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Reading

There is a wealth of ongoing research and growing body of publications.
For market impact modelling, a good start are two survey papers:

• Lehalle,“Market Microstructure Knowledge Needed for Controlling an Intra-Day Trading
Process”

• Gatheral and Schied, “Dynamical models of market impact and algorithms for order
execution”

both in 2013 Handook on Systemic Risk (ed. Fouque and Langsam) and on arXiv.

For market microstructure, I suggest two review papers and four books:

• Chakraborti et al, “Econophysics review” (parts I and II), in Quantitative Finance, 2011

• “How markets slowly digest changes in supply and demand”, Bouchaud et al (2009)

• O’Hara, Market Microstructure Theory, 1995

• Hasbrouck, Empirical Market Microstructure: The Institutions, Economics, and
Econometrics of Securities Trading, 2006

• Lehalle and Laruelle, Market Microstructure in Practice, 2014.

• Cartea, Jaimungal and Penalva, Algorithmic and High-Frequency Trading, 2015.
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c©Jan Ob lój, University of Oxford Price Impact Models and Market Microstructure 17 – 21 June 2019 4 / 74



Modelling in Quantitative Finance Brief history of modelling in QF

Models in Quantitative Finance

• “All models are wrong but some are useful” (G. Box ’78)
• Models need to be tailored to

• the available inputs
• the intended outputs

• Models need to
• conform to stylised facts
• produce reasonably useful and robust outputs
• avoid creating arbitrage opportunities
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Modelling in Quantitative Finance Brief history of modelling in QF

Brief history of modelling in QF

• Fair price (fundamental economics)
model: fundamentals

• Option pricing & optimal investment
model: the underlying price process (exogenous)
Samuelson ’65, B&S and Merton ’73

• Further option pricing: Exotics or FI options
model: a high- or ∞- dimensional system of underlyings
e.g.: HJM ’92 and LMM ’97 in Fixed Income; Market models of
Schweizer & Wissel ’08, Carmona & Nadtochiy ’09
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Modelling in Quantitative Finance Brief history of modelling in QF

Brief history of modelling in QF – cont.

• Optimal execution of planned trades
model: impact of trades on price dynamics or
model: supply & demand dynamics
Bertsimas & Lo ’98, Almgren & Chriss ’00;
Obizhaeva & Wang ’13, Alfonsi et al. ’08

• Price formation via market microstructure
model: LOB dynamics (zero intelligence)
model: Agent trades (agent based)
Cont et al. ’10, Smith et al. ’03, Farmer et al. ’05;
Kyle ’85, O’Hara ’95

... and MANY more references...
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Modelling in Quantitative Finance LOBs Impact – recall

Recall: LOBs Impact – pros

The shift from traditional markets to electronic LOB driven markets had
many consequences. Some positive:

• competition leading to lower fees and smaller tick sized

• more information available

• democratised trading process

• choice of patient (limit) or impatient (market) orders available to
everyone

• computerised/algorithmic trading possible
• high frequency trading possible

• HFT ≈ duration of order of seconds, reaction within milliseconds
• accounts for 60− 75% of traded volume

• extra provision of liquidity  market efficiency
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Modelling in Quantitative Finance LOBs Impact – recall

Recall: LOBs Impact – cons

And some negative:
• Technological armsrace
• Little human oversight
• Predatory trading

This led to the infamous Flash Crash of May 6, 2010 when Dow Jones IA
(DJIA) dived almost 1000 points (just to recover in minutes).

What do you think caused it?
• A mutual fund activated a program to sell 75, 000 E-Mini S&P 500

contracts (≈ 4.1 billion USD) using VWAP algorithm at 9%
• HFT began to quickly buy and resell these contracts to each other

generating more volume: between 2:45:14 and 2:45:27, HFT traded

27, 000 contracts (about 49% of total volume) while buying only 200

contracts net.
• This led the original program to rapidly sell the whole position
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Modelling in Quantitative Finance LOBs Impact – recall

Flash Crash of May 6th, 2010
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Modelling in Quantitative Finance Market Frictions

Frictionless modelling setting

The classical modelling framework in mathematical finance, like the one
postulated by Black and Scholes ’73, assumes infinite liquidity:

• asset traded at uniquely given and known prices

• buying and selling in arbitrary quantities possible

• trading at no cost possible

• trading has no impact on the price

This is unrealistic and unsatisfactory: in reality we have market frictions.
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Modelling in Quantitative Finance Market Frictions

Market Frictions
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Modelling in Quantitative Finance Market Frictions

Market frictions – cont.

Many frictions either part of the game (opportunity cost) or well-defined
(taxes). For many traders other frictions satisfactory summarised in

• proportional transaction costs: pay εSt for trading one unit of St .

