

$$V(\tilde{X}) = \sum_{n=1}^{\infty} x_n \left(w(\sum_{j=n}^{\infty} p_j) - w(\sum_{j=n+1}^{\infty} p_j) \right)$$
$$- \sum_{n=1}^{\infty} (-x_{-n}) \left(w(\sum_{j=n}^{\infty} p_{-j}) - w(\sum_{j=n+1}^{\infty} p_{-j}) \right)$$

where probability weighting (or distortion) $w : [0,1] \rightarrow [0,1]$, \uparrow , w(0) = 0, w(1) = 1

$$\begin{aligned} \mathbf{X} &= \int \mathbf{X} d(w \circ \mathbb{P}) \\ &:= \int_0^\infty x d[-w(\mathbb{P}(\tilde{X} > x))] \\ &= \int_0^\infty w\left(\mathbb{P}(\tilde{X} > x)\right) dx \end{aligned}$$

Rank Dependence

Assuming w is differentiable: $V(\tilde{X}) = \int_0^\infty x d[-w(1-F_{\tilde{X}}(x))] = \int_0^\infty x w'(1-F_{\tilde{X}}(x)) dF_{\tilde{X}}(x)$ where $F_{\tilde{X}}$ is CDF of \tilde{X}

- $1 F_{\tilde{X}}(x) \equiv \mathbb{P}(\tilde{X} > x)$ is rank of outcome x of \tilde{X} (the smaller the rank the more favourable the outcome)
- For example, ranks of supremium, median, and infimum of X:
 0, 1/2, and 1 respectively
- $V(\tilde{X})$ depends on ranks of random outcomes

Evaluation Dictated by Weighting

 $V(\tilde{X}) = \int_0^\infty x w' (1 - F_{\tilde{X}}(x)) dF_{\tilde{X}}(x)$

- Risk averse when w(·) is convex (overweighing unfavourable payoffs and underweighing favourable payoffs)
- ▶ Risk seeking when $w(\cdot)$ is concave
- \blacktriangleright Simultaneous risk averse and risk seeking when $w(\cdot)$ is inverse-S shaped

6 / 86

Probability Weighting Functions

Kahneman and Tversky (1992) weighting

$$w(p) = \frac{p^{\gamma}}{(p^{\gamma} + (1-p)^{\gamma})^{1/\gamma}}$$

Tversky and Fox (1995) weighting

$$w(p) = \frac{\delta p^{\gamma}}{\delta p^{\gamma} + (1-p)^{\gamma}}$$

▶ Prelec (1998) weighting

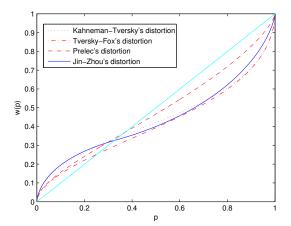
$$w(p) = e^{-\delta(-\ln p)^{\gamma}}$$

▶ Jin and Zhou (2008) weighting

$$w(z) = \begin{cases} y_0^{b-a} k e^{a\mu + \frac{(a\sigma)^2}{2}} \Phi\left(\Phi^{-1}(z) - a\sigma\right) & z \le 1 - z_0, \\ C + k e^{b\mu + \frac{(b\sigma)^2}{2}} \Phi\left(\Phi^{-1}(z) - b\sigma\right) & z \ge 1 - z_0 \end{cases}$$

8 / 86

Inverse-S Shaped Functions



9 / 86

Quiggin's Rank-Dependent Utility Theory

- Rank-dependent utility theory (RDUT): Quiggin (1982), Schmeidler (1989)
- \blacktriangleright Preference of $\tilde{X} \geq 0$ dictated by an RDUT pair (u,w)

$$\int u(\tilde{X})d(w\circ\mathbb{P})\equiv\int_0^\infty w\left(\mathbb{P}\big(u(\tilde{X})>x\big)\right)dx$$

Two components

The model

Max

 A concave (outcome) utility function: individuals dislike mean-preserving spread

Portfolio/Consumption Choice Model under RDUT

subject to $\mathbb{E}[\tilde{\rho}\tilde{c}] \leq x_0, \ \tilde{c} \geq 0$

 A (usually assumed) inverse-S shaped (probability) weighting function: individuals overweight tails

 $V(\tilde{c}) = \int_0^\infty w\left(\mathbb{P}\left(u(\tilde{c}) > x\right)\right) dx$

Primitives

- \blacktriangleright Present date t=0 and a future date t=1
- ▶ Randomness described by $(\Omega, \mathcal{F}, \mathbb{P})$ at t = 1
- An agent with
 - initial endowment $x_0 > 0$ at t = 0
 - \blacktriangleright preference specified by RDUT pair (u,w)
 - ... wants to choose future consumption (wealth) ${ ilde c}$

