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Outline

I What is Machine Learning?
I Cross-validation
I Regressions (linear and logistic)
I Classification Tree
I Support Vector Machine
I Neural Networks
I Deep Neural Learning
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Literatures

I The Elements of Statistical Learning by T. Hastie, R.
Tibshirani and J. Friedman, Second edition, Springer, 2009

I Deep Learning by Ian Goodfellow and Yoshua Bengio, 2016
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Machine Learning

“Scientific study of algorithms and statistical models that computer
systems use to progressively improve their performance on a specific
task.” - Wikipedia
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Definition

I Machine learning seeks to answer the question:
I “How can we build computer systems that automatically

improve with experience, and what are the fundamental laws
that govern all learning processes?” - Tom Mitchell

I Machine learns with respect to a particular task T, performance
metric P, and type of experience E

I A computer learns if it improves its performance P at some task
T with experience E (i.e. more data)

I Extracting a model of a system from the observations (or the
simulations) in some situations

I The model presents some relationships between the variables
used to describe the system
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Machine learning for Finance

I Reduced operational costs through process automation
I Increased revenues due to better productivity and enhanced

user experiences
I Better compliance and reinforced security
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Machine Learning in Finance

I Humans have shown not very much skill at making superior
investments

I 86% money managers failed to beat their benchmarks 1

I Predictive analytics for finance (ex. fraud detection, credit risk)
I Analysis of invest’s sentiment on social media streams
I Quants and algotrading - patterns in the data
I Better understand systemic risk in financial systems
I Better understand patterns in investor and consumer behavior
I Opportunities of digital currencies and cryptography

1http://money.cnn.com/2015/03/12/investing/investing-active-versus-
passive-funds
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Financial data

I Public data
I Stock, Forex, Oil . . .
I Google, Yahoo . . .
I Gov, Open data . . .

I Semi-public data
I data vendors (stocks, bonds, funds, options, futures . . . )
I media (Bloomberg, Reuters . . . )
I API (Quandl)

I Internal data
I valuation information, fundamental data, reference data . . .

I Unstructured data
I media reports (FT, . . . )
I social media (Twitter, FB . . . )
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Financial Data Analytics

I Financial Data Analytics can be broken down into a series of
steps:
1. Data collection (stucture and unstructure data)
2. Data preprocessing and preparation (cleaning; inconsistant data;

spliting data; 80/20 or 70/30 rules)
3. Data exploration (learning more about the data and its nuances)
4. Data modeling (regression; machine learning)
5. Model evaluation (biased results; performance criteria;

benchmark; testing data; out of sample)
6. Performance improvement (more data; better model; parallel

computing; ensembling; scalibility)
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Cross-validation

I Learning and testing the model on the same data is a
methodological mistake

I Cross-validation aims to detecte and prevent overfitting
I Accuracy on the training set is optimistic
I A better estimate comes from an independent set (testing set)
I We can’t use the testing set when building the model or it

becomes part of the training set
I We estimate the testing set accuracy with the training set

Machine Learning - p10/19



Cross-validation

I The model f̂λ depends on a parameter λ
I We aim to identify the model that gives the best result (see

below) on the whole population (not the one that gives the
best result on the testing set)

I Given the training set T , we aim to minimise the generalisation
error:

min
λ

E
[
L(y , f̂λ(x))|T

]
where: L is the loss function (e.g. L(u, v) = (u − v)2),

I Alternatively, minimise the prediction error:

min
λ

E
[
L(y , f̂λ(x))

]
I The expectation is to be estimated on a large enough

validation set that is independent from the actual training set.
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Random subsampling

Machine Learning - p12/19



Leave one out
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K-fold
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Cross-validation considerations

I For time series data data must be used in “chunks”
I Random sampling must be done without replacement
I Random sampling with replacement is the bootstrap

I Underestimates of the error
I Can be corrected, but it is complicated

(http://www.jstor.org/discover/10.2307/2965703?uid=2&
uid=4&sid=21103054448997)

I For k-fold cross validation
I Large k: approximately unbiased predictor, but high variance

and potentially high computational cost
I Low k: biased predictor, but low variance and lower

computational cost
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Data splitting functions in Python

I Scikit-learn performs a (supervised) machine learning
experiment to hold out part of the available data as a test set
X_test, y_test.