However this is not acceptable for

• large trades (relative to volume & time horizon)

• frequent trading (relative to liquidity)

which require understanding of

• liquidity provision and

• price formation.
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Modelling in Quantitative Finance Market Frictions

Aspects of liquidity (Kyle ’85)

• Tightness (Breadth): measures how wide the bid-ask is, i.e. measures
the cost of a position reversal at a short notice for a standard amount

• Market depth: corresponds to the volume which may be
bought/sold without immediately affecting the price

• Market resilience: describes the speed at which prices revert to
previous level (equilibrium) after a random shock in the order flow

• Time delay: measures the delay between processing and executing
an order
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Modelling in Quantitative Finance Market Frictions

Aspects of liquidity (Kyle ’85)

ARTICLES
Market liquidity and its incorporation into risk management

Banque de France • Financial Stability Review • No. 8 • May 2006 65

and exit at no cost, transparent information). The 
degree of liquidity of a market is traditionally 
assessed on the basis of three essential criteria:

• the tightness of the bid-ask spread, which measures 
the cost of a reversal of position at short notice for 
a standard amount,

• market depth, which corresponds to the volume 
of transactions that may be immediately executed 
without slippage of best limit prices,

• market resilience, i.e. the speed with which prices 
revert to their equilibrium level following a random 
shock in the transaction fl ow. 

The fi rst aspect is a direct measure of transaction 
costs (excluding other operational costs such as 
brokerage commissions and clearing and settlement 
fees). The last two indicate the market’s ability to 
absorb signifi cant volumes without adverse effects 
on prices. The rest of the article will focus mainly 
on market breadth and depth insofar as it will pay 
more attention to the costs of immediacy than to 
how long it takes prices to return to equilibrium 
(see Chart 1).

The bid price is the highest price that the market 
maker is willing to pay at a given time to acquire 
a specifi c amount of assets. Symmetrically, the 
ask price is the lowest price at which the market 
maker is willing to sell a given amount of assets. 
The gap between the bid price and the ask price 
(the bid-ask spread) compensates the market maker 
for the immediacy of execution that it offers to its 
counterparties. The spread measures the cost of a 
sell/buy or buy/sell sequence over a short period 
(two-way transaction); only the half-spread should 
therefore be attributed to a single transaction (sale or 
purchase) if one considers that the mid-price is the 
one that should be paid in a perfectly liquid market. 
The tightness of the spread depends, inter alia, on the 
costs of processing orders from market makers, the 
size and volatility of accumulated order fl ows as well 
as the degree of information asymmetry between 
market makers and initiators of transactions (the 
market maker is exposed to the risk of dealing with 

investors that have private information regarding 
the real value of the asset). In a quote-driven market, 
the quoted spread2 corresponds to the difference 
between the best bid price and the best ask price 
offered by market makers, whilst in an order-
driven market, what is important is the difference 
between the best limit order book prices.3 However, 
the spread quoted in the markets is not generally 
an exact refl ection of transaction costs (for a
buy/sell sequence) because certain transactions 
may be traded not at the bid or the ask price but at 
prices located within this spread, or even outside 
this spread, even for standard amounts.4 In addition, 
the spread is a measure of the liquidity available 
at a given time. With a view to risk measurement 
and management, it is therefore important to take 
account of its variability over time.

In particular, the spread is quoted for limited 
amounts and it normally tends to widen in the 
presence of massive order fl ows, which is what the 
concept of depth refers to. In the case of a sale, 

Chart 1
Aspects of market liquidity

Sale Purchase

Depth

QuantitiesQuantities

Resilience

Ask price

Depth

Resilience

Bid price

Breadth

Price

A A'0

Ap

Bp

Note : The bid price Bp and the ask price Ap are defi ned for the 
standard amounts OA and OA’. The Bp-Ap spread represents the 
“breadth” of the market. The amounts OA and OA’ are those that 
may be traded without price slippage: they refl ect market “depth”. 
Beyond points A and A’, one sees the negative impact of large-value 
transactions on the execution price. Resilience refers to the time aspect 
of liquidity and indicates how quickly prices adjust to their equilibrium 
value following a shock in transaction fl ow.

2 In general, the quoted spread is expressed as a ratio of the mid-price. It is then called the relative (quoted) spread.
3 These two types of market organisation differ with respect to the price setting methods and the way in which liquidity is ensured. On an order-driven market, 

liquidity is created by matching orders in a central order book. On a price-driven market, liquidity is created through the actions of intermediaries (market makers) 
who guarantee investors a bid price and an ask price for a minimum amount.

4 One may therefore calculate the relative effective spread, corresponding to the absolute difference between the price at which a transaction was performed and 
the midpoint (the difference is expressed as a ratio of the midpoint).

Source: Bervas ’06
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Modelling in Quantitative Finance Market Frictions

Summary so far

• Models are build taking into account available inputs and desirable
outputs

• In QF models postulate exogenous dynamics for different underlyings
depending on what is traded and what one wants to price

• Traditional models assume a frictionless setting with ∞ liquidity

• In practice this fails. A lot can be accounted for using proportional
transactions costs.