 $11 \, / \, 86$

Portfolio/Consumption Choice Model under CPT

► The model

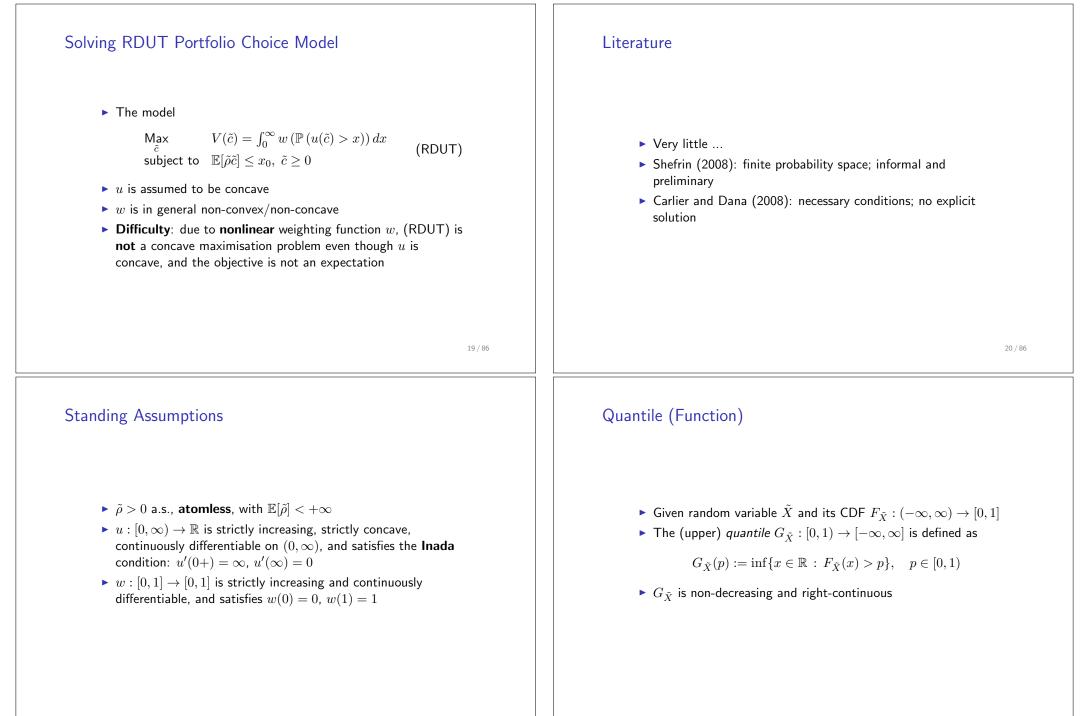
$$\begin{split} \underset{\tilde{c}}{\text{Max}} & V(\tilde{c}) = \int_{0}^{\infty} w_{+} \left(\mathbb{P} \left(u_{+} \left((\tilde{c} - \tilde{B})^{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} w_{-} \left(\mathbb{P} \left(u_{-} \left((\tilde{c} - \tilde{B})^{-} \right) > x \right) \right) dx \\ \text{subject to} & \mathbb{E}[\tilde{\rho}\tilde{c}] \leq x_{0}, \ \tilde{c} \text{ is bounded below} \end{split}$$
 (CPT)

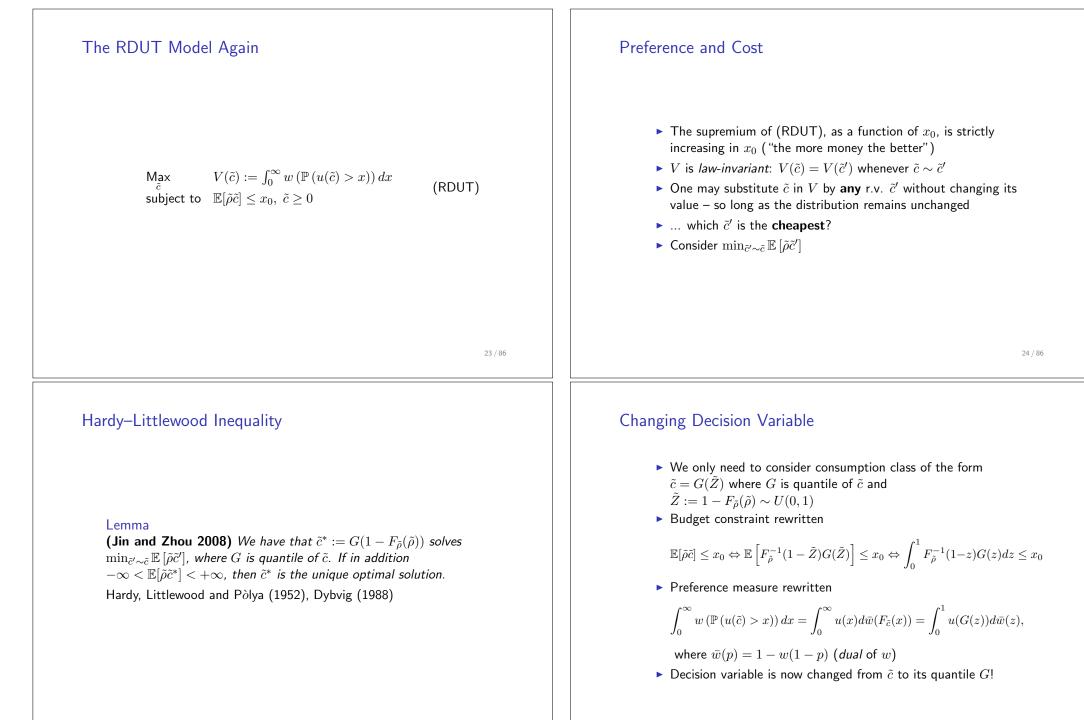
- ▶ u_{\pm} is assumed to be concave so overall value function $u_{+}(x)\mathbf{1}_{x\geq 0} u_{-}(x)\mathbf{1}_{x<0}$ is S-shaped; $u_{\pm}(0) = 0$
- w_{\pm} is in general non-convex/non-concave
- $\blacktriangleright~\tilde{B}$ is reference point

