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ASYMPTOTIC ANALYSIS OF A MULTIPHASE DRYING MODEL
MOTIVATED BY COFFEE BEAN ROASTING∗
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Abstract. Recent modeling of coffee bean roasting suggests that in the early stages of roasting,
within each coffee bean, there are two emergent regions: a dried outer region and a saturated
interior region. The two regions are separated by a transition layer (or, drying front). In this
paper, we consider the asymptotic analysis of a recent multiphase model in order to gain a better
understanding of its salient features. The model consists of a PDE system governing the thermal,
moisture, and gas pressure profiles throughout the interior of the bean. By obtaining asymptotic
expansions for these quantities in relevant limits of the physical parameters, we are able to determine
the qualitative behavior of the outer and interior regions, as well as the dynamics of the drying front.
Although a number of simplifications and scalings are used, we take care not to discard aspects
of the model which are fundamental to the roasting process. Indeed, we find that for all of the
asymptotic limits considered, our approximate solutions faithfully reproduce the qualitative features
evident from numerical simulations of the full model. From these asymptotic results, we have a
better qualitative understanding of the drying front (which is hard to resolve precisely in numerical
simulations) and, hence, of the various mechanisms at play including heating, evaporation, and
pressure changes. This qualitative understanding of solutions to the multiphase model is essential
when creating more involved models that incorporate chemical reactions and solid mechanics effects.

Key words. multiphase model, coffee bean roasting, Stefan problem, asymptotic analysis,
drying front
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1. Introduction. As one of the most valuable commodities in the world [1],
the coffee industry relies on fundamental research to improve the techniques and
processes relating to its products, especially with the roasting process of coffee beans.
Most of the literature concerning the roasting of coffee beans present experimental
data (see, e.g., [2, 3, 4]) and use regression analysis and simple empirical models to
interpret the results. Recently, the literature has included a more in-depth discussion
concerning the mathematical modeling of the roasting of coffee beans (see, e.g., [5, 6]).
While other aspects of coffee processing have been examined from a mathematical
perspective (e.g., [7]), mathematical models describing the roasting of coffee beans
have, with the exception of a few studies, been largely unexplored.

In [5], a system of partial differential equations (PDEs) that model the transport
of moisture and heat throughout a coffee bean were derived and studied. This model
uses the concept of “mass diffusivity” to describe the transport of moisture in the
coffee bean that was originally derived in [8], which applies to lower-temperature
evaporation. The ideas in [5] served as excellent motivation for the authors in [6]
to derive a mathematical model from first principles using conservation equations.
Multiphase modeling has previously been applied in a variety of food heating problems
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[9, 10, 11, 12, 13, 14] (of particular relevance was the bread baking model of Zhang
and Datta [15]) and is a natural framework to model the coffee bean roasting process.
In [6], the concepts of multiphase flow and water evaporation were included, and the
resulting model (referred to as Model 2 in [6]) also incorporated the production of
carbon dioxide gas, latent heat due to evaporation, and changes in porosity. Some
simplifications were made to this full model (in particular, neglecting carbon dioxide
production) in order to allow some preliminary understanding of the model behavior.
By examining numerical solutions of this model, a “drying front” that propagates
through to the center of the bean was identified.

Moisture transport in roasting coffee beans is a crucial aspect of the industrial
process. Many chemical reactions that occur produce aromas and flavor compounds
that determine the quality of the final product. Some of these chemical reactions are
believed to be affected by the presence (or lack) of water [3]. Therefore, the spatial
and temporal distribution of the moisture content is strongly linked to the quality of
the final product.

Mathematical models describing drying have been explored previously (see, e.g.,
[16, 17, 18]), which relate the drying of wood, bricks, and other materials. However,
due to the impermeable cellulose structure within a coffee bean, the water vapor cre-
ated in the biological cells cannot be easily released into the roasting environment. In
consequence, the ratio in time scales between evaporation dynamics and vapor trans-
port is very large, which motivates us to explore the leading-order dynamics of coffee
bean roasting using asymptotic analysis. Hence, the model presented here should be
appropriate to any drying problem where these physical phenomena are relevant.

In [6], numerical results suggest that there are three main regions within a coffee
bean as it is roasted. The first main region (which we refer to as Region i) is where the
vapor pressure of water aligns with the steam table pressure. The second main region
(which we refer to as Region ii) is when the moisture content of the bean is negligible.
Between these two regions, we expect a thin transition layer, or drying front, in
which moisture is rapidly evaporated. Issues surrounding numerical resolution make
it computationally expensive to resolve the dynamics near the drying front. In light of
these observations, we are motivated to extend the numerical results shown in [6] via
asymptotic methods, in order to understand the qualitative features of the multiphase
model: in particular, the interplay between the narrow transition layer and the two
larger regions.

In this paper, we begin our discussion of the asymptotics of the full multiphase
model in section 2. Motivated by the numerical results in [6], we determine an ap-
proximate form of the drying front. We then obtain the leading-order asymptotics in
Regions i and ii, as well as within the drying front. Despite several simplifications,
we are able to obtain reasonable agreement between the asymptotic approximations
and the numerical solutions in [6], and are confident that the asymptotics capture the
qualitative dynamics of the problem. In order to obtain additional explicit results, and
motivated by the observation that the entire coffee bean is almost always very close to
the externally imposed roasting temperature, we fix the temperature at this roasting
temperature in section 3. Under this assumption, the vapor pressure and moisture
content are also constant in Region i, while the leading order dynamics within Region
ii reduce to a Stefan problem [19, 20]. By considering the large Stefan number limit,
we determine a leading-order expression for the drying front for various geometries.
As we will only focus on symmetric geometries with one spatial variable (e.g., planar
and spherical geometries), we can obtain explicit expressions for the drying front. We
focus on the planar and spherical geometries, as it is reasonable to represent a coffee
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420 N. T. FADAI, C. P. PLEASE, AND R. A. VAN GORDER

bean either as a slab of porous material “curled up” into the shape of a bean or as a
sphere. Finally, in section 4, we provide a summary and discussion of the results.