• Large and/or frequent trading requires modelling of liquidity and/or
price impact.

• Electronic markets operate without designated market maker.

• Instead, the Limit Order Book (LOB) holds all active buy and sell
orders
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Price Impact Models and Optimal Execution The modelling setup

Price impact modelling

We saw that large and/or frequent trades may affect the price. We may
need to split and spread large orders in practice. To answer how to do it
we need to understand:

• how to model/quantify the impact of trading on the price?

• what are the desirable/undesirable properties of such models?

• how to compute optimal execution trading strategies?

There are two natural approaches to model price impact:

I: postulate fair price dynamics and the price impact of trading

II: be serious about modelling Market Microstructure, i.e. model supply
and demand and their interaction.

We focus first on I. Then we use the LOB discussion to tackle II.
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Price Impact Models and Optimal Execution The modelling setup

Trade execution setup
Goal: buy/sell x0 shares by time T .

Trade execution strategy:

• X = (Xt)t≤T , where Xt is the number of shares held at time t

• The initial position X0 = x0 is positive for a sell strategy and negative
for a buy strategy

• The final condition XT = 0 indicates the position is liquidated at T

• The path will be monotone for a pure buy or pure sell strategy. In
general it is of finite variation.

We think of T as around 5− 10, and up to 30, minutes.
For now, we are ignoring problems from higher(+) or lower(-) levels:

+ How a large desired trade position is split into chunks allocated their
time horizons.

- What orders (market vs limit) are used and to which venues these are
routed.
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Price Impact Models and Optimal Execution The modelling setup

Price impact model

Price impact model quantifies the feedback effect of trading strategy X on
the asset price. A typical setup is:

• Exogenously specified price process S0 = (S0
t : t ≤ T ) for fair

(unaffected) price dynamics.
S is a semimartingale (usually a martingale) on a filtered probability
space (Ω,F , (F t),P) and we assume X is predictible

• Given X , a model prescribes SX the price process realised when
implementing trading strategy X .

• Typically, a buy strategy increases the prices and a sell strategy
decreases the prices: if X ′(t) ≥ 0 for all t ≤ T then SX

t ≥ S0
t , t ≤ T .

However this is not necessarily true for a fixed t since SX
t may be

affected by all of (Xu : u ≤ t).
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Price Impact Models and Optimal Execution The modelling setup

Revenues and costs

Suppose Xt is differentiable in time and SX
t depends continuously on X ,

then at time t, the infinitesimal amount of −dXt shares is sold at price
SX
t . Thus

revenues from strategy X are R(X ) = −
∫ T

0
SX
t dXt

(when X is not absolutely continuous adjustments are necessary)

Objective: Maximise some performance functional of R(X ).
For example:

• maximise the expected value E[R(X )]

• maximise a mean-variance criterion E[R(X )]− λ var(R(X ))

• maximise the expected utility E[U(R(X ))]

• ...
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Price Impact Models and Optimal Execution The modelling setup

Revenues and costs – cont.
Alternatively: Minimise functional of implementation shortfall (i.e. cost
of liquidation), which is the difference between the book value X0S

0
0 and

the revenues (or the capture):

liquidation cost of X is C(X ) = X0S
0
0 −RT (X ).

If we write SX
t = S0

t + IXt then

R(X ) = −
∫ T

0
SX
t dXt = −

∫ T

0
S0
t dXt −

∫ T

0
IXt dXt

= S0
0X0 +

∫ T

0
XtdS

0
t︸ ︷︷ ︸

=−Cvol (X )

−
∫ T

0
IXt Ẋtdt︸ ︷︷ ︸

=Cexec (X )

The total liquidation cost C(X ) has two components:
• Cvol expresses the volatility risk of trading over time instead of

instantly
• Cexec expresses the effect of price impact
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Price Impact Models and Optimal Execution Almgren–Chriss models

Almgren–Chriss type price impact
The unaffected price follows a Brownian motion:

S0
t = S0

0 + σWt .

Then, the price impact has two components:

• permanent impact:
∫ t

0 g(Ẋs)ds

• temporary impact: h(Ẋt)

for nondecreasing functions g , h : R→ R and Ẋt = dXt
dt the trading speed.

The affected price is given by

SX
t = S0

t +

∫ t

0
g(Ẋs)ds + h(Ẋt).

In the special case of linear impacts: g(x) = γx and h(x) = ηx

SX
t = S0

t + γ

∫ t

0
dXs + ηẊt = S0

t + γ(Xt − X0) + ηẊt .
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with linear price impact

In the special case of linear impacts: g(x) = γx and h(x) = ηx

SX
t = S0

t + γ

∫ t

0
dXs + ηẊt = S0

t + γ(Xt − X0) + ηẊt︸ ︷︷ ︸
=IXt

.

