined by saying that it
is the process N such that

1. N0 = 0

2. Nt+s −Nt is independent of Nt

3. Nt+s −Nt has the Poisson distribution Po(λs)

We can ask the question - what is the class of processes that
have stationary and independent increments?
This is the class of Levy processes - Brownian motion and the
Poisson process are simple examples.



Markov chains

Poisson processes allow us to build continuous time Markov
chains.
Discrete-time finite Markov chain: Xn has a state space
labelled 1,2, . . . ,N . At each time step, if Xn is in state i , the
transition probability for a move to state j is

pij = P[Xn+1 = j |Xn = i ], 1 ≤ j ≤ N .

Continuous time finite Markov chain: Yt also has N states. Now
define transition rates λij for each pair of states i , j . In state i
the chain waits for an exponential time

∑
k,i λik before moving

to state j with probability

pij =
λij∑
k λik

.



The simple queue

A simple queue is a continuous time Markov chain. It can be
described by Xt , the number of customers in the queue
(including the one being served), at time t . For the M /M /1
queue we have
I Arrivals occur as a Poisson process of rate λ (M is for

memoryless)
I Services occur as a Poisson process of rate µ (M)
I A single server (1)

If the arrival rate is less than the service rate, λ < µ, the queue
is stable in that the size does not grow indefinitely and it has
an equilibrium distribution which is a geometric distribution
with parameter 1−λ/µ.



Queues and order books

A simple way of using queueing for order books is to consider a
collection of queues with one at each tick. We can think of the
system between price changes so that queue i is i ticks from
the best bid or best ask.
I The arrivals to each queue are the limit orders
I The services at queues away from the best queue are the

cancellations
I At the best queue the services are the cancellations and

the market orders
I A price change can be thought of as occuring when the

queue at either the best bid or best ask is depleted - this
corresponds to the end of the busy period for that queue.

After a price change then we can reinitialize the queues and
begin the process again.



Heavy traffic

The critical parameter for a simple queue is the traffic intensity
ρ = λ/µ. For stability we require ρ < 1.
A well established result in queueing theory is that when the
queues are close to critical, that is the arrival rate λ and µ are
close, in particular as ρ→ 1, then we can take a scaling limit.
To see how this works we take a sequence of queues X n

t with
rates given by
I λn = ξn
I µn = ξ(n + c

√
n)

Now consider the rescaling of queue size by
√

n , in that

Y n
t = X n

t /
√

n ,

then Y n
t → Yt (weakly) where Yt is a reflected Brownian motion

with drift c .



Order books and heavy traffic

In order books where most of the activity takes place at the
best bid and ask queues Cont and Larrard developed a heavy
traffic model for the front end of the order book. The queues
can be analysed analytically and by comparing with data it is
shown that the arrival rates and cancellation rates are high
and close.

Thus the heavy traffic limit theorem for the queueing model for
an order book may be appropriate and some of the analysis of
key quantities such as probability of upward or downward
prices changes and time between changes can be computed
using Brownian motion.



Modelling the whole book

By taking queues at each tick and analysing the arrival and
cancellation rates at the ticks relative to the best price we can
make a model for all the queues at once. If we assume that
they are not entirely independent - people place orders in ways
which tend to smooth the shape - we can build a system of
SDEs for the book.

To go further take a limit as the tick size tends to 0; this gives a
stochastic partial differential equation model for one side of
the book! This is an equation for u(t ,x), the volume of orders
at time t at distance x from the best price, for example

∂u
∂t

= α
∂2u
∂x2

+ f(x)+ σ(x)Ẇ ,

where f represents the drift at distance x , α is a constant and
Ẇ is a space-time white noise with volatiity function σ .



Some order book snapshots from an SPDE simulation.