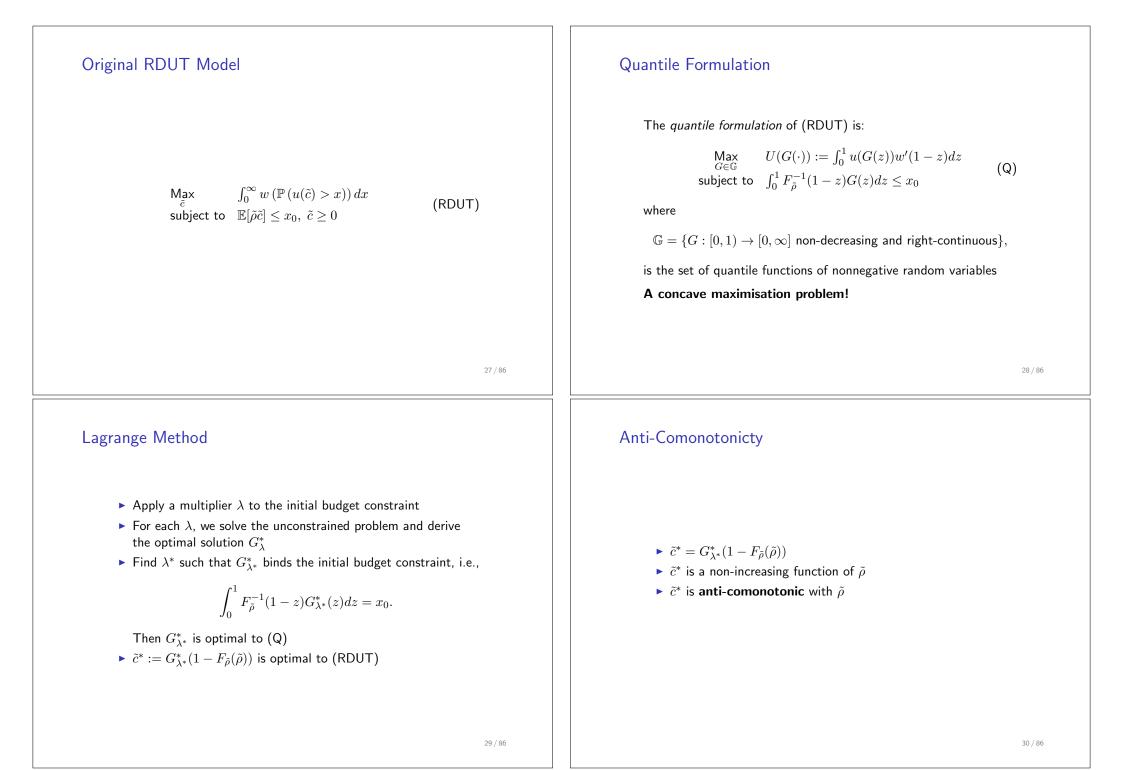
12 / 86

(RDUT)

Section 2	Issues Related to the Model
Portfolio Choice Models: Solutions	 Feasibility: whether there is at least one solution satisfying all the constraints Well-posedness: whether the supremum value of the problem with a non-empty feasible set is finite (in which case the problem is called <i>well-posed</i>) or +∞ (<i>ill-posed</i>) Attainability: whether a well-posed problem admits an optimal solution Uniqueness: whether an attainable problem has a unique optimal solution
15 / 86	16 / 86
EUT Model Revisited	Properties of EUT Solution
 The EUT model Max V(č) = ∫₀[∞] ℙ(u(č) > x) dx ≡ ℝ[u(č)] (EUT) subject to ℝ[ρč] ≤ x₀, č ≥ 0 Lagrange: Max_č ℝ[u(č) - λρč] First-order condition: č* = (u')⁻¹ (λρ̃) Determine λ: ℝ[ρ(u')⁻¹ (λρ̃)] = x₀ Karatzas and Shreve (1998), Jin, Xu and Zhou (2008) 	 č[*] = (u')⁻¹ (λρ̃) Assume Inada condition: u'(0+) = ∞, u'(∞) = 0 č[*] ∈ (0, +∞) č[*] is a non-increasing function of ρ̃ - anti-comonotonic with ρ̃ Random variables X̃ and Ỹ are called comonotonic if (X̃(ω₁) - X̃(ω₂)) (Ỹ(ω₁) - Ỹ(ω₂)) ≥ 0 a.s. Random variables X̃ and Ỹ are called anti-comonotonic if X̃ and -Ỹ are comonotonic
17 / 86	18 / 86







Integrability Condition

 We impose the following condition as in classical EUT model to ensure that the optimal value is finite and the optimal solution exists

$$\mathbb{E}\left[u\left((u')^{-1}\left(\frac{\lambda\tilde{\rho}}{w'(F_{\tilde{\rho}}(\tilde{\rho}))}\right)\right)\right]<+\infty,\quad\text{for any }\lambda>0$$

In the following, we always assume the integrability condition holds

Maximise the integrand over G(z) pointwisely First-order condition: u'(G(z))w'(1 - z) - λF_ρ⁻¹(1 - z) = 0 Ḡ(z) = (u')⁻¹ (λF_ρ⁻¹(1-z)/w'(1-z)) would solve the quantile formulation provided that F_ρ⁻¹(1-z)/w'(1-z) is non-increasing, or M(z) := w'(1-z)/F_ρ⁻¹(1-z) is non-decreasing!

Solution under Monotonicity Condition

Theorem

"Brute Force" Solution

(Jin and Zhou 2008) If M(z) is non-decreasing on $z \in (0, 1)$, then the unique optimal solution to (RDUT) is given as

$$\tilde{c}^* = (u')^{-1} \left(\frac{\lambda^* \tilde{\rho}}{w'(F_{\tilde{\rho}}(\tilde{\rho}))} \right)$$

where λ^* is determined by $E(\tilde{\rho}\tilde{c}^*) = x_0$.

Remark

When there is no probability weighting, it reduces to the classical EUT result.

The Monotonicity Condition

- $M(z) = \frac{w'(1-z)}{F_{\bar{\rho}}^{-1}(1-z)}$ is automatically non-decreasing if w is concave (risk-seeking)
- If $w \in C^2$ and $G_{\tilde{\rho}} \in C^1$, then M is non-decreasing iff

$$\frac{w''(z)}{w'(z)} \le \frac{G'_{\tilde{\rho}}(z)}{G_{\tilde{\rho}}(z)}, \quad 0 < z < 1$$

where $G_{\tilde{\rho}}$ is the quantile of $\tilde{\rho}$

 However: The condition is violated for many known weighting functions and a lognormal pricing kernel

35 / 86

Probability Weighting Functions

Kahneman and Tversky (1992) weighting

$$w(p) = \frac{p^{\gamma}}{(p^{\gamma} + (1-p)^{\gamma})^{1/\gamma}}$$

▶ Tversky and Fox (1995) weighting

$$w(p) = \frac{\delta p^{\gamma}}{\delta p^{\gamma} + (1-p)^{\gamma}}$$

Prelec (1998) weighting

$$w(p) = e^{-\delta(-\ln p)^{\gamma}}$$

▶ Jin and Zhou (2008) weighting

$$w(z) = \begin{cases} y_0^{b-a} k e^{a\mu + \frac{(a\sigma)^2}{2}} \Phi\left(\Phi^{-1}(z) - a\sigma\right) & z \le 1 - z_0, \\ C + k e^{b\mu + \frac{(b\sigma)^2}{2}} \Phi\left(\Phi^{-1}(z) - b\sigma\right) & z \ge 1 - z_0 \end{cases}$$