The revenues are then given by

R(X ) = −
∫ T

0
SX
t dXt = S0

0X0 +

∫ T

0
XtdS

0
t −

∫ T

0
IXt Ẋtdt

= S0
0x0 + σ

∫ T

0
XtdWt −

γ

2
x2

0 − η
∫ T

0
Ẋ 2
t dt,

since XT = 0.

c©Jan Ob lój, University of Oxford Price Impact Models and Market Microstructure 17 – 21 June 2019 24 / 74

Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with linear price impact (cont.)
Assuming X is bounded, the expected revenues are

E[R(X )] = S0
0x0 −

γ

2
x2

0 − η E
[∫ T

0
Ẋ 2
t dt

]
.

The last term is an integral w.r.t. P(dω)⊗ dt of the square of Ẋt(ω). It
follows that it is minimised, and hence E[R(X )] is maximised, by the
strategy

Ẋ ∗t = −x0

T

which sells (or buys) the shares at constant speed (to see this simply apply
Jensen’s inequality). In particular the solution is independent of the
volatility! (Bertsimas & Lo ’98)

The resulting expected liquidation cost of x0 shares is

E[C(X )] =
(γ

2
+ η
)
x2

0

quadratic in number of shares and independent of volatility σ.
c©Jan Ob lój, University of Oxford Price Impact Models and Market Microstructure 17 – 21 June 2019 25 / 74



Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model so far – summary

Proposition

In the Almgren–Chriss price impact model with linear permanent impact,
g(x) = γx , and xh(x) convex, for any given x0 ∈ R the strategy

X ∗t =
X0(T − t)

T
, t ≤ T ,

maximises the expected revenues E[R(X )] in the class of all adapted and
bounded trade execution strategies X .

The strategy X ∗ spreads the execution evenly over the time horizon
t ∈ [0,T ]. It is often referred to as the time-weighted average price
strategy or TWAP. When the time is relative and t corresponds to traded
volume the X ∗ is called volume-weighted average price strategy or VWAP.
Both are used as industry benchmarks.
Almgren et al. ’05 argued these assumptions are consistent with empirical
observations and suggested xh(x) ≈ |x |1.6.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with mean-variance criterion

So far we only looked at expected revenues. Almgren and Chriss ’00
propose to consider

max
X

E[R(X )] subject to var(R(X )) ≤ v∗

which, introducing a Langrange multiplier, turns into an unconstrained
problem

max
X

(E[R(X )]− λ var(R(X ))) .

This is a hard problem. However assuming X is deterministic it turns into

max
X

(
x0S

0
0 −

γ

2
x2

0 −
∫ T

0

(
λσ2

2
X 2
t + ηẊ 2

t

)
dt

)
which can be solved explicitly as a standard variational calculus problem.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with mean-variance criterion
Indeed, the problem is equivalent to

min
X

∫ T

0

(
λσ2

2
X (t)2 + ηX ′(t)2

)
dt

Setting the first variation to zero:

0 =

∫ T

0

(
g(t)λσ2X (t) + 2g ′(t)ηX ′(t)

)
dt, ∀g ∈ C 1 : g(0) = g(T ) = 0.

Integrating by parts:

0 =

∫ T

0
g(t)

(
λσ2X (t)− 2ηX ′′(t)

)
dt, ∀g ∈ C 1 : g(0) = g(T ) = 0

which gives the Euler-Lagrange equation

X ′′(t) =
λσ2

2η
X (t), s.t. X (0) = x0,X (T ) = 0.

Solving the ODE we obtain
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with mean-variance criterion
The solution is given by

X ∗t = x0
sinh(κ(T − t))

sinhκT
for κ =

√
λσ2

2η
.

1 2 3 4 5

200000

400000

600000

800000

1×106

Optimal liquidation strategy of 106 shares over 5 days under 30% annual vol and

impact 1% of daily volume = bid-ask. Moderate λ.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with mean-variance criterion
The solution is given by

X ∗t = x0
sinh(κ(T − t))

sinhκT
for κ =

√
λσ2

2η
.

1 2 3 4 5

200000

400000

600000

800000

1×106

Optimal liquidation strategy of 106 shares over 5 days under 30% annual vol and

impact 1% of daily volume = bid-ask. High λ.
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Price Impact Models and Optimal Execution Almgren–Chriss models

A–C model with other criteria

Mean-variance is not amenable to dynamic programming and leads to
time-inconsistent strategies. In analogy to optimal investment, other
criteria are natural:

• Maximise expected utility: maxX E[U(R(X ))]
The problem can be reformulated as a stochastic control problem with
non-standard (finite fuel) constraint: X0 = x0 and XT = 0. Leads to
an HJB equation. Solution known for U(x) = − exp(−λx) ... the
same as for mean-variance! (Schied, Schöneborn & Tehranchi ’10).