I train_test_split, KFold, LeaveOneOut,
TimeSeriesSplit

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
y = np.array([1, 2, 3, 4])
X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.5, random_state=0)
print(X_train.shape, X_test.shape)

## ((2, 2), (2, 2))
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Data splitting functions in Python

# http://scikit-learn.org/stable/modules/cross_validation.html
kf = KFold(n_splits=2, random_state=None, shuffle=False) # Define 2 folds
kf.get_n_splits(X) # returns the number of splitting iterations
for train_index, test_index in kf.split(X):

print("TRAIN:", train_index, "TEST:", test_index)

## ('TRAIN:', array([2, 3]), 'TEST:', array([0, 1]))
## ('TRAIN:', array([0, 1]), 'TEST:', array([2, 3]))
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Choosing R or Python for data analysis?
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Choosing R or Python for data analysis?

I It’s up to you to choose
I What problems do you have to solve?
I Which language best fits your needs?
I What are the costs to learn the language?
I What is your community?
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This lecture

I Brief overview of supervised learning (HTF 2, 7.2)
I Regularised regression (HTF 3.4)
I Ridge regression (HTF 3.4.1)
I Lasso shrinkage (HTF 3.4.2, 3.4.3)
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General types of machine learning algorithms
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Supervised learning

I Goal: from the database (learning sample), find a function h of
the inputs that approximates at best the output

I Numerical output: regression problem
I Symbolic output: classification problem
I Predictive: make predictions for a new sample described by its

attributes

I Supervised learning model
I given x input, features, predictors, independent variables
I and corresponding y output, response, dependent variables,
I we assume that y are observed (noisy) values of f (x) for some

f ,
I we aim to estimate f by f̂ .

I Financial Applications: time series analysis; fraud detection;
credit scoring; etc
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Supervised learning process (ref. HTF 7.2)

I Define the learning problem
I Generate or collect the data
I Data preprocessing and splitting

I Split the data into independent training and testing sets

I Train the model
I Fit the model on the training set

I Evaluate the performance
I Valiate the model on the testing set (estimate the prediction

error)
I If not satisfied go back to training
I If the model is chosen out of a few, compare them on a

validation set, that is independent from the training set, in
order to select the best one,

I Assess the final model (estimate the prediction error) on a
testing set.
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Evaluating the success of learning

I The model is tested on testing data
I How well its characterization of the training data generalizes to

the testing data

I Every learner has its weaknesses and biases
I Bias is associated with the abstraction and generalization

process
I Failure to generalize usually is caused by noisy data
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Overfitting

I Overfitting means the model does not generalize well
I The model performs well during training but does poorly during

testing overfitted to the training dataset
I Overfitting models the noise in data

I Noise is random by definition, attempting to explain the noise
will result in erroneous conclusions

I Overfitting results in more complex models that are more likely
to ignore the true pattern

I Solutions to overfitting are specific to particular machine
learning approaches
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Linear supervised learning

I Many real problems can be approximated with linear models.
I Linear prediction provides an example to many of the core

concepts of machine learning.
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Simple linear regression - training
First we generate some toy data in order to demonstrate the need
for regularisation. The residual standard error on the training set is
1.9211855. The regression is fairly accurate.
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Simple linear regression - testing
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I The sum of squares of the residuals on the testing set is
120.6703309.

I The estimates on the testing set are reasonably accurate.
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Making the data noisier

Now, we add some extra features in order to confuse the traditional
linear regression.

This mimics more realistic situations