2. Asymptotics of the multiphase model with variable temperature.
The full multiphase model that we will analyze consists of three PDEs that describe
conservation of mass in water and vapor, as well as conservation of energy. These
equations describe the behavior of three variables: the water saturation S (i.e., the
volume fraction of water divided by the total volume of water and gas), the partial
pressure of water vapor P , and the temperature T . The only transport mechanism
considered for water is via evaporation, whereas in the gas phase, water vapor is
transported either via evaporation or via Darcy flow. Finally, we assume that heat
is transported via conduction in all three phases within the bean, but via convection
at the surface of the bean. Mathematically speaking, this multiphase model can
be stated for nondimensional variables in symmetric geometries (i.e., using a single
spatial variable r) as

∂S

∂t
= − 1

ε2
Iv,(1)

∂

∂t

[
(1 + T )P (1− σS)

1 + T T

]
= −1

δ

∂S

∂t
+∇ ·

[
(1 + T )P∇P

1 + T T

]
,(2)

∂T

∂t
+A1

∂

∂t
[S(1 + T T )] = A2

∂S

∂t
+A3∇ · [(1 +A4S)∇T ] ,(3)

where the ∇ operator should be interpreted appropriately for the different geometries
as derivatives of r. Additionally, there are the symmetry conditions at the center of
the bean,

(4) ∇T · n|r=0 = 0, ∇P · n|r=0 = 0,

the boundary conditions at the surface of the bean,

(5) ∇T · n|r=1 = ν

(
1− σS
1− σ

)(
1 +A4

1 +A4S

)
(1− T ) ,

(6) P |r=1 =

{
PST (T ), T < Ta,

Pa, T ≥ Ta,

and the initial conditions

(7) S(r, 0) = 1, T (r, 0) = 0, P (r, 0) = PST (0).

Here, the evaporation rate Iv and steam table pressure PST (T ) are given by

(8) Iv = S(1− σS)(PST − P )

√
1 + T

1 + T T
and PST (T ) = exp

(
β(T − 1)

1 + T T

)
.

A complete derivation of this model from the “simplified” multiphase model presented
in [6] can be found in Appendix A. A key feature of this model is ε, which can
be interpreted as a ratio in time scales between Darcy-driven vapor transport and
evaporation. One can interpret δ as a density ratio of water vapor to water, and
σ represents the initial water-to-void volume ratio. The boundary condition (6) is
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Fig. 1. A summary of where the different regions are as the bean dries. Region i is where
the vapor pressure is in equilibrium, Region ii is the dry region, and the dashed lines indicate the
narrow transition layer between the regions, which begins at time t∗, defined in (9).

slightly modified from that in [6] and is described in Appendix A. Here, Pa is the
ambient vapor pressure in the roasting chamber.

We will also make the assumption that the step in the boundary condition (6) for
P only occurs at one critical time, namely, t∗. We define t∗ as the first time when the
evaporation temperature Ta is achieved at the surface of the bean, i.e., as the solution
to the equation

(9) T (1, t∗) = Ta := P−1
ST (Pa) .

This critical time will be used not only to signal which part of the step in (6) is
relevant, but also to signal where the asymptotic behavior changes.

We can divide the solution to the model into three regions in order to understand
the approximate dynamics that occur in the coffee bean. Using parameter values
shown in [6], a typical value of ε ≈ 1.54× 10−4 suggests that we should consider the
limit as ε→ 0+. We note that δ = O(1) is the distinguished limit of this system and
concentrate on considering this case, despite the analysis also being valid for small δ.
We will consider δ being small when the equations in Regions i and ii require further
simplifications to extract closed form solutions. In section 2.2, we will determine how
small δ is allowed to be before a different analysis is required. In the ε→ 0+ limit, we
can see from (1) that if time and space remain unscaled, Iv = 0 will be the leading-
order equation, and from (8), this can occur in one of three ways. First, Iv = 0 if
the vapor pressure is in equilibrium with its steam table pressure, i.e., P = PST . As
the initial data are consistent with this equilibrium, we will observe this first (which
will be referred to as Region i). Second, Iv = 0 can be achieved by setting S = 0.
This corresponds to where there is no more water to evaporate and will be denoted
as Region ii. A final case where Iv = 0 is when S = σ−1; however, this corresponds
to when the coffee bean is completely saturated with water, which we will discard as
an extraneous case.

We will also consider a narrow drying front that connects Regions i and ii. This
drying front, which is centered about r = R(t), propagates from the surface of the
bean towards the center of the bean and is where the moisture content S quickly goes
from 1 to 0. In this drying front around R(t), we find that the temperature is spatially
uniform, but will vary as time progresses. The temperature profile within the drying
front is denoted as T ∗(t). A schematic diagram of these three regions is shown in
Figure 1, including the time t∗ at which evaporation first occurs at the surface of the
bean.
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2.1. Asymptotics of Region i. In Region i, we have, from (1), Iv = 0 to
leading order in the limit as ε → 0+, implying that that P = PST (T ). Consider the
asymptotic series valid as ε→ 0+,

S = S0(r, t) + εS1(r, t) +O(ε2),(10)

T = T0(r, t) + εT1(r, t) +O(ε2),

Pv = PST (r, t) + εP1(r, t) +O(ε2).

Substituting (11) into (2) and (3) gives, to lowest order,

∂S0

∂t

(
1

δ
− σPST (T0)Λ(T0)

)
+ (1− σS0)

∂

∂t
[PST (T0)Λ(T0)] = ∇ · [PST (T0)Λ(T0)∇PST (T0)] ,(11)

∂S0

∂t
[A1(1 + T T0)−A2] +

∂T0

∂t
[1 +A1T S0] = A3∇ · [(1 +A4S0)∇T0] ,(12)

where Λ(T0) = 1
1+T T0

. As we cannot solve this system analytically, we now suppose
that δ � 1 and write an asymptotic series in powers of δ for S0 and T0 valid in the
limit δ → 0+ as

(13) S0 = S̃0(r, t) + δS̃1(r, t) +O(δ2), T0 = T̃0(r, t) + δT̃1(r, t) +O(δ2).