• Maximise

E
[
R(X )− λ

∫ T

0
XtS

X
t dt

]
Gatheral & Schied ’11
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Price Impact Models and Optimal Execution Almgren–Chriss models

Criticism of A–C setting

• Price process can go negative; impact additive & in absolute terms.
Bertsimas & Lo ’98 suggest

SX
t = S0

t exp

(∫ t

0
g(Ẋs)ds + h(Ẋt)

)
, S0

t = S0
0 exp

(
σWt −

σ2

2
t

)
but computing optimal strategies more involved.

• Price impact simplistic, in reality transient effect, see Moro et al. ’09
(cf. resilience)

• Computed optimal strategies are deterministic and do not react to
price changes

• No modelling of feedback effects between the seller and the market
(e.g. Flash Crash 06/05/10)

=⇒ Need to understand price formation better!
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Price Impact Models and Optimal Execution Almgren–Chriss models

Summary of A–Ch-type market impact modelling

• Revenues from a large sell/buy order may depend crucially on its
execution

• The optimal execution strategy in turn may depend crucially on the
criterion

• Almgren–Chriss models involve permament and temporary impact of
trades on prices

• Under linear impacts and maximising revenues, it is optimal to sell at
a constant speed

• Under linear impacts and among deterministic strategies, optimising
mean-variance criterion, it is optimal to use a specific convex
programme.
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Transient Price Impact Models Obizhaeva–Wang type models

Types of price impact

So far we have modelled:

• permanent price impact

• temporary price impact

In reality, transactions interact with the LOB. Market orders will eat into
the book but new liquidity will then come as markets are resilient.

We need to model

• transient price impact
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Transient Price Impact Models Obizhaeva–Wang type models

Modelling transient price impact

Idea: model transient price impact by:

• stochastic dynamics of LOB
 e.g. constant depth λ, model only bid Bt & ask At

• a buy (market) order eats into the ask side of the book
 a buy order of ∆Xt > 0 moves ask At+ = At + ∆Xt/λ

• book then reverts back at some speed
 according to a decay kernel G (delay), e.g. e−ρt , (1 + t)−α

Obizhaeva & Wang ’13, Alfonsi et al. ’08, Gatheral ’10, Gatheral et al. ’12...

c©Jan Ob lój, University of Oxford Price Impact Models and Market Microstructure 17 – 21 June 2019 36 / 74

Transient Price Impact Models Obizhaeva–Wang type models

Simple transient price impact (Obizhaeva & Wang ’13)

• Assume no bid-ask spread, S0
t = Bt = At is a martingale

• Constant book depth of λ = 1/G (0)

• A discrete order Xt+ − Xt =: ∆Xt moves price

SX
t+ = SX

t + ∆XtG (0)

and is executed at cost of (= - expected revenue of)

1

G (0)

∫ SX
t+

SX
t

vdv =
1

2G (0)

(
(SX

t+)2 − (SX
t )2
)

=
G (0)

2
(∆Xt)

2+∆XtS
X
t .

• The market is resilient and trade impact wanes away. So that

SX
t = S0

t +
∑

s<t:∆Xs>0

G (t − s)∆Xs
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Transient Price Impact Models Obizhaeva–Wang type models

Simple transient price impact – cont.
• Assume now trading is only possible at some give time points:

0 = t0 < t1 < . . . < tn = T , X0 given, XT = 0 and

Xt = X0 +
∑
i :ti<t

∆i , where ∆i := Xti+ − Xti

• The mid-price resulting from strategy X is

SX
t = S0

t +
∑
i :ti<t

G (t − ti )∆i

• The total cost of executing X is

C(X ) = S0
0X0 −R(X ) = S0

0X0 +
n∑

i=0

(
G (0)

2
∆2

i + ∆iS
X
t

)

= S0
0X0 +

n∑
i=0

S0
ti

∆i +
n∑

i=0

G (0)

2
∆2

i + ∆i

∑
j<i

G (ti − tj)∆j


c©Jan Ob lój, University of Oxford Price Impact Models and Market Microstructure 17 – 21 June 2019 38 / 74

Transient Price Impact Models Obizhaeva–Wang type models

Simple transient price impact – cont.

S0
0X0 +

n∑
i=0

S0
ti

∆i = S0
0X0 +

∫ t

0
S0
t dXt = −

∫ t

0
Xt−dS

0
t

which has zero expectation (assuming ∆i bounded). Further,

n∑
i=0

G (0)

2
∆2

i + ∆i

∑
j<i

G (ti − tj)∆j


=
∑
i

G (0)

2
∆2

i +
∑
i

∑
j<i

G (ti − tj)∆i∆j

=
1

2

∑
i

∑
j

G (|ti − tj |)∆i∆j

In consequence, the total expected cost of liquidation following X is

E[C(X )] =
1

2

∑
i

∑
j

G (|ti − tj |)E [∆i∆j ]
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Transient Price Impact Models Obizhaeva–Wang type models

Simple transient price impact – solution

It is then enough to look for X among deterministic strategies:

minimise
∑
i

∑
j

G (|ti − tj |)∆i∆j over ∆ ∈ Rn+1 : ∆T1 = −x0

Rk: value invariant under ∆→ −∆ =⇒ Optimal Buy = - Optimal Sell.

