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Section 1

Portfolio Choice Models: Formulation

Yaari's Dual Theory — Discrete Random Variables

» Given a random payoff X, which is a discrete random variable
having possible values
< Ty < <x1<0<x1 < - <xYp < -+ and the

distribution P(X = z;) = p;.
» Evaluation of X (Yaari 1987):

V(X) =), (w(ij) —w( Y pj))
n=1 Jj=n

j=n+1
~ 3 (i) (w@pn —w( Y m)
n=1 j=n j=n+1

where probability weighting (or distortion) w : [0,1] — [0, 1],
T, w(0)=0 w(l)=1

Yaari's Dual Theory — General Random Variables

If X >0 is a general random variable:

V(X)= [XdwoP)
Jo~ wd[—w(P(X > )]
IS w (IP’(X > x)) dx




Rank Dependence

Assuming w is differentiable:
V(X)= fooo xd[—w(1~— Fy(x))] = fooo zw'(1 — Fg(x))dFg(z)
where F'; is CDF of X
» 1 — Fg(z) =P(X > ) is rank of outcome = of X (the
smaller the rank the more favourable the outcome)

» For example, ranks of supremium, median, and infimum of X:
0, 1/2, and 1 respectively

» V(X) depends on ranks of random outcomes

Evaluation Dictated by Weighting

V(j() = fooo zw'(1 — Fg(z))dFg(x)
> Risk averse when w(-) is convex (overweighing unfavourable
payoffs and underweighing favourable payoffs)
» Risk seeking when w(+) is concave

» Simultaneous risk averse and risk seeking when w(-) is
inverse-S shaped

Probability Weighting Functions
» Kahneman and Tversky (1992) weighting

p'Y
(pY + (L —p)1)/7’

w(p) =

» Tversky and Fox (1995) weighting

w(p) = _w
P =y
> Prelec (1998) weighting

6(=Inp)?

w(p) =e”
> Jin and Zhou (2008) weighting

ao 2
yg_ake““+( 70 (@71(2) —ao) 2z <1-— 2,

- 2
C+ ke o (@71 (2) —bo) z2>1- 2z

w(z) =
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Quiggin's Rank-Dependent Utility Theory

» Rank-dependent utility theory (RDUT): Quiggin (1982),
Schmeidler (1989)

» Preference of X > 0 dictated by an RDUT pair (u, w)

/u(X)d(wOP) = /Ooow (P(u(f() > m)) dx

» Two components
» A concave (outcome) utility function: individuals dislike
mean-preserving spread
» A (usually assumed) inverse-S shaped (probability) weighting
function: individuals overweight tails

10 /86

Primitives

Present date t = 0 and a future date t =1
Randomness described by (2, F,P) att =1

v

v

v

An atomless pricing kernel (or state-price density or stochastic

discount factor) p so that any future payoff X is evaluated as

E[5X] at present
» An agent with

> initial endowment zog >0 att =0
» preference specified by RDUT pair (u, w)

.. wants to choose future consumption (wealth) &

11/86

Portfolio/Consumption Choice Model under RDUT

The model

Méax Vi) = [,°w (P (u(@) > z))dx

] (RDUT)
subject to  E[p¢] < g, ¢ >0

12 /86

Portfolio/Consumption Choice Model under CPT

The model

v

c

Max Ve = [, wy (IP’ <u+ ((E — B)*) > x)) dx

— Jo w- (]P’ (U— ((E — B)*) > 33)) dz

subject to E[pé] < zq, ¢ is bounded below

» wu4 is assumed to be concave so overall value function
Ut (2)1g>0 — u—(x)1g<o is S-shaped; us(0) =0

» wy is in general non-convex/non-concave

v

B is reference point

(CPT)
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Section 2

Portfolio Choice Models: Solutions

Issues

Related to the Model

Feasibility: whether there is at least one solution satisfying all
the constraints

Well-posedness: whether the supremum value of the problem
with a non-empty feasible set is finite (in which case the
problem is called well-posed) or oo (ill-posed)

Attainability: whether a well-posed problem admits an optimal
solution

Uniqueness: whether an attainable problem has a unique
optimal solution

16 /86

EUT Model Revisited

The EUT model
Max V(@) = [;°P(u(@) > z) de = E[u(c)]
subject to E[p¢] < xg, ¢ >0

v

(EUT)

v

Lagrange: Maxz E[u(¢) — Apé]

First-order condition: & = (u/)~! (\p)

Determine \: E[5(u/)~1 (\p)] = x0¢

Karatzas and Shreve (1998), Jin, Xu and Zhou (2008)

v

v

v

17 /86

Properties of EUT Solution

&= ()" (W)

Assume Inada condition: u'(0+) = oo, u/(c0) =0

¢* € (0,400)

c* is a non-increasing function of p — anti-comonotonic with p

Random variables X and Y are called comonotonic if
(X(wl) - X(wg)) (?(wl) - f/(wz)) >0 a.s.