Substituting (13) into (11) gives us, to leading order, that ∂S̃0

∂t = 0. Therefore, the

moisture content of the bean stays at its initial value, i.e., S̃0 = 1. To lowest order,
(12) then gives us

(14)
∂T̃0

∂t
= K∇2T̃0, where K =

A3(1 +A4)

1 +A1T
.

Equation (14) must be solved subject to the boundary condition (6), which can be
stated as

∇ · T̃0

∣∣∣
r=1

= ν
(

1− T̃0

∣∣
r=1

)
, t < t∗,(15)

T̃0

∣∣
r=R(t)

= T ∗(t), t ≥ t∗.(16)

Additionally, we will impose the symmetry condition ∇T̃0 · n = 0 at r = 0, as well as
the initial data T̃0(r, 0) = 0. We are able to solve the PDE for t < t∗; in particular,
we can determine a leading-order approximation for t∗. By solving (14) in spherical
coordinates, we obtain that

(17) T̃0(r, t) = 1−
∞∑
n=1

cn
r

sin(µnr) exp(−µ2
nKt),

where the eigenvalues µn satisfy the transcendental equation µn cot(µn) = 1− ν and
the constants cn have the form

(18) cn =


2ν cosµn

µn(sin2 µn−ν)
, ν 6= 1,

8(−1)n

π2(1+2n)2 , ν = 1.
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While the case ν = 1 is reasonably pathological, it is included in this analysis for
completeness. Typical parameter values seen in [6] give ν ≈ 0.585, so we will only
consider the case where ν 6= 1 from here on.

To determine t∗ in spherical coordinates, denoted as t∗Sph, we impose, from (9),

that T̃0(1, t∗Sph) = Ta. When ν 6= 1, this is equivalent to writing

(19)

∞∑
n=1

(
cos2 µn

sin2 µn − ν

)
exp(−µ2

nKt∗Sph) =
(1− Ta) (1− ν)

2ν
.

Using the parameter values in [6] (K ≈ 2.25, ν ≈ 0.585, Ta ≈ 0.519), (19) has the
solution t∗Sph ≈ 0.173, or about 45.9 seconds in dimensional units.

Similarly, we can determine t∗ in Cartesian coordinates, denoted as t∗Cart, by
noting that the solution of (14) in Cartesian coordinates with a Neumann boundary
condition at r = 0 is

(20) T̃0(r, t) = 1−
∞∑
n=1

dn cos(λnr) exp(−λ2
nKt),

where

(21) λn tanλn = ν and dn =
2ν sinλn

λn(ν + sin2 λn)
.

This allows us to determine t∗Cart via the transcendental equation

(22)

∞∑
n=1

sin2 λn

ν + sin2 λn
exp(−λ2

nKt∗Cart) =
1− Ta

2
,

which, using parameter values stated above, gives t∗Cart ≈ 0.494, or about 131 sec-
onds in dimensional units. Hence, we have determined when the step occurs in the
boundary condition (6). When the boundary condition changes, we find that the
transition layer forms at the surface. We shall not consider the very small time while
the transition layer is close to the surface, as it does not give any useful insight, but
proceed to when it is in the interior of the bean.

2.2. Asymptotics of the transition layer. In order to understand how S
varies from 1 to 0, we must examine the transition layer in the limit ε → 0+. We
first discuss the distinguished limit δ = O(1). We will find that both P and T are
spatially uniform at lowest order with small variations of equal size (say, O(εa), a > 0)
and hence, variations of the evaporation rate are also O(εa). The transition layer is
narrow (say, O(εb), b > 0) around a moving front at r = R(t) and we find, noting
that S = O(1), that a balance between the resulting advective term in (1) and the
evaporation rate requires −b = −2+a. Similarly, having a balance of vapor production
due to evaporation with transport by Darcy flow in (2) requires that −b = −2b + a.
Hence, in the distinguished limit δ = O(1), we take a = b = 1. We can also consider
small δ; when δ = O(εα) and α > 0, a dominant balance requires that −b = a − 2
and −α − b = −2b + a. Therefore, the transition layer has width O(ε1+α/2) and the
variations in P and T are O(ε1−α/2). Since we require these variations to be small, we
must have α < 2. We conclude that the analysis in the distinguished limit δ = O(1)
is valid until δ = O(ε2).
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For the case δ = O(1), the transition layer is around drying front R(t) and we
introduce the scaling r = R(t) + εr̂. We also take P , T , and S as asymptotic series
as ε→ 0+, with

S = S0(r̂, t) + εS1(r̂, t) +O(ε2),

P = P0(r̂, t) + εP1(r̂, t) +O(ε2),

T = T0(r̂, t) + εT1(r̂, t) +O(ε2).(23)

We will first show that T0(r̂, t) ≡ T ∗(t) and P0(r̂, t) ≡ P ∗(t) := PST (T ∗(t)). To
do this, we note that, in order to match our transition layer into Region i, we must
have that

(24) P0

∣∣
r̂→−∞ → P ∗(t) and T0

∣∣
r̂→−∞ → T ∗(t).

By substituting (23) into (2) and (3), we obtain, at O
(
ε−2
)
,

(25)
∂

∂r̂

[
P0

∂P0

∂r̂

1 + T T0

]
= 0,

∂

∂r̂

[
∂T0

∂r̂
(1 +A4S0)

]
= 0.

We note that these equations hold in any geometry at leading order, provided that we
are sufficiently far away from any geometry-induced singularities that could produce
additional derivative terms at O

(
ε−2
)
, e.g., if R(t) = O(ε) in spherical coordinates.

Integrating (25) and imposing (24) implies that

(26) T0(r̂, t) ≡ T ∗(t) and P0(r̂, t) ≡ P ∗(t).