If G is strictly positive definite then the optimal solution ∆∗ is

∆∗ = const · Γ−11, where Γij = G (|ti − tj |).

Let us take equidistant steps: ti+1 − ti = T
N and look at different

examples of G .
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Transient Price Impact Models Obizhaeva–Wang type models

Optimal strategy – examples
Optimal ∆∗

i for t ∈ [0, 1], N = 20, X0 = −100 and four decay kernels:

G1(t) = e−5t , G2(t) = (0.5− 2.7t)+, G3(t) =
1

(1 + 10t)2
, G4(t) =

1

1 + (10t)2
.
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Transient Price Impact Models Obizhaeva–Wang type models

Optimal strategy – examples
Optimal ∆∗

i for t ∈ [0, 1], N = 100, X0 = −100 and four decay kernels:

G1(t) = (0.5−2.7t)+, G2(t) =
1

(1 + 5t)2
, G3(t) =

1

1 + (10t)2
G4(t) =

1

1 + (7t)2
.
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Non-robustness w.r.t. decay kernel
The optimal ∆∗

i for t ∈ [0, 1], N = 100, X0 = −100 and three decay kernels:

G2(t) =
1

(1 + 5t)2
, G3(t) =

1

1 + (10t)2
G4(t) =

1

1 + (7t)2
.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4
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0.8

1.0

differ dramatically...
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Notion of “price manipulation strategy”

We saw that very similar decay functions may lead to drastically different
optimal portfolios, including round-trip-taking trading. Clearly requires
further studies.

Definition
A round trip strategy X , X0 = XT = 0 with strictly negative expected cost
E[C(X )] < 0 is called a price manipulation strategy.

Note that this is not the usual arbitrage since profit is not a.s. but in
expectation. However in some models rescaling and repeating price
manipulation leads to (weak) arbitrage.

We first extend our previous analysis to arbitrary strategies X .
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Transient price impact with arbitrary strategies
With discrete X , the impacted price process was

SX
t = S0

t +
∑
i :ti<t

G (t − ti )∆i = S0
t +

∫
s<t

G (t − s)dXs

and the last term extends to arbitrary X (predictable, left-continuous, of
bounded variation). The revenues of a continuous strategy are given as
previously

−
∫ T

0
SX
t dXt = −

∫ T

0
S0
t dXt −

∫ T

0

∫
s<t

G (t − s)dXsdXt .

In the case of discrete X we had

−
n∑

i=0

S0
ti

∆i −
1

2

∑
i

∑
j

G (|ti − tj |)∆i∆j

= −
∫ T

0
S0
t dXt −

1

2

∫ ∫
G (|t − s|)dXsdXt
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Transient price impact with arbitrary strategies

Combining, the execution cost of X are

C(X ) = S0
0X0 −R(X ) =

∫ T

0
Xt−dS

0
t +

1

2

∫ T

0

∫ T

0
G (|t − s|)dXsdXt .

composed of volatility risk and price impact cost

Cexec(X ) =
1

2

∫ T

0

∫ T

0
G (|t − s|)dXsdXt .

Price manipulation ⇐⇒ E[Cexec(X )] < 0.

Let’s start with understanding when Cexec(X ) ≥ 0 a.s.
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Bochner’s theorem and positive costs

Proposition

We have Cexec(X ) ≥ 0 for all strategies X iff G is positive definite, i.e. can be

represented as the Fourier transform of a positive finite Borel measure µ on R.

Further, if G is strictly positive definite (µ is not discrete) then Cexec(X ) > 0 for

all nonzero X .

We may also formalise the case of deterministic discrete strategies.

Proposition (Gatheral, Schied and Slynko ’12)
Suppose G is positive definite. Then among deterministic strategies trading at
given times (ti ), an optimal one X ∗ satisfies a generalised Freedholm integral
equation ∫

G (|ti − s|)dX ∗
s = λ, i = 0, 1, . . . ,N

for some constant λ.

Rk.: We wrote this equation as Γ∆ = const · 1 before.
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Is absence of price manipulation enough?

We have

positive definite G =⇒ no price manipulation strategy.

Is this enough? Take
G (t) = e−t

2

which, up to scaling, is its own Fourier transform and hence positive
definite.