Random variables X and Y are called anti-comonotonic if X
and —Y are comonotonic
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Solving RDUT Portfolio Choice Model

The model

Max V(@) = [y"w (P (u(@) > z))de
subject to E[p¢] < xg, ¢>0

v

(RDUT)

» u is assumed to be concave

> w is in general non-convex/non-concave

v

Difficulty: due to nonlinear weighting function w, (RDUT) is
not a concave maximisation problem even though u is
concave, and the objective is not an expectation

19/86

Literature

» Very little ...

» Shefrin (2008): finite probability space; informal and
preliminary

> Carlier and Dana (2008): necessary conditions; no explicit
solution

20 /86

Standing Assumptions

» 5> 0 as., atomless, with E[g] < +00

> u: [0,00) — R is strictly increasing, strictly concave,
continuously differentiable on (0, 00), and satisfies the Inada
condition: u/(0+4) = oo, u/(c0) =0

» w: [0,1] — [0, 1] is strictly increasing and continuously
differentiable, and satisfies w(0) = 0, w(l) =1

21/86

Quantile (Function)

» Given random variable X and its CDF Fg : (—00,00) = [0,1]
» The (upper) quantile G 3 : [0,1) — [—00,00] is defined as

Gi(p):=inf{r e R : Fg(x) >p}, pel0,1)

» G is non-decreasing and right-continuous

22 /86




The RDUT Model Again

Méax V(@) =[5 w (P (u(@) > z))dx (RDUT)
subject to E[pé] < xg, ¢ >0
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Preference and Cost

v

The supremium of (RDUT), as a function of g, is strictly
increasing in zq (“the more money the better”)

v

V' is law-invariant. V(¢) = V(&) whenever ¢ ~ &

v

One may substitute ¢ in V' by any r.v. ¢ without changing its
value — so long as the distribution remains unchanged

v

.. which ¢ is the cheapest?

v

Consider ming .z E [p¢]

24 /86

Hardy-Littlewood Inequality

Lemma

(Jin and Zhou 2008) We have that ¢* := G(1 — F;(p)) solves
ming .z E [p¢], where G is quantile of &. If in addition

—o00 < E[p¢*] < 400, then & is the unique optimal solution.
Hardy, Littlewood and Polya (1952), Dybvig (1988)

25 /86

Changing Decision Variable

> We only need to consider consumption class of the form
¢ = G(Z) where G is quantile of ¢ and
Z =1~ Fy(p) ~ U(0,1)

» Budget constraint rewritten

E[pd] <zog < E [F/;l(l - Z)G(Z)] <zp& /‘1 Fgl(lfz)G(z)dz < xg
0

» Preference measure rewritten

/000 w (P (u(¢) > z))dx = /OOC u(z)dw(Fz(z)) = /01 uw(G(2))dw(z),

where @w(p) =1 — w(1 — p) (dual of w)

» Decision variable is now changed from ¢ to its quantile G!
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Original RDUT Model

M(gx J5° w (P (u(é)

>
- (RDUT)
subject to E[p¢] < xg, ¢ >0

Quantile Formulation

The quantile formulation of (RDUT) is:

Max ) = [Fu(GE)w' (1 — 2)dz
e Ul(G(_i) Jo w(G(2)w'(1 - 2)d Q)

subject to [ F5 (1 — 2)G(2)dz < g
where

G ={G :[0,1) — [0, 00] non-decreasing and right-continuous},

is the set of quantile functions of nonnegative random variables

A concave maximisation problem!