To determine the leading-order behavior for S, we note that using (23) in (8) and
expanding yields

(27)

PST = P ∗
(

1 + ε
β(1 + T )

(1 + T T ∗)2
T1

)
+O

(
ε2
)
,

Iv = −ε
(
P1 −

β(1 + T )

(1 + T T ∗)2
T1P

∗
)
S0(1− σS0)

√
1 + T

1 + T T ∗
+O

(
ε2
)
.

Using these along with (24), we obtain, at O(ε−1), that (1)–(3) give

−R′(t)∂S0

∂r̂
= Ψ(P1, T1)S0(1− σS0),(28)

σP ∗R′(t)
∂S0

∂r̂
=− 1

δ
Ψ(P1, T1)S0(1− σS0)

(
1 + T T ∗

1 + T

)
+ P ∗

∂2P1

∂r̂2
,(29)

−A1(1 + T T ∗)R′(t)
∂S0

∂r̂
= A2Ψ(P1, T1)S0(1− σS0) +A3

∂

∂r̂

[
(1 +A4S0)

∂T1

∂r̂

]
,

(30)

where

(31) Ψ(P1, T1) :=

√
1 + T

1 + T T ∗

(
P1 −

β(1 + T )

(1 + T T ∗)2
T1P

∗
)
.
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Finally, the matching conditions with Regions i and ii are

S0 → 1, P1 → 0, and T1 → 0 as r̂ → −∞,(32)

S0 → 0 as r̂ → +∞,(33)

∂P1

∂r̂

∣∣∣
r̂→+∞

=
∂P

∂r

∣∣∣
r→R(t)

,(34)

∂T1

∂r̂

∣∣∣
r̂→+∞

=
∂T

∂r

∣∣∣
r→R(t)

.(35)

In interpreting (32)–(35), we note that the limits where r → R(t) are matching
conditions for Regions i and ii, whereas the limits where r̂ → ±∞ refer to matching
conditions for the transition layer.

By eliminating the terms with Ψ(P1, T1) in (28) and (29), we obtain

(36) P ∗
∂2P1

∂r̂2
=

[
σP ∗ − 1

δ

(
1 + T T ∗

1 + T

)]
R′(t)

∂S0

∂r̂
.

Integrating this and imposing the matching conditions (32) yield

(37)
∂P1

∂r̂
=

[
1

δ

(
1 + T T ∗

(1 + T )P ∗

)
− σ

]
R′(t)(1− S0).

Similarly, eliminating terms with Ψ(P1, T1) in (28) and (30) gives us

(38) R′(t) [A2 −A1(1 + T T ∗)]
∂S0

∂r̂
= A3

∂

∂r̂

[
(1 +A4S0)

∂T1

∂r̂

]
.

Integrating and imposing the matching conditions (32) yields, after some rearranging,

(39)
∂T1

∂r̂
= − 1

A3
R′(t) [A2 −A1(1 + T T ∗)]

(
1− S0

1 +A4S0

)
.

Finally, by rearranging (28) to isolate S0, we obtain

(40)
∂S0

∂r̂

S0(1− σS0)
= −Ψ(P1, T1)

R′(t)
.

In order to write a single differential equation for S0, we differentiate (40) with respect
to r̂, as well as substitute in (37) and (39), to give us

(41)
∂2S0

∂r̂2
−
(
∂S0

∂r̂

)2
1− 2σS0

S0(1− σS0)
+ S0(1− σS0)(1− S0)Υ(S0) = 0,

where we define

Υ(S0) :=

√
1 + T

1 + T T ∗

[
1

δ

(
1 + T T ∗

(1 + T )P ∗

)
− σ(42)

−
(

β(1 + T )P ∗

A3(1 + T T ∗)2

)(
A2 −A1(1 + T T ∗)

1 +A4S0

)]
.

We note that, aside from the denominator 1 +A4S0, the components of the function
Υ(S0) are independent of r̂. By identifying (41) as a Bernoulli-like ODE, we can use
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integrating factors and the matching conditions (33) to obtain the first-order nonlinear
autonomous differential equation for S0(r̂):

(43)
∂S0

∂r̂
= −S0(1− σS0)

√
2

ˆ 1

S0

(1− χ)Υ(χ)

χ(1− σχ)
dχ .

It immediately follows that S0 is monotone decreasing when S0 lies between 0 and
1. Hence, we conclude that P and T do not drastically change within the transition
layer and the O(ε) perturbations P1 and T1 can be related to S0, which is the solution
of a first-order differential equation in r̂.

2.3. Asymptotics of Region ii. While the leading-order dynamics of S, T,
and P have been determined in the transition layer, we still do not have an explicit
form for R(t) and T ∗(t). To find these, we now examine Region ii, where negligible
water is present. From (1), we have that S = 0 at O(ε−2). However, this in turn
causes a cascading effect in the asymptotic expansion of (1), and we conclude that
S = o(εn) for all natural numbers n. Motivated by this fact, we anticipate that S will
be exponentially small in Region ii. Therefore, we can solve (1) explicitly, coupled
with the condition that S = 1 at t = t∗:

(44) S =

{
(1− σ) exp

[
1

ε2

ˆ t

t∗
(PST (T (r, s))− P (r, s))

√
1 + T

1 + T T (r, s)
ds

]
+ σ

}−1

.