Violation of Monotonicity Condition

Proposition

(He and Zhou 2012) Suppose $\tilde{\rho}$ is lognormally distributed, i.e.,

$$F_{\tilde{\rho}}(x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$$

for some μ and $\sigma > 0$, where $\Phi(\cdot)$ is the CDF of standard Normal. For any weighting function in K-T, T-F, P with $0 < \gamma < 1$, there exists $\varepsilon > 0$ such that

$$\frac{w''(z)}{w'(z)} > \frac{G_{\tilde{\rho}}'(z)}{G_{\tilde{\rho}}(z)}, \quad 1 - \varepsilon < z < 1.$$

36 / 86

Endogenous Portfolio Insurance

Theorem

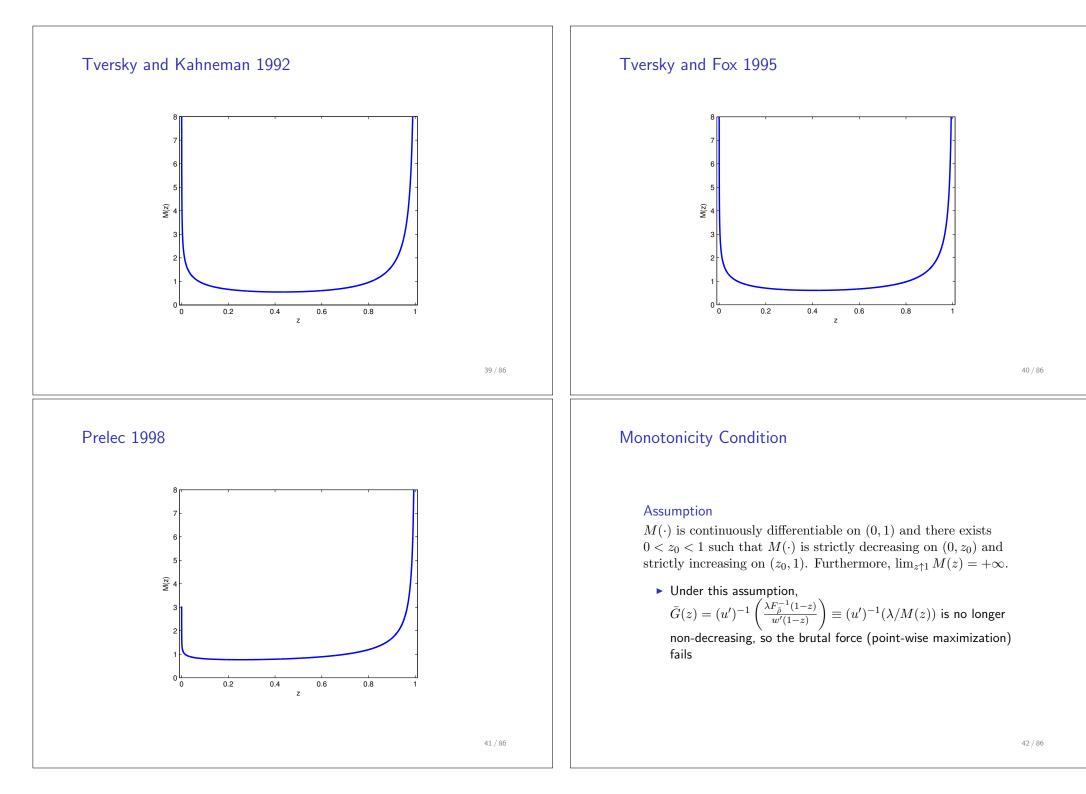
(He and Zhou 2012) If there exists $\varepsilon > 0$ such that

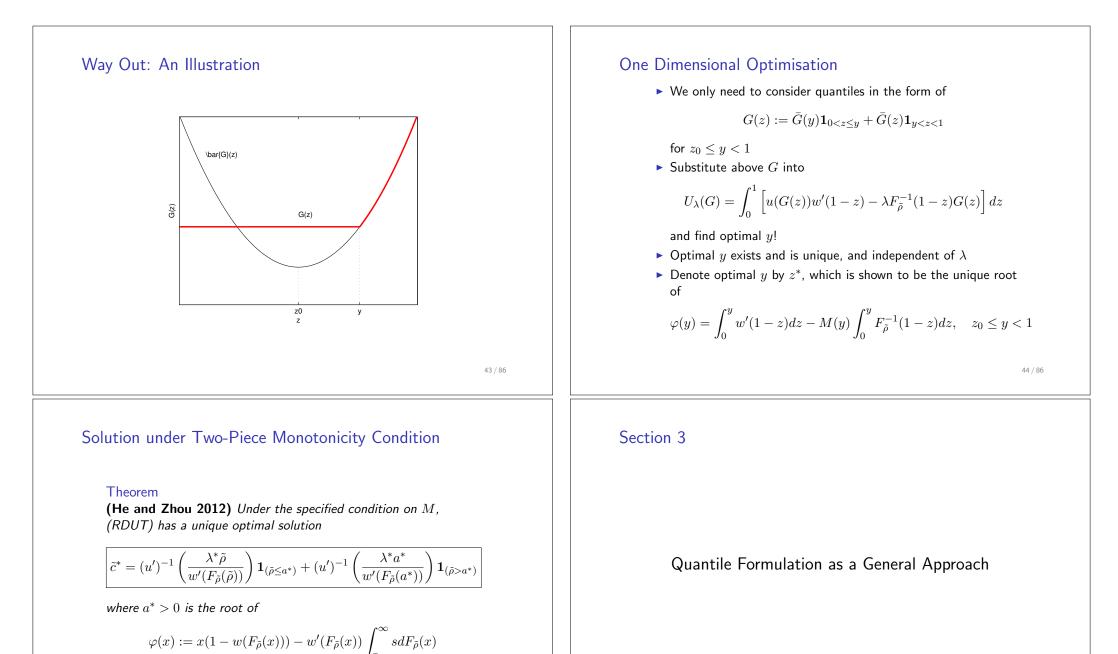
$$\frac{w''(z)}{w'(z)} > \frac{G'_{\tilde{\rho}}(z)}{G_{\tilde{\rho}}(z)}, \quad 1 - \varepsilon < z < 1,$$

then for any optimal solution \tilde{c}^* to (RDUT), we have essinf $\tilde{c}^* > 0$.