27 /86 28/86
Lagrange Method Anti-Comonotonicty
> Apply a multiplier A to the initial budget constraint
» For each A, we solve the unconstrained problem and derive
the optimal solution G% - " ~
o O . > & =G (1= F(p))
» Find A* such that G3. binds the initial budget constraint, i.e., e . . . ~
» ¢* is a non-increasing function of p
v . » ¢* is anti-comonotonic with
/0 F (1= 2)G3- (2)dz = 0.
Then G73. is optimal to (Q)
> ¢ :=Gi.(1 — F3(p)) is optimal to (RDUT)
29 /86 30/86




Unconstrained Problem

» The quantile problem is to solve

Max  U(G)= J3 u(G()w' (1 = 2)d=

subject to fol Fﬁ_l(l —2)G(2)dz <z @

» Given )\, consider

Max UA(G) = Jy [u(G(z))w’(l —2) — AF; (1 - z)G(z)] dz
(Qx)

“Brute Force” Solution

» Maximise the integrand over G(z) pointwisely
» First-order condition: u/(G(2))w'(1 — 2z) — )\Fﬁ_l(l —2z)=0

_ —1(1—,
G(z) = (u)! (%) would solve the quantile

v

formulation ...

—1.q_
... provided that "2, (")

v

is non-increasing, or

M(z) = w,(lffi is non-decreasing!

Integrability Condition

» We impose the following condition as in classical EUT model
to ensure that the optimal value is finite and the optimal
solution exists

E [u ((u’)1 <w,(%)p(p))>)] < 400, forany A >0

> In the following, we always assume the integrability condition
holds

33/86

Solution under Monotonicity Condition

Theorem
(Jin and Zhou 2008) /f M (z) is non-decreasing on z € (0,1),
then the unique optimal solution to (RDUT) is given as

where \* is determined by E(pé*) = xg.

Remark
When there is no probability weighting, it reduces to the
classical EUT result.

34

86




The Monotonicity Condition

! — - - - - .
> M(z) = F“;Slji) is automatically non-decreasing if w is
p

concave (risk-seeking)
» If w e C? and G; € C*, then M is non-decreasing iff

0<z<l1

where G is the quantile of p

» However: The condition is violated for many known
weighting functions and a lognormal pricing kernel

Violation of Monotonicity Condition

Proposition
(He and Zhou 2012) Suppose p is lognormally distributed, i.e.,

Fie) = & (m —M>

g

for some (1 and o > 0, where ®(-) is the CDF of standard Normal.
For any weighting function in K-T, T-F, P with 0 < v < 1, there
exists € > 0 such that
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Probability Weighting Functions
» Kahneman and Tversky (1992) weighting

p'Y
(pY + (L —p)1)/7’

w(p) =

» Tversky and Fox (1995) weighting

w(p) = _w
P =y
> Prelec (1998) weighting

6(=Inp)?

w(p) =e”
> Jin and Zhou (2008) weighting

ao 2
yg_ake““+( 70 (@71(2) —ao) 2z <1-— 2,

- 2
C+ ke o (@71 (2) —bo) z2>1- 2z

w(z) =
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Endogenous Portfolio Insurance

Theorem
(He and Zhou 2012) [f there exists € > 0 such that

l—-e<z<1,

then for any optimal solution & to (RDUT), we have
essinf ¢* > 0.

Remark

» Agent will set a positive floor (portfolio/consumption
insurance) endogenously if Z,—((ZZ)) is sufficiently large when
z is near 1

. w” .
» Fear index: w,((zz)) when z is near 1

38 /86




Tversky and Kahneman 1992 Tversky and Fox 1995
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Prelec 1998 Monotonicity Condition

7t 1 Assumption

M () is continuously differentiable on (0, 1) and there exists

0 < zp < 1 such that M(-) is strictly decreasing on (0, zp) and
i 1 strictly increasing on (2o, 1). Furthermore, lim,4 M (z) = +o0.

M(z)
IS

» Under this assumption,

1
0.4

41/86

AF-H(1-2)

G(2) = () (w‘t<l_z>

non-decreasing, so the brutal force (point-wise maximization)

fails

)

(u')~Y(\/M(z)) is no longer

42 /86




Way Out: An lllustration

\bar{G}(z)

G(z)

G(z)

43 /86

One Dimensional Optimisation

» We only need to consider quantiles in the form of
G(2) = G(y)Locz<y + G(2)1y<o<1

forzp<y<1
» Substitute above G into

UA(G) = /01 [U(G(z))w'a —2) = AN - z)G(z)] dz

and find optimal !
» Optimal y exists and is unique, and independent of A

> Denote optimal y by z*, which is shown to be the unique root
of

o) = [ (w1 2a - 2) B0 <y <

44 /86

Solution under Two-Piece Monotonicity Condition

Theorem
(He and Zhou 2012) Under the specified condition on M,
(RDUT) has a unique optimal solution

where a* > 0 is the root of

p(o) i= (1 = wlFyla))) — w'(Fp(w) [ sdFyla)

on (Fgl(zo), +00), and \* > 0 is such that E(pc*) = xo.