If we then neglect exponentially small terms, (2) and (3) become

∂

∂t

[
P

1 + T T

]
= ∇ ·

[
P∇P

1 + T T

]
,(45)

∂T

∂t
= A3∇2T.(46)

For our boundary conditions in Region ii, we have the matching conditions (33)–(35),
implying

T
∣∣
r→R(t)

→ T ∗(t), P
∣∣
r→R(t)

→ P ∗(t),(47)

∂P

∂r

∣∣∣
r→R(t)

=
∂P1

∂r̂

∣∣∣
r̂→+∞

→
[

1

δ

(
1 + T T ∗

(1 + T )P ∗)

)
− σ

]
R′(t),(48)

∂T

∂r

∣∣∣
r→R(t)

=
∂T1

∂r̂

∣∣∣
r̂→+∞

→ − 1

A3
[A2 −A1(1 + T T ∗)]R′(t).(49)

We must also give an initial condition for R(t) and T ∗(t). As the drying front
starts from the surface of the bean and the temperature is at the switching point of
(6), the initial conditions are R(t∗) = 1, T ∗(t∗) = Ta. Finally, our solutions must also
continue to agree with the external boundary conditions of the system, namely,

(50)
∂T

∂r

∣∣∣
r=1

= ν

(
1 +A4

1− σ

)[
1− T

∣∣
r=1

]
and P

∣∣
r=1

= Pa.

Therefore, our leading-order problem is a coupled system of two Stefan-like problems
in a mass transfer setting, rather than the classical heat transfer setting [19]. As this
coupled system of PDEs (45)–(50) is not explicitly solvable, we are motivated to use
the large Stefan number approximation by considering the limiting case when δ � 1.
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The large Stefan number approximation has been studied previously in the context
of heat transfer on spheres (see, e.g., [20]). For Region ii, the large Stefan limit δ � 1
corresponds to the drying front moving very slowly relative to the speed of vapor
diffusion.

By rescaling time with τ = δ(t− t∗), we can examine the asymptotic series

(51) T = T0(r, τ) + δT1(r, τ) +O(δ2), P = P0(r, τ) + δP1(r, τ) +O(δ2)

as δ → 0+. In consequence, our leading-order Region ii problem (45)–(50) becomes

∇2T0 = 0, T0

∣∣
r→R(τ)

→ T ∗(τ),
∂T0

∂r

∣∣∣
r→R(τ)

→ 0,(52)

∇ ·
(
P0∇P0

1 + T T0

)
= 0, P0

∣∣
r→R(τ)

→ P ∗(τ),
∂P0

∂r

∣∣∣
r→R(τ)

→
(

1 + T T ∗

(1 + T )P ∗

)
R′(τ),

(53)

∂T0

∂r

∣∣∣
r=1

= ν

(
1 +A4

1− σ

)[
1− T0

∣∣
r=1

]
, P0

∣∣
r=1

= Pa,(54)

R(0) = 1, T ∗(0) = Ta.(55)

Solving (52) implies that T0 ≡ T ∗(τ) and applying (54) forces T ∗(τ) ≡ 1. In con-
sequence, this reduces our coupled Stefan problem to a Stefan problem for pressure
alone, i.e.,

∇ · (P0∇P0) = 0, P0

∣∣
r→R(τ)

→ 1, P0

∣∣
r=1

= Pa,(56)

∂P0

∂r

∣∣∣
r→R(τ)

→ R′(τ),(57)

R(0) = 1.(58)

We note that this solution cannot satisfy the initial condition (55) for T ∗(t). For this
to be resolved, we would have to consider the full problem in t, (45)–(50), which is
not readily solvable.

2.3.1. Determining R(t) in Cartesian coordinates with T ∗ ≡ 1. In the
limiting case where δ � 1, i.e., T ∗ ≡ 1, we can solve (56), provided that we neglect
any short-time discrepancies between the initial condition T ∗(0) = Ta and T ∗ ≡ 1.
Solving this PDE system (56) gives us

(59) P0(r, τ) =

√
1− (1− P 2

a )

(
r −R(τ)

1−R(τ)

)
and our Stefan condition (57) gives us the ODE

(60)
dR

dτ
= − 1− P 2

a

2(1−R)
.

Based on the initial condition from (58), our drying front in Cartesian coordinates
based on leading-order asymptotics, RCart(τ), is

(61) RCart(τ) = 1−
√

(1− P 2
a )τ .
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By returning to the original time scale of Region ii, we determine that P0 can be fully
expressed in Cartesian coordinates as

(62) PCart
0 (r, t) =

√√√√P 2
a + (1− r)

√
1− P 2

a

δ (t− t∗Cart)
.

Finally, we determine from (61) that the time to completely dry a bean based on
leading-order asymptotics is

(63) tdry
Cart = t∗Cart +

1

δ(1− P 2
a )
.

Using parameter values shown in [6], as well as typical values Pa = 0.0879, δ = 0.1011,

σ = 0.0842, and t∗Cart ≈ 0.494, we compute that tdry
Cart ≈ 10.46, or about 2768 seconds

in dimensional units.

2.3.2. Determining R(t) in spherical coordinates with T ∗ ≡ 1. In the
limiting case where δ � 1, i.e., T ∗ ≡ 1, we have that in spherical coordinates, by
solving (56),

(64) P0(r, τ) =

√
1−

(
1− P 2

a

r

)(
r −R(τ)

1−R(τ)

)
,

and our Stefan condition (57) gives us the ODE

(65)
dR

dτ
= − 1− P 2

a

2R(1−R)
.

We use our initial condition (58) to give us, in implicit form, that the inverse function
of the drying front in spherical coordinates, τSph(R), satisfies the equation

(66) τSph(R) =
1−R2(3− 2R)

3(1− P 2
a )

.