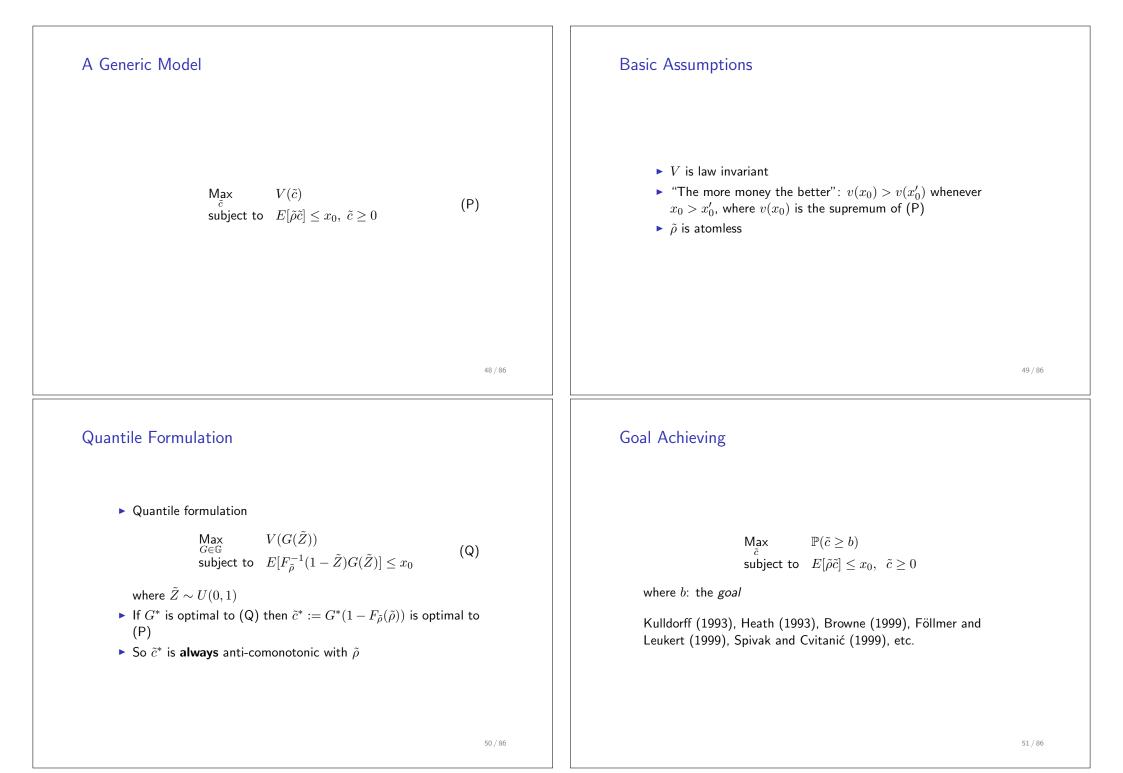
Remark

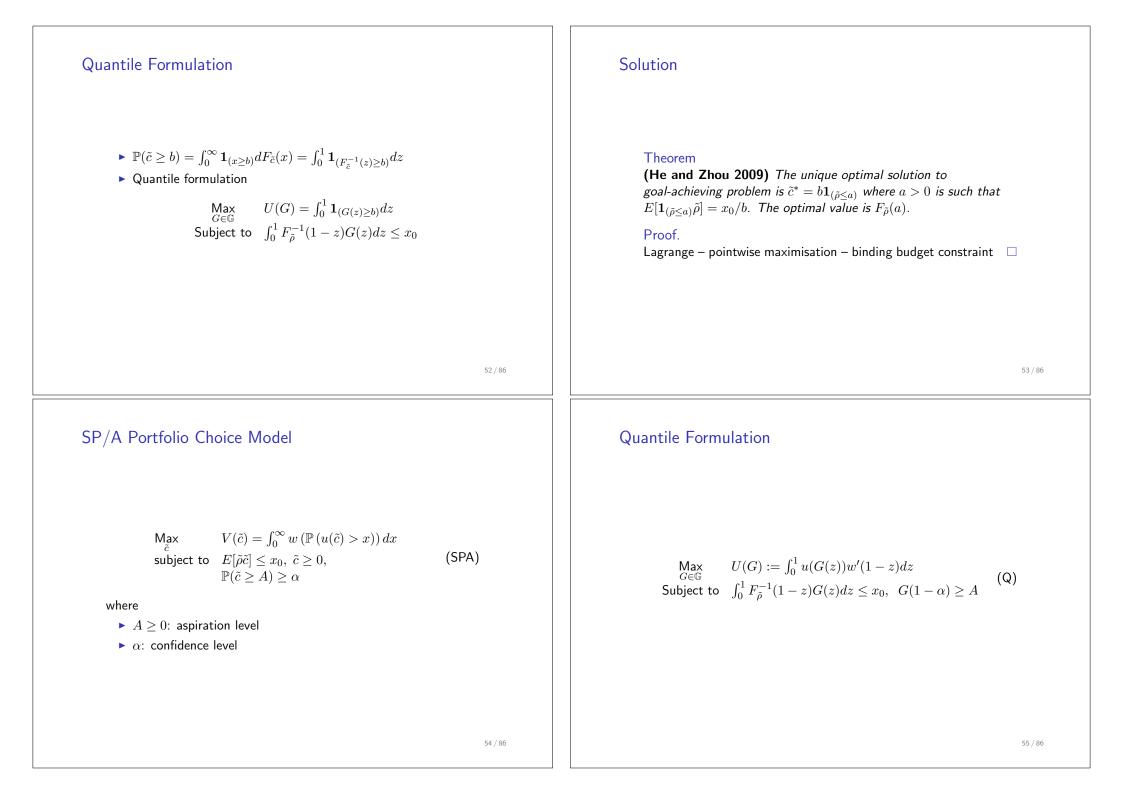
- Agent will set a positive floor (portfolio/consumption insurance) **endogenously** if $\frac{w''(z)}{w'(z)}$ is sufficiently large when z is near 1
- Fear index: $\frac{w''(z)}{w'(z)}$ when z is near 1





on $(F_{\tilde{\rho}}^{-1}(z_0), +\infty)$, and $\lambda^* > 0$ is such that $E(\tilde{\rho}\tilde{c}^*) = x_0$.