45 /86

Section 3

Quantile Formulation as a General Approach




A Generic Model

Max V(e

Basic Assumptions

» V is law invariant
» “The more money the better”: v(xg) > v(x() whenever

subject to E[pd] < a0, &0 (P) xo > x(, where v(zg) is the supremum of (P)
> pis atomless
48 /86 49/86
Quantile Formulation Goal Achieving
» Quantile formulation

M V(G(Z :

Max (G(2)) ) Q) Max P(é > b)

subject to  E[F; Y1-2)G(2)] < =z subject to  E[pc] <z, ¢>0

where Z ~ U(0,1)
> If G* is optimal to (Q) then ¢* := G*(1 — F;(p)) is optimal to
(P)

» So & is always anti-comonotonic with p

50 /86

where b: the goal

Kulldorff (1993), Heath (1993), Browne (1999), Follmer and
Leukert (1999), Spivak and Cvitani¢ (1999), etc.

51
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Quantile Formulation

> PE>b) = [ LspdFs(a) = ) L (oo @2

» Quantile formulation

Ivlax = Jo Lic)zp)dz
Subject to fo F~ (1-2)G(2)dz < xo

52 /86

Solution

Theorem

(He and Zhou 2009) The unique optimal solution to
goal-achieving problem is ¢* = bl ;<,) where a > 0 is such that
E[1(3<q)p] = x0/b. The optimal value is F;(a).

Proof.

Lagrange — pointwise maximisation — binding budget constraint [

53 /86

SP/A Portfolio Choice Model

Max V(@) = [y5w (P (u(@) > x))de
subject to  E[pc] < xg, € (SPA)
P> A) >«
where
» A > 0: aspiration level

» «: confidence level

54 / 86

Quantile Formulation

Max  U(G) = J3 u(G(2)w'(1 - 2)dz

Subject to fol Fgl(l —2)G(2)dz < zp, G(1—a)> A @

55 /86




Solution

Theorem
(He and Zhou 2012) Assume that z9 > AE {ﬁl(ﬁgFgl(a))}, and

M is non-decreasing on (0,1). Then the unique optimal solution
to (SPA) is given as

&= ) (i) Losr @)
+ ™ (i) v A e

where \* is the one binding the initial budget constraint, i.e.,
E(pc*) = xg.

56 / 86

CPT Portfolio Choice Model

v

The model
Max V(e = [, wy (IP’ <u+ ((6 — B)+) > :c)) dx

— JoSw- (]P’ (u_ ((5 - B)f) > x)) dx
subject to  E[pc] < xg, ¢ is bounded below
(CPT)

» uy is assumed to be concave so overall value function
Ut (2)1g>0 — u—(x)1g<o is S-shaped; u+(0) =0
» w4 is in general non-convex/non-concave

» B = 0 without loss of generality

57 /86

Approaches

v

Quantile formulation to deal with probability weighting

v

A “divide-and-conquer” approach to deal with S-shaped utility
function

v

Need to solve a minimisation problem of a concave
functional in the quantile space: a combinatorial optimisation
in infinite dimension

v

Explicit solution; anti-comonotonicity; gambling strategies;
leverage: Jin and Zhou (2008)

58 / 86

A Mathematical Programme

Consider a mathematical programme in (a,z):
_ Aa,x4)p 7
Max(q .,y F [u+ ((uﬁr) ! (ﬁi(pﬁt%)))) wﬁr(Fﬁ((P))l(ﬁga)]

—u(gp,00) - (1 = F(a))

essinf p < a < esssup p, =4 > :L’BL,
x4+ = 0 when a = essinf p, x4 = xp when a = esssup p,

(MP)
where \(a, ) satisfies E [(uﬁr) ( )‘(? ”)) ) pl p<a)} =xy

subject to {

()
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Grand Solution

Theorem

(Jin and Zhou 2008) Assume u_(-) is strictly concave at 0 and
M is non-decreasing. Let (a*,x% ) solves (MP). Then the optimal
solution to (CPT) is