Let’s look at the optimal strategy for T = 10, X0 = −100 and vary N.
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, X0 = −100, N = 10
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, X0 = −100, N = 15
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, X0 = −100, N = 20
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c©Jan Ob lój, University of Oxford Price Impact Models and Market Microstructure 17 – 21 June 2019 51 / 74

Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, X0 = −100, N = 25
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, X0 = −100, N = 37
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, X0 = −100, N = 38
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Transient Price Impact Models Non-robustness w.r.t. decay kernel

Optimal trading with Gaussian decay G (t) = exp(−t2),
T = 10, X0 = −100, N = 100
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Clearly excluding price manipulation strategies is not enough...
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Transient Price Impact Models Regularity of market models

Price manipulation strategies

Definition
A market model admits price manipulation if there exists a round trip
strategy X , X0 = XT = 0 with strictly positive expected revenues
E[R(X )] > 0.

Definition
We say that a market impact model admits transaction–triggered price
manipulation if the expected revenues of a sell (resp. buy) program can be
increased by intermediate buy (resp. sell) orders.

Remark: in a sensible model (i.e. if buying increases prices and selling
decreases prices) absence of transaction–triggered price manipulation
implies absence of the usual price manipulation.
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Transient Price Impact Models Regularity of market models

Regularity of Almgren–Chriss type models

Recall that in A-CH framework, the impacted price is

SX
t = S0

t +

∫ t

0
g(Ẋs)ds + h(Ẋt).

Proposition (Huberman & Stanzl ’04, Gatheral ’10)

If the model above does NOT admit price manipulation for all T > 0 then
g(x) = γx for some γ ≥ 0.
Further, if g is linear and x → xh(x) is convex than the model does NOT
admit transaction–triggered price manipulation.

Rk: the second part is clear since in this setting the optimal X ∗ is linear.
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Transient Price Impact Models Regularity of market models

Regularity of Obizhaeva–Wang type models

Proposition (Alfonsi, Schied & Slynko ’12)

A transient price impact model with decay kernel G s.t.

G (0)− G (s) < G (t)− G (t + s), for some s 6= t,

admits transaction-triggered price manipulation trading at {0, s, t + s}.
In particular, it is enough that G is NOT convex for small t.

Proposition (Alfonsi et al. ’12, Gatheral et al. ’12)

A transient price impact model with convex, decreasing, non-negative
decay kernel G admits a unique optimal X ∗ which is monotone in time. In
particular the setup does NOT admit transaction-triggered price
manipulation.
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Transient Price Impact Models Regularity of market models

Other developments

• Non-linear transient price impact models: the book has varying depth
according to a given shape f , see Alfonsi & Schied ’10

• A combination of impacts, e.g. Gatheral ’10

SX
t = S0

t +

∫ t

0
h(−Ẋt)G (t − s)ds

• Stochastic models of LOB where the shape f is a stochastic process
in space of curves and/or stochastic resilience, see Alfonsi & Infante
Acevedo ’12, Klöck ’12, Fruth, Schöneborn & Urusov ’11, Müller &
Keller-Ressel ’15.

• ...
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Transient Price Impact Models Regularity of market models

Summary of transient market impact models

• Transient price impact models take into account the interaction of
orders with the LOB and market resilience

• Under constant LOB depth, discrete trading at (ti ) and maximising
expected revenues the optimal strategy explicit for many impact
decay kernels G

• More generally the problem quickly becomes very hard...

• Even in simple setting, the optimal strategies may often involve round
trips. Solution is non-robust with respect to G .

• Possible to study, and provide sufficient conditions for, the absence of
price-triggered manipulation strategies.
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Predatory trading and HF hot-potatos
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Predatory trading and HF hot-potatos

Multi-agent frameworks

• In reality many agents interact in a market.

• Mathematically best modelled as game. When number of players
n→∞, sometimes possible to analyse as a mean field game.
• Interesting as it allows to study

• Interaction of one large player with n small players (e.g. predatory
trading)

• Global market implications of interactions between small players
• Properties of markets which facilitate different phenomena
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Predatory trading and HF hot-potatos

Predatory Trading

Large Trader facing a forced liquidation
+

other (HF) traders aware of this fact
⇓

Predatory Trading

Examples of “targets”:

• Index-replicating funds at rebalancing dates

• Institutional investors subject to regulatory constraints (e.g. when an
instrument is downgraded)

• Traders using portfolio insurance or stop-loss strategies

• Hedge funds close to a margin call

• Recalled short-seller
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Predatory trading and HF hot-potatos

Predatory Trading

“... if lenders know that a hedge fund needs to sell something quickly, they
will sell the same asset – driving the price down even faster. Goldman,
Sachs & Co. and other counterparties to LTCM did exactly that in 1998.”