Solution

Theorem

(He and Zhou 2012) Assume that $x_0 \ge AE\left[\tilde{\rho}\mathbf{1}_{(\tilde{\rho} \le F_{\tilde{\rho}}^{-1}(\alpha))}\right]$, and M is non-decreasing on (0, 1). Then the unique optimal solution to (SPA) is given as

 $\tilde{c}^* = (u')^{-1} \left(\frac{\lambda^* \tilde{\rho}}{w'(F_{\tilde{\rho}}(\tilde{\rho}))} \right) \mathbf{1}_{(\tilde{\rho} \ge F_{\tilde{\rho}}^{-1}(\alpha))}$ $+ \left[(u')^{-1} \left(\frac{\lambda^* \tilde{\rho}}{w'(F_{\tilde{\rho}}(\tilde{\rho}))} \right) \lor A \right] \mathbf{1}_{(\tilde{\rho} < F_{\tilde{\rho}}^{-1}(\alpha))}$

where λ^* is the one binding the initial budget constraint, i.e., $E(\tilde{\rho}\tilde{c}^*) = x_0$.

56 / 86

Approaches

- Quantile formulation to deal with probability weighting
- A "divide-and-conquer" approach to deal with S-shaped utility function
- Need to solve a minimisation problem of a concave functional in the quantile space: a combinatorial optimisation in infinite dimension
- Explicit solution; anti-comonotonicity; gambling strategies; leverage: Jin and Zhou (2008)

CPT Portfolio Choice Model

The model

$$\begin{split} \underset{\tilde{c}}{\text{Max}} & V(\tilde{c}) = \int_{0}^{\infty} w_{+} \left(\mathbb{P} \left(u_{+} \left((\tilde{c} - \tilde{B})^{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} w_{-} \left(\mathbb{P} \left(u_{-} \left((\tilde{c} - \tilde{B})^{-} \right) > x \right) \right) dx \\ \text{subject to} & E[\tilde{\rho}\tilde{c}] \leq x_{0}, \ \tilde{c} \text{ is bounded below} \end{split}$$

- ► u_{\pm} is assumed to be concave so overall value function $u_{\pm}(x)\mathbf{1}_{x>0} - u_{-}(x)\mathbf{1}_{x<0}$ is S-shaped; $u_{\pm}(0) = 0$
- w_{\pm} is in general non-convex/non-concave
- $\tilde{B} = 0$ without loss of generality

57 / 86

A Mathematical Programme

 $\begin{array}{l} \text{Consider a mathematical programme in } (a, x_{+}): \\ \text{Max}_{(a, x_{+})} \quad E\left[u_{+}\left((u'_{+})^{-1}\left(\frac{\lambda(a, x_{+})\tilde{\rho}}{w'_{+}(F_{\tilde{\rho}}(\tilde{\rho}))}\right)\right)w'_{+}(F_{\tilde{\rho}}(\tilde{(\rho}))\mathbf{1}_{(\tilde{\rho}\leq a)}\right] \\ \quad -u_{-}(\frac{x_{+}-x_{0}}{E[\tilde{\rho}\mathbf{1}_{\tilde{\rho}>a}]})w_{-}(1-F(a)) \\ \text{subject to} \quad \left\{\begin{array}{l} \operatorname{essinf} \tilde{\rho}\leq a\leq \operatorname{esssup} \tilde{\rho}, \ x_{+}\geq x_{0}^{+}, \\ x_{+}=0 \text{ when } a=\operatorname{essinf} \tilde{\rho}, \ x_{+}=x_{0} \text{ when } a=\operatorname{essup} \tilde{\rho}, \\ & (\mathsf{MP}) \end{array} \right. \\ \text{where } \lambda(a, x_{+}) \text{ satisfies } E\left[(u'_{+})^{-1}\left(\frac{\lambda(a, x_{+})\tilde{\rho}}{w'_{+}(F_{\tilde{\rho}}(\tilde{\rho}))}\right)\tilde{\rho}\mathbf{1}_{(\tilde{\rho}\leq a)}\right]=x_{+} \end{array}$

Grand Solution

Theorem

(Jin and Zhou 2008) Assume $u_{-}(\cdot)$ is strictly concave at 0 and M is non-decreasing. Let (a^*, x^*_+) solves (MP). Then the optimal solution to (CPT) is

$$\tilde{c}^* = \left[(u'_+)^{-1} \left(\frac{\lambda \tilde{\rho}}{w'_+(F_{\tilde{\rho}}(\tilde{\rho}))} \right) \right] \mathbf{1}_{(\tilde{\rho} \le a^*)} - \left[\frac{x_+^* - x_0}{E[\tilde{\rho} \mathbf{1}_{(\tilde{\rho} > a^*)}]} \right] \mathbf{1}_{(\tilde{\rho} > a^*)}$$

Section 4

Continuous Time and Time Inconsistency

Interpretations and Implications

$$\tilde{c}^* = \left[(u'_+)^{-1} \left(\frac{\lambda \tilde{\rho}}{w'_+(F_{\tilde{\rho}}(\tilde{\rho}))} \right) \right] \mathbf{1}_{(\tilde{\rho} \le a^*)} - \left[\frac{x^*_+ - x_0}{E[\tilde{\rho} \mathbf{1}_{(\tilde{\rho} > a^*)}]} \right] \mathbf{1}_{(\tilde{\rho} > a^*)}$$