We can invert (66) and solve RSph(τ) in the correct domain and range:

(67) RSph(τ) =
1

2

(
1−

exp
(

2πi
3

)
Ξ (3(1− P 2

a )τ)
− exp

(
−2πi

3

)
Ξ
(
3(1− P 2

a )τ
))

,

where

(68) Ξ(χ) =
3

√
2
√
χ(χ− 1)− 2χ+ 1

and Ξ(χ) uses the principal branch of the cube root. Now that we have determined
R(τ) in spherical coordinates, we can return to our original time scale of the problem
and obtain that our leading-order asymptotic approximation for P is
(69)

P̃ Sph
0 (r, t) =

√√√√√√1−
(

1−P2
a

r

)1− 2(1−r)

1+
exp( 2πi

3 )
Ξ(3δ(1−P2

a )(t−t∗
Sph

))
+exp(−2πi

3 )Ξ
(
3δ(1−P2

a )(t−t∗
Sph

)
)
.D

ow
nl

oa
de

d 
02

/0
8/

18
 to

 1
63

.1
.8

1.
26

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ASYMPTOTIC ANALYSIS OF A MULTIPHASE DRYING MODEL 429

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

t

D
ry

in
g

 F
ro

n
t 

R
(t

)

 

 

Leading−Order
Asymptotics (Cartesian)
Leading−Order
Asymptotics (Spherical)

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

R
a

d
iu

s
 (

m
m

)

 

 

Numerics

Asymptotics

(a) (b)

Fig. 2. Comparison of predictions of the drying front position R(t) for the variable temperature
regime. (a) Predictions RCart(t) from (61) and RSph(t) from (67). (b) Spherical predictions RSph(t)
from (67), shown in dash-dot red, and numerical solutions of (1)–(8), shown in black. All predictions
in (b) are shown in dimensional units.

To determine the time where the bean becomes fully dry, we substitute R = 0 into
(66) to obtain, in our original time scale, that

(70) tdry
Sph = t∗Sph +

1

3δ(1− P 2
a )
.

Therefore, to leading order, the time for a spherical coffee bean to dry out completely
is tdry

Sph ≈ 3.495, or about 925 seconds in dimensional units. Figure 2(a) shows a
comparison between the Cartesian and spherical asymptotic approximations of R(t).

2.4. Comparison of asymptotic approximations with numerical results.
We now compare these asymptotic approximations with the numerical solution of the
PDE system (1)–(3), considering the drying front R(t) in particular. We solve the
PDE system (1)–(3) in MATLAB using the method of lines and a second-order central
finite difference scheme in space. We use a stiff adaptive ODE solver in time, namely,
the MATLAB function ode15s, to achieve convergence. As we can see in Figure 2(b),
the general shape of the dimensional drying front R(t) agrees reasonably well with
the dimensional drying front seen in the numerical solution, especially as R(t) → 0.
However, we also see that the drying time in the numerical solution is larger than
the predicted tdry

Sph from asymptotic results. This is to be expected, as the asymptotic

results used were for when the Stefan number 1
δ → +∞. Therefore, for a smaller (but

still large) Stefan number, we expect the drying time to be longer. Additionally, these
approximations for the drying front R(t) assume T ∗ ≡ 1. Because T ∗(t) is less than
unity in the numerical simulations, this will cause the drying front to be slower than
the asymptotic approximation, which can explain why the numerical solution takes
longer to dry out the entire bean.

3. Asymptotics of the multiphase model with constant temperature. In
section 2, we have given an analysis of the leading-order equations governing Regions i
and ii, and the transition layer. However, the numerical solutions indicate the thermal
time scale of the multiphase model is much smaller than the vapor diffusive time scale.
In consequence, it seems reasonable to examine a reduced model where the coffee bean
is at the externally imposed roasting temperature throughout. Additionally, many of
the leading-order equations can be solved explicitly if the temperature is spatially

D
ow

nl
oa

de
d 

02
/0

8/
18

 to
 1

63
.1

.8
1.

26
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

430 N. T. FADAI, C. P. PLEASE, AND R. A. VAN GORDER

uniform and this helps in interpreting the behavior of the moisture content and vapor
pressure. Therefore, we are motivated from a physical and an asymptotics point of
view to consider a reduced model with T ≡ 1.

In this section, we assume that T ≡ 1 throughout the bean, which means that the
transition region is created immediately (i.e., t∗ = 0) and the system of PDEs (1)–(2)
become

(71)
∂S

∂t
= − 1

ε2
(1− P )S(1− σS),

(72)
∂

∂t
[(1− σS)P ] =

1

δε2
(1− P )S(1− σS) +∇ · (P∇P )

with boundary conditions

(73) P
∣∣
r=1

= Pa,
∂P

∂r

∣∣∣∣
r=0

= 0,

and initial conditions

(74) S(r, 0) = 1, P (r, 0) = 1.

Formally, we will consider the asymptotics of this system in the limit as ε→ 0+. We
will take δ = O(1) except where significant simplification is found by taking δ � 1,
and all other parameters are assumed to be O(1).

3.1. Asymptotics in Region i. In Region i, we have that P = 1 to leading
order. In fact, we note that P, S ≡ 1 is the exact solution in Region i, as these constant
solutions satisfy both PDEs, the initial conditions, and the symmetry condition in P
at r = 0. It is important to note that, since we assume that Region i is never in
contact with the surface of the bean, the boundary condition at r = 1 does not apply.

3.2. Asymptotics of the transition layer. As in section 2, we introduce the
scaling r = R(t) + εr̂ to examine the behavior as S transitions from 1 to 0. Again, we
can expand P and S as asymptotic series as ε→ 0:

(75) S = S0(r̂, t) + εS1(r̂, t) +O(ε2), P = 1 + εP1(r̂, t) +O(ε2).

Noting that temperature is constant (implying that T1 ≡ 0 and T ∗ ≡ 1), the equation
(42) for Υ(S0) reduces to Υ(S0) ≡ 1

δ − σ. From (37), this gives us

(76)
∂P1

∂r̂
=

(
1

δ
− σ

)
R′(t)(1− S0),

and from (43), gives us the first-order nonlinear autonomous ODE

(77)
∂S0

∂r̂
= −S0(1− σS0)

√
2

(
1

δ
− σ

)[
1− σ
σ

log

(
1− σ

1− σS0

)
+ log

(
1

S0

)]
with matching conditions S0 → 0 as r̂ → +∞ and S0 → 1 as r̂ → −∞. It is important
to note a few key points about (77). First, it is not explicitly solvable. Second, due
to translational invariance, we require an additional constraint for uniqueness. This
can be achieved, for example, by assuming the unique inflection point of S0 occurs at
r = 0. With this additional constraint, we numerically solve (77) and plot the results
in Figure 3.
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Fig. 3. Numerical solution of the ODE (77). The left panel shows the solution S0(r̂) and the

right panel shows its spatial derivative ∂S0
∂r̂

. For uniqueness, we pick a constant of integration so
that S0(r̂) has an inflection point at r = 0.