Business Week, 26 Feb 2001

“When you smell blood in the water, you become a shark ... when you
know that one of your number is in trouble ... you try to figure out what
he owns and you start shorting those stocks ... ”

Cramer, 2002
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Predatory trading and HF hot-potatos

Predatory Trading – mechanisms
When a need of a large trader (prey) to liquidate is recognised, the
strategic traders (predators) might
• first trader in the same direction

• withdraw liquidity instead of providing it
• market impact is greater leading to price overshooting
• may further enforce distressed trader’s need to liquidate

• then reverse direction to profit from the overshoot

• closing the roundtrip at a profit.

However when strategic traders have a longer horizon than the liquidation,
their behaviour may depend on market characteristics:

• could act as predators as above  large trader tries to keep
intentions hidden (stealth trading)

• could act as liquidity providers  large trader announces intentions
(sunshine trading)

see Brunnermeier & Pedersen ’05, Carlin, Lobo & Viswanathan ’05, Schied &

Schöneborn ’08.
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Predatory trading and HF hot-potatos

One-period game model with A–Ch price impact
• n + 1 players with portfolios X0(t), . . . ,Xn(t), t ∈ [0,T ], assumed

cont. diff. in time
• one prey (seller): X0(0) = x0 > 0, X0(T ) = 0
• n predators: Xi (0) = Xi (T ) = 0, i = 1, . . . , n

• and the above is common knowledge

• players are risk-neutral and maximise their expected profit

Ri (X ) = −E
[∫ T

0
StdXi (t)

]
• one risk-free and one risky asset, continuous trading, Almgren–Chriss

linear price impact model

S(t) = S(0) + σWt + γ

n∑
i=1

(Xi (t)− Xi (0)) + η

n∑
i=1

Ẋi (t)

• Solved by searching for Nash equilibrium.
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Predatory trading and HF hot-potatos

One-period game model with A–Ch price impact

Assuming all Xi are deterministic this can be solved explicitly giving

Ẋ ∗i (t) = αe
− n

n+2
γ
η
t + βie

γ
η
t
,

where

α =
−n
n + 2

γ

η

(
1− e

− n
n+2

γ
η
T
)−1 x0

n + 1
,

βi =
γ

η

(
e

γ
η
T − 1

)−1
(
Xi (T )− Xi (0) +

x0

n + 1

)
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Predatory trading and HF hot-potatos

Optimal strategies with n = 1, T = 1, γ
η = 0.3
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Distressed trader (blue) and one predator in a elastic market
(i.e. temporary impact > permanent impact)
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Predatory trading and HF hot-potatos

Optimal strategies with n = 1, T = 1, γ
η = 20

0.2 0.4 0.6 0.8 1.0

!50

50

100

Distressed trader (blue) and one predator in an plastic market
(i.e. permanent impact > temporary impact)
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Predatory trading and HF hot-potatos

Optimal strategies with n = 1, T = 1, γ
η = 100
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Distressed trader (blue) and one predator in a highly plastic market.
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Predatory trading and HF hot-potatos

Effect of predators, T = 1, x0 = 100, S0 = 100,
γ = η = 2%

Comparison of n = 1 and n = 40 predators. Aggregated Holdings:
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Expected execution cost E[C(X )]: 3.1% and 3.2% (compare with 3% when n = 0)

Expected revenue per predator: 7.27 and 0.4.
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Predatory trading and HF hot-potatos

Effect of predators, T = 1, x0 = 100, S0 = 100,
γ = 20 ∗ η = 2%

Comparison of n = 1 and n = 40 predators. Aggregated Holdings:
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Expected market price:
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60.15

Expected execution cost E[C(X )]: 33.3% and 40% (was 22% when n = 0)
Expected revenue per predator: 665 and 2.3.

Price and execution costs scale linearly with costs when keeping γ
η fixed.
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Predatory trading and HF hot-potatos

HF hot-potato game

Schied & Zhang ’13 considered the following setup:

• two HF players X and Y trading in an Obizhaeva & Wang market
with G (t) = e−ρt

• trading at an equidistant discrete time grid

• with opposite initial positions X0 = −Y0.

Using a Nash equilibrium analysis, they show that

• the optimal behaviour, if trading is frequent enough, involves a highly
oscillatory trading

• hot-potato effect with volume passed between traders

• the effect can be eliminated if transaction costs present and high
enough compared to LOB depth
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Predatory trading and HF hot-potatos

Multi-agent setup summary

• Detailed analysis of market behaviour may require models with
interacting agents

• Mathematically, often done using game theory and searching for Nash
equilibria

• Predatory trading can be described as a game between one large seller
(prey) and n strategic traders (predators)

• Both from the theory and practice, we see that predators often first
trade in the same direction as the large trader leading to price
overshoot of which they then take advantage.

• The optimal behaviour highly dependent on the market characteristic
(e.g. which type of price impact dominates)

• More involved situations (e.g. strategic traders having longer trading
horizon) may lead to qualitatively different solutions

• Many other situations in which game analysis is interesting, e.g. high
trade volume (hot-potato) effect of trading between two agents.
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