- ► Future world divided by "good" states (where you have gains) and "bad" ones (losses), *completely* determined by whether $\tilde{\rho} \leq a^*$ or $\tilde{\rho} > a^*$
- Agent buy claim $\left[(u'_+)^{-1} \left(\frac{\lambda \tilde{\rho}}{w'_+(F_{\tilde{\rho}}(\tilde{\rho}))} \right) \right] \mathbf{1}_{(\tilde{\rho} \leq a^*)}$ at cost $x^*_+ \geq x_0$ and sell $\left[\frac{x^*_+ x_0}{E[\tilde{\rho} \mathbf{1}_{(\tilde{\rho} > a^*)}]} \right] \mathbf{1}_{(\tilde{\rho} > a^*)}$ to finance shortfall $x^*_+ x_0$
- Agent not only invests in stocks, but also generally takes a leverage to do so
- Optimal strategy is a *gambling* policy, betting on the good states while accepting a **known** loss on the bad

61/86

A Continuous-Time Economy

- An economy in which m + 1 securities traded continuously
- Market randomness described by a complete filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$ along with an \mathbb{R}^m -valued, \mathcal{F}_t -adapted standard Brownian motion $W(t) = (W^1(t), \cdots, W^m(t))'$ with $\{\mathcal{F}_t\}_{t\geq 0}$ generated by $W(\cdot)$
- A bond whose price process $S_0(t)$ satisfies

$$dS_0(t) = r(t)S_0(t)dt; \ S_0(0) = s_0$$

▶ m stocks whose price processes S₁(t), · · · S_m(t) satisfy stochastic differential equation (SDE)

$$dS_{i}(t) = S_{i}(t) \left(\mu_{i}(t)dt + \sum_{j=1}^{m} \sigma_{ij}(t)dW^{j}(t) \right); \ S_{i}(0) = s_{i}$$

Tame Portfolios

Let

$$\sigma(t) := (\sigma_{ij}(t))_{m \times m}$$

$$B(t) := (\mu_1(t) - r(t), \cdots, \mu_m(t) - r(t))'$$

- An \mathcal{F}_t -progressively measurable process $\pi(t) = (\pi_1(t), \cdots, \pi_m(t))'$ represents a (monetary) portfolio, where $\pi_i(t)$ is the capital amount invested in stock i at t
- A portfolio $\pi(\cdot)$ is *admissible* if

$$\int_0^T |\sigma(t)' \pi(t)|^2 dt < +\infty, \ \int_0^T |B(t)' \pi(t)| dt < +\infty, \ \text{a.s.}$$

• An agent has an initial endowment x_0

65 / 86

Market assumptions:

- (i) There exists $k \in \mathbb{R}$ such that $\int_0^T r(t) dt \ge k$,
- (ii) $\int_0^T \left[\sum_{i=1}^m |b_i(t)| + \sum_{i,j=1}^m |\sigma_{ij}(t)|^2\right] dt < +\infty,$
- (iii) Rank $(\sigma(t)) = m, t \in [0, T],$
- (iv) There exists an \mathbb{R}^m -valued, uniformly bounded, \mathcal{F}_t -progressively measurable process $\theta(\cdot)$ such that $\sigma(t)\theta(t) = B(t)$

Wealth Equation

 \blacktriangleright Wealth process $x(\cdot)$ follows the wealth equation

$$\begin{cases} dx(t) &= [r(t)x(t) + B(t)'\pi(t)]dt + \pi(t)'\sigma(t)dW(t) \\ x(0) &= x_0 \end{cases}$$

 \blacktriangleright An admissible portfolio $\pi(\cdot)$ is called *tame* if the corresponding wealth process $x(\cdot)$ is essentially lower bounded

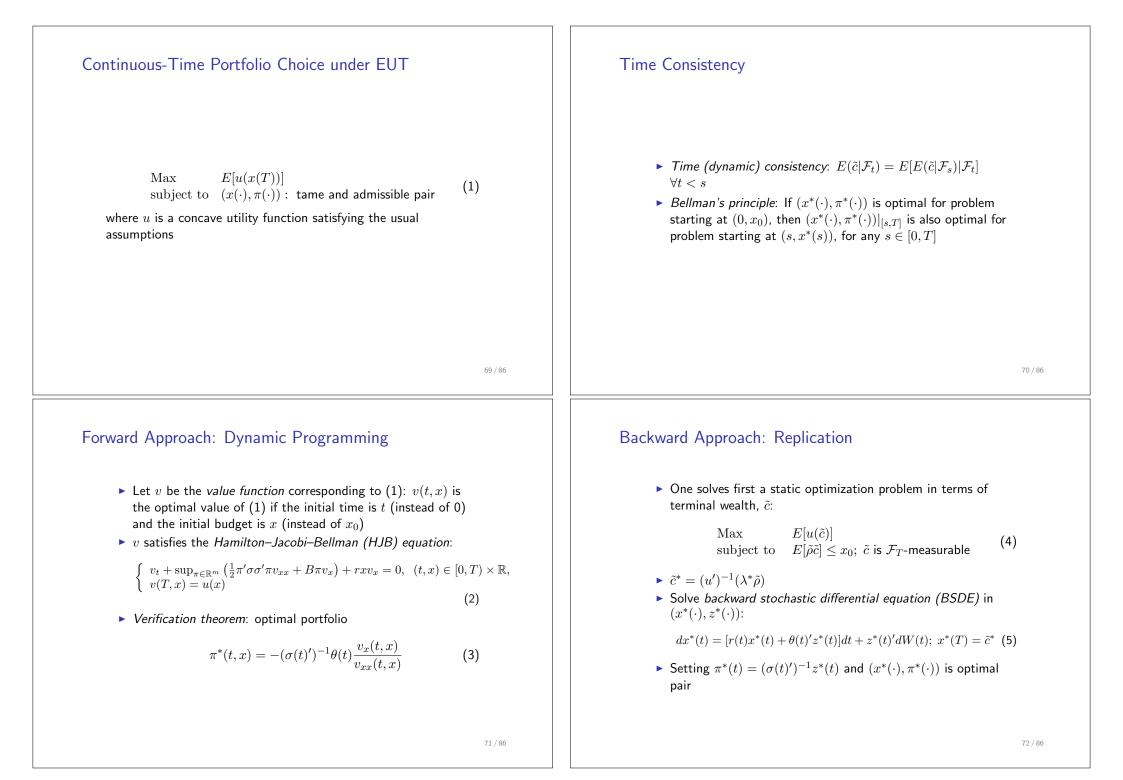
66 / 86

Pricing Kernel

Define

$$\rho(t) := \exp\left\{-\int_0^t \left[r(s) + \frac{1}{2}|\theta(s)|^2\right] ds - \int_0^t \theta(s)' dW(s)\right\}$$