3.3. Asymptotics in Region ii. In Region ii, we have, from (71), that S = 0
at O(ε−2), which again causes a cascading effect in the asymptotic expansion of (71).
Similarly to what was done in section 2, we find that S is exponentially small in
Region ii and is given by

(78) S =

{
(1− σ) exp

[
1

ε2

(
t−
ˆ t

0

P (r, s)ds

)]
+ σ

}−1

.

Additionally, by neglecting exponentially small S, (72) becomes

(79)
∂P

∂t
= ∇ · (P∇P ) .

From (76), our boundary and initial conditions become
(80)

P
∣∣∣
r=1

= Pa, P
∣∣∣
r→R(t)

→ 1,
∂P

∂r

∣∣∣
r→R(t)

→
(

1

δ
− σ

)
R′(t), R(0) = 1.

This problem has a similarity solution in Cartesian coordinates, as will be shown in
section 3.3.1, although it cannot be explicitly solved. However, we can also examine
the physically relevant large Stefan number limit by letting δ → 0+, as was done
in section 2.3. By rescaling time with τ = δt and considering the asymptotic series
P ∼ P0(r, τ) + δP1(r, τ) +O(δ2), (79)–(80) become
(81)

∇ · (P0∇P0) = 0, P0

∣∣∣
r=1

= Pa, P0

∣∣∣
r→R(τ)

→ 1,
∂P0

∂r

∣∣∣
r→R(τ)

→ R′(t), R(0) = 1.

Solving (81) like in section 2, we determine that in Cartesian coordinates,

(82) P0(r, t) =

√
P 2
a + (1− r)

√
1− P 2

a

δt
, R(t) = 1−

√
(1− P 2

a )δt,
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and in spherical coordinates,

(83)

P̃0(r, t) =

√√√√√√1−
(

1− P 2
a

r

)1− 2(1− r)

1 +
exp( 2πi

3 )
Ξ(3(1−P 2

a )δt) +
Ξ(3(1−P 2

a )δt)

exp( 2πi
3 )

,
R(t) =

1

2

(
1−

exp
(

2πi
3

)
Ξ (3(1− P 2

a )δt)
−

Ξ
(
3(1− P 2

a )δt
)

exp
(

2πi
3

) )
,

where Ξ(χ) = 3

√
2
√
χ(χ− 1)− 2χ+ 1.

3.3.1. Determining R(t) in Cartesian coordinates using similarity so-
lutions. One might consider using a similarity solution to solve the system (79)–(80)
in Cartesian coordinates without the assumption that δ � 1. To do this, we let
P = h(η), where η = 1−r√

t
. Substituting this transformation into (79) gives

(84) (h(η)h′(η))
′
+
η

2
h′(η) = 0,

and (80) becomes

(85) h(0) = Pa, h(λ) = 1, h′(λ) =
λ (1− δσ)

2δ
.

Here, η = λ corresponds to the moving boundary R(t). Thus, our drying front based
on the Cartesian similarity solution, is given by

(86) RSS(t) = 1− λ
√
t.

We note that our choice of η allows us to automatically satisfy the initial condition
R(0) = 1 and we can determine from this equation when the bean will be completely

dry, i.e., when RSS(t) = 0. This gives us tdry
SS = 1

λ2 . As (84) is not explicitly solvable, it
is necessary to numerically solve this boundary value problem in order to determine
λ. Using the shooting method, with the typical values Pa = 0.0879, δ = 0.1011,
and σ = 0.0842, we find that λ ≈ 0.3152, implying that tdry

SS ≈ 10.06, or about

2664 seconds in dimensional units. With less than a 1% relative error to tdry
SS , we

conclude that tdry
Cart ≈ 9.964, as described in (63), is a very good approximation to the

drying time computed from the similarity solution. Figure 4(a) shows a comparison
of the drying front RSS(t) with the Cartesian drying front determined previously via
asymptotic methods, namely, RCart(t) given in (61).

3.4. Comparison of asymptotic approximations with numerical results.
Comparing the various asymptotic approximations with the numerical solutions of
(71)–(74), we can see in Figure 4(b) that the general shape of the dimensional drying
front R(t) agrees well with the dimensional drying front seen in the numerical solution.
Because we have assumed that T ∗ ≡ 1, we no longer have differences induced by
varying the temperature that were seen in section 2. Therefore, it is expected that
the drying front R(t) determined via asymptotics fits closer to the numerics. We see,
like in section 2, that the drying time predicted by the numerical solution is larger
than tdry

Sph determined from asymptotic results in (70). However, this is to be expected;
a large (but finite) Stefan number would cause the drying time to be longer than the
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Fig. 4. Comparison of predictions of the drying front position R(t) for the constant temperature
regime. (a) Cartesian predictions RSS(t) from (86) and RCart(t) from (82). (b) Spherical predictions
RSph(t) from (83), shown in dash-dot red, and numerical solutions of (71)–(74), shown in black,
and of (79)–(80), shown in dashed blue. All predictions in (b) are shown in dimensional units.

time produced by the limit δ → 0+. This is confirmed by comparing the drying front
in the full numerical solution with the drying front obtained by solving (79)–(80)
numerically. Indeed, by allowing ε → 0+, we only observe significant discrepancies
between these two drying fronts near the surface and the center of the bean. This
is to be expected, as the transition layer will be on a semi-infinite region in both of
these cases and will have different behavior due to the boundary conditions.