5 _ Ap Tt — xg
&= | 1(7~)}1~a*7[f7}1~m.
[( D\ Emen ) o= T | Epigaa)) e

60 / 86

Interpretations and Implications

Ap :vi — X9

= | ()] s [t o

» Future world divided by “good” states (where you have gains)
and “bad” ones (losses), completely determined by whether
p<a*orp>a*

» Agent buy claim [(uﬁr)*l (%)} 1(j<q~) at cost
+(Fp =
% x* —x0 .
fL'+ 2 i) and sell [m] 1(,5>a*) to finance shortfall

zh —
» Agent not only invests in stocks, but also generally takes a
leverage to do so

» Optimal strategy is a gambling policy, betting on the good
states while accepting a known loss on the bad

61 /86

Section 4

Continuous Time and Time Inconsistency

63 /86

A Continuous-Time Economy

» An economy in which m + 1 securities traded continuously

» Market randomness described by a complete filtered
probability space (2, F, {Fi}+>0, P) along with an
R™-valued, Fi-adapted standard Brownian motion
W(t) = (W), -, W™(t))" with {F;}+>0 generated by
w()

» A bond whose price process Sy(t) satisfies

dSo(t) = r(t)So(t)dt; So(0) = so

» m stocks whose price processes Sy (t), - - Sy, (t) satisfy
stochastic differential equation (SDE)

dS;(t) = S;(t) (p,-(t)dt + iaw (t)dw? (t)) : S;(0) = s;

=1
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Tame Portfolios

> Let
a(t) := (o35 (1))mxm
B(t) := (2 () = (), -+, pm (t) = 7(8))’
» An F;-progressively measurable process
w(t) = (m1(¢), -, mm(t)) represents a (monetary) portfolio,
where ;(t) is the capital amount invested in stock i at ¢
> A portfolio 7 () is admissible if

T T
/ o ()7 () 2dt < +oo, / \B(&)/ 7 (t)]dt < +o0, as.
0 0

» An agent has an initial endowment zg

65 / 86

Wealth Equation

» Wealth process z(-) follows the wealth equation

{ dz(t) = [r(t)z(t) + B(t)'n(t)]dt + 7 (t)'o(t)dW (t)
z(0) =ao

» An admissible portfolio 7(-) is called tame if the
corresponding wealth process x(-) is essentially lower bounded

66 /86

Market Assumptions

Market assumptions:
(i) There exists k € R such that [ r(t)dt > k,
.. T
(i) Jo 2 ()] + 32752y loij (t)Pldt < +oo,
(iii) Rank (o(t)) =m, ¢t € [0,T],
(iv) There exists an R™-valued, uniformly bounded,

Fi-progressively measurable process 6(-) such that
o(t)6(t) = B(t)

67 /86

Pricing Kernel

» Define

» Denote p := p(T)

» Assume that p is atomless

68 /86




Continuous-Time Portfolio Choice under EUT

Max Elu(z(T))]

subject to (z(-),7(-)) : tame and admissible pair
where u is a concave utility function satisfying the usual
assumptions

Time Consistency

» Time (dynamic) consistency. E(¢|F;) = E[E(¢|Fs)|Ft]
vVt <s

» Bellman's principle: If (z*(-),7*(+)) is optimal for problem
starting at (0, z¢), then (z*(-), 7*(+))|[s,7] is also optimal for
problem starting at (s, z*(s)), for any s € [0,T]

69 /86 70 /86
Forward Approach: Dynamic Programming Backward Approach: Replication
» Let v be the value function corresponding to (1): v(t,x) is > One solves first a static optimization problem in terms of
the optimal value of (1) if the initial time is ¢ (instead of 0) terminal wealth, ¢:
and the initial budget is = (instead of x) Max Elu(®)] "

> o satisfies the Hamilton—Jacobi-Bellman (HJB) equation:

{ V¢ + SUPrepm (3700 TV, + Brvy) +rav, =0, (t,z) € [0,T) x R,

o(T, z) = u(z)
)
» Verification theorem: optimal portfolio
7 (t,2) = ~(o(t)) o) L) )

Vg (t, )

71/86

subject to  E[pé] < xg; ¢ is Fp-measurable

- & = (W) (V)

> Solve backward stochastic differential equation (BSDE) in
(@(-),2°():
dz*(t) = [r(t)z* (¢) + 0(t) 2*(t)|dt + 2" (¢)' dW (t); =™ (T) = &* (5)