- $\blacktriangleright \text{ Denote } \tilde{\rho} := \rho(T)$
- Assume that $\tilde{\rho}$ is atomless



Time Inconsistency under Probability Weighting

- Choquet expectation: $\hat{E}[\tilde{X}] = \int \tilde{X} d(w \circ \mathbb{P}) = \int_0^\infty w(\mathbb{P}(\tilde{X} > x)) dx$
- How to define "conditional Choquet expectation"?
- ► Even if a conditional Choquet expectation can be defined, it will not satisfy $\hat{E}(\tilde{c}|\mathcal{F}_t) = \hat{E}[\hat{E}(\tilde{c}|\mathcal{F}_s)|\mathcal{F}_t]$
- Dynamic programming falls apart

Replication: Pre-Committed Strategies

- Solve a static optimisation problem (with probability weighting) in terms of terminal wealth
- ► Such a problem has been solved by our approach developed
- Find a dynamic portfolio replicating the obtained optimal terminal wealth
- Such a portfolio is an optimal *pre-committed* strategy (Jin and Zhou 2008, He and Zhou 2011)

73 / 86

Time Inconsistency and Equilibrium Strategies

- Sources of time inconsistency: probability weighting, variance (mean field), state-dependent preferences, hyperbolic discounting ...
- Pre-committed strategies exercised only in shorter time period, special circumstances, or a select group of people
- Equilibrium strategies: Nash equilibrium strategies where the players are incarnations of oneself at different time periods
- Ekeland and Pirvu (2008), Hu, Jin and Zhou (2012,2015), Bjork, Murgoci and Zhou (2012) ...

Section 7

Summary and References

Summary

- Technical challenge arising from probability weighting: non-convex optimisation in infinite dimension
- Approach quantile formulation
- Think of distribution/quantile of future consumption!
- A monotonicity condition its economic interpretation
- Quantile formulation can treat a much broader class of problems, including behavioural and neoclassical ones
- Behavioural models are typically time inconsistent due to probability weighting

Summary (Cont'd)

- Conditions on an RDUT economy provided under which the Arrow-Debreu equilibrium exists uniquely
- At equilibrium one cannot distinguish between RDUT and EUT economies; however, representative risk aversion level is (possibly substantially) altered
- Asset prices not only depend upon level of risk aversion and beta, but also upon agents' belief on economic growth
- Probability weighting may offer a new way of thinking in explaining many economic phenomena

78 / 86

References

- P. H. Dybvig. Distributional analysis of portfolio choice, *Journal of Business*, 61(3):369–398, 1988.
- X. He and X. Zhou. Portfolio choice via quantiles, *Mathematical Finance*, 21:203–231, 2011.
- X. He and X. Zhou. Hope, fear, and aspirations, *Mathematical Finance*, 26: 3–50, 2016
- H. Jin and X. Zhou. Behavioral portfolio selection in continuous time, Mathematical Finance, 18:385–426, 2008.
- J. Quiggin. A Theory of anticipated utility, *Journal of Economic* and Behavioral Organization, 3:323–343, 1982.
- H. Shefrin. A Behavioral Approach to Asset Pricing (2nd Edition), Elsevier, Amsterdam, 2008. additively separable, Econometrica, 61: 953–957, 1993.

Section 8

Final Words

Two Revolutions in Finance

- Finance ultimately deals with interplay between market risk and human judgement
- History of financial theory over the last 50 years characterised by two revolutions
 - Neoclassical (maximising) finance starting 1960s: Expected utility maximisation, CAPM, efficient market theory, option pricing
 - Behavioural finance starting 1980s: Cumulative prospect theory, SP/A theory, regret and self-control, heuristics and biases

83 / 86

Do We Need Both?

- Foundations of the two
 - Neoclassical finance: Rationality (correct beliefs on information, risk aversion) – A normative theory
 - Behavioural finance: The lack thereof (experimental evidence, cognitive psychology) – A descriptive theory
- Do we need both? Absolutely yes!
 - Neoclassical finance tells what people ought to do
 - Behavioural finance tells what people actually do
 - Robert Shiller (2006), "the two ... have always been interwind, and some of the most important applications of their insights will require the use of both approaches"

Neoclassical vs Behavioural

- Neoclassical: the world and its participants are rational "wealth maximisers"
- Behavioural: emotion and psychology influence our decisions when faced with uncertainties, causing us to behave in unpredictable, inconsistent, incompetent, and most of all, irrational ways
 - A relatively new field that attempts to explain how and why emotions and cognitive errors influence investors and create stock market anomalies such as bubbles and crashes
 - It seeks to explore the consistency and predictability in human flaws so that such flaws can be avoided or even exploited for profit

84 / 86

Quantitative Behavioural Finance

- "Quantitative behavioural finance" leads to new problems in mathematics, engineering and finance
- But ... is it justified: to rationally and mathematically account for irrationalities?
- Irrational behaviours are by no means random or arbitrary
- "misguided behaviors ... are systematic and predictable making us predictably irrational" (Dan Ariely, *Predictably Irrational*, Ariely 2008)
- We use CPT/RDUT/SPA and specific value functions as the carrier for exploring the "predictable irrationalities"
- Quantitative behavioural finance: research is in its infancy, yet potential is unlimited – or so we believe