4. Discussion. In this paper, we have extended results of the simplified form
of the multiphase model presented in [6] via asymptotic methods, in order to better
understand the qualitative features of the coffee bean roasting process. Motivated by
previous numerical results, we considered the limit ε→ 0+, representing the situation
where the rate of vapor transport by Darcy flow is much smaller than the evaporation
rate. The asymptotic analysis showed that the solution could be divided into two
main regions and a transition layer. The entire bean was in the first region until
a time t∗, when a thin transition layer appears at the surface of the bean. This
transition layer then propagated into the bean creating a second main region between
it and the surface of the bean. This asymptotic limit is different from what has been
studied previous in drying models, since the rigid cellulose structure of the solid coffee
bean creates a large buildup of vapor pressure that drives the vapor to the external
environment. The analysis shows that a narrow drying front, represented by the
transition layer, is crucial to the drying process in this limit.

In the first region, the vapor pressure is in equilibrium with the steam table
pressure and the moisture content of the bean remains at its initial value, with heat
flow governed by the heat equation. In the thin transition region, the moisture content
changes rapidly from its initial value to a small value. Here, evaporation dominates
and the temperature and vapor pressure remain spatially uniform. Finally, in the
second main region, there is almost no water and therefore no evaporation. The
problem in this second region consists of diffusion equations for the heat and vapor
flow with coupling through the matching conditions, similar to a Stefan problem, at
the transition layer.

Numerical simulations suggest that the externally applied roasting temperature
is attained globally fairly quickly; hence, the case where the temperature is fixed
at the roasting temperature was considered. This also allowed the coupled Stefan
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problem to be reduced to a single Stefan problem, which could then be solved via
similarity solutions or large Stefan number asymptotics. The leading-order expressions
are shown to agree well with the dynamics of the drying front found from numerical
simulations, under both spherical and planar geometries.

Despite several simplifications made in obtaining asymptotic solutions in each
of the regions of the coffee bean, a reasonable agreement between the asymptotic
approximations and the numerical solution of the multiphase model as described in
[6] has been obtained. This suggests that the asymptotics found here accurately
capture the qualitative behavior of the coffee bean roasting process, and provide an
acceptable compromise between a simpler heat transfer model (such as those presented
in [5]) and more complicated multiphase models. The asymptotic results presented
in this paper can be extended in order to determine the asymptotic dynamics of
related heat and mass transfer models. The complete multiphase model described
in [6] incorporates variable porosity, and by using similar methods to those shown
here, one might determine the leading-order behavior of the multiphase model with
variable porosity. Additionally, the analysis on more complicated geometries, such
as nonradially symmetric perturbations of a slab or sphere, may lead to destabilizing
the drying front observed in simpler geometries. Similarly, one might use the general
asymptotic results for the multiphase model discussed here to guide the development
of relevant solid mechanics models, which take into account the structural properties of
the coffee bean and allow for variations in coffee quality due to structural deformations
which may occur during heating and roasting. Asymptotic results may also guide in
the development of more complicated models involving many more chemical reactions,
as well as in understanding taste and aromatic properties of the final product.

Appendix A. Derivation of the multiphase model. Here, we will derive
the multiphase model (1)–(8) discussed in this paper, starting with (42)–(49) in [6].
Using the rescalings

(87) S = σŜ, T = T̂ , pv = pST (1)P̂ , t =
φ

D3pST (1)
t̂ ,

and defining the parameters

ε =

√
D3

√
1 + T

φ
, δ =

pST (1)α2

σ(1 + T )
, β =

B2T

1 + T
,(88)

A1 =
σφ

α1C1(1− φ)T
, A2 = γA1, A3 =

φ(ζ1(1− φ) + ζ3φ)

D3pST (1)α1C1(1− φ)
,(89)

A4 =
φσ(ζ2 − ζ3)

ζ1(1− φ) + ζ3φ
,(90)

the model of [6] becomes (dropping hats)

∂S

∂t
= − 1

ε2
Iv,(91)

∂

∂t

[
(1 + T )P (1− σS)

1 + T T

]
= −1

δ

∂S

∂t
+∇ ·

[
(1 + T )P∇P

1 + T T

]
,(92)

∂T

∂t
+A1

∂

∂t
[S(1 + T T )] = A2

∂S

∂t
+A3∇ · [(1 +A4S)∇T ] .(93)

Here, the rescaled evaporation rate Iv (following a Langmuir evaporation profile [21])
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and the rescaled steam table pressure PST (T ) are given by

(94) Iv = S(1− σS)(PST − P )

√
1 + T

1 + T T
and PST (T ) = exp

(
β(T − 1)

1 + T T

)
.

We note that in [6], the initial saturation value was defined as S0. This notation
means something different in the analysis of this paper, so we have therefore changed
the notation of the initial saturation to be denoted as σ. The boundary conditions
we impose on the PDE system (1)–(3) are the symmetry conditions at the center of
the bean

(95) ∇T · n = 0, ∇P · n = 0 at r = 0,

as well as the heat transfer condition

(96) ∇T · n = ν

(
1− σS
1− σ

)(
1 +A4

1 +A4S

)
(1− T ) at r = 1,

where

(97) ν =
Nuvζ3φ(1− σ)

(ζ1(1− φ) + ζ3φ)(1 +A4)
.

Previously, the model introduced in [6] imposes a Dirichlet condition in P at the
surface of the bean. We will instead impose a different boundary condition for P in
order to prevent condensation from occurring at the surface of the bean. This can be
achieved by imposing that P equals the steam table pressure for temperatures below
the evaporating temperature, i.e.,

(98) P
∣∣
r=1

=

{
PST (T ), T < Ta,

Pa, T ≥ Ta.

Here, Pa := 1+T
pST (1) and Ta := P−1

ST (Pa). We will also make the assumption that

the switching between the boundary condition for P only occurs at one critical time,
namely, t∗. We define t∗ as the time when the surface temperature equals the evapo-
ration temperature Ta, i.e., as the solution to the equation T (1, t∗) = Ta. Finally, we
impose the initial conditions corresponding to uniform initial moisture content, room
temperature, and equilibrium steam table pressure, i.e.,

(99) S(r, 0) = 1, T (r, 0) = 0, P (r, 0) = PST (0).
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