> Setting 7*(t) = (o(t)")"Lz*(t) and (z*(-), 7*(-)) is optimal
pair

72 /86




Time Inconsistency under Probability Weighting Replication: Pre-Committed Strategies

» Solve a static optimisation problem (with probability

v

Choquet expectation: - . .
E[X] _ fX'd(w oP) = fooow(IP’(X > 2))de weighting) in terms of terminal wealth
» Such a problem has been solved by our approach developed

v

How to define “conditional Choquet expectation”?
» Find a dynamic portfolio replicating the obtained optimal

v

Even if a conditional Choquet expectation can be defined, it ol ith
will not satisfy E(¢|F,) = E[E(&F,)|F terminal wealt
» Such a portfolio is an optimal pre-committed strategy (Jin

Dynami ing falls apart
7 Pynamic programming fafls apar and Zhou 2008, He and Zhou 2011)

73 /86 74 /86

Time Inconsistency and Equilibrium Strategies Section 7

» Sources of time inconsistency: probability weighting, variance
(mean field), state-dependent preferences, hyperbolic
discounting ...

> Pre-committed strategies exercised only in shorter time SU m mary and References
period, special circumstances, or a select group of people

» Equilibrium strategies: Nash equilibrium strategies where the
players are incarnations of oneself at different time periods

» Ekeland and Pirvu (2008), Hu, Jin and Zhou (2012,2015),
Bjork, Murgoci and Zhou (2012) ...

75/ 86 77 / 86




Summary

> Technical challenge arising from probability weighting:
non-convex optimisation in infinite dimension

» Approach — quantile formulation
» Think of distribution/quantile of future consumption!
» A monotonicity condition - its economic interpretation

» Quantile formulation can treat a much broader class of
problems, including behavioural and neoclassical ones

» Behavioural models are typically time inconsistent due to
probability weighting

Summary (Cont'd)

» Conditions on an RDUT economy provided under which the
Arrow-Debreu equilibrium exists uniquely

> At equilibrium one cannot distinguish between RDUT and
EUT economies; however, representative risk aversion level is
(possibly substantially) altered

» Asset prices not only depend upon level of risk aversion and
beta, but also upon agents’ belief on economic growth

» Probability weighting may offer a new way of thinking in
explaining many economic phenomena

78 /86 79/86
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Two Revolutions in Finance

» Finance ultimately deals with interplay between market risk
and human judgement

» History of financial theory over the last 50 years characterised
by two revolutions

» Neoclassical (maximising) finance starting 1960s: Expected
utility maximisation, CAPM, efficient market theory, option
pricing

» Behavioural finance starting 1980s: Cumulative prospect
theory, SP/A theory, regret and self-control, heuristics and
biases

83 /86

Neoclassical vs Behavioural

» Neoclassical: the world and its participants are rational
“wealth maximisers”

» Behavioural: emotion and psychology influence our decisions
when faced with uncertainties, causing us to behave in
unpredictable, inconsistent, incompetent, and most of all,
irrational ways

> A relatively new field that attempts to explain how and why
emotions and cognitive errors influence investors and create
stock market anomalies such as bubbles and crashes

> It seeks to explore the consistency and predictability in human
flaws so that such flaws can be avoided or even exploited for
profit
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Do We Need Both?

» Foundations of the two
» Neoclassical finance: Rationality (correct beliefs on
information, risk aversion) — A normative theory
» Behavioural finance: The lack thereof (experimental evidence,
cognitive psychology) — A descriptive theory

» Do we need both? Absolutely yes!

» Neoclassical finance tells what people ought to do

» Behavioural finance tells what people actually do

> Robert Shiller (2006), “the two ... have always been interwind,
and some of the most important applications of their insights
will require the use of both approaches”
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Quantitative Behavioural Finance

» “Quantitative behavioural finance” leads to new problems in
mathematics, engineering and finance

» But ... is it justified: to rationally and mathematically
account for irrationalities?

» Irrational behaviours are by no means random or arbitrary

> “misguided behaviors ... are systematic and predictable —
making us predictably irrational” (Dan Ariely, Predictably
Irrational, Ariely 2008)

» We use CPT/RDUT/SPA and specific value functions as the
carrier for exploring the “predictable irrationalities”

» Quantitative behavioural finance: research is in its infancy, yet
potential is unlimited — or so we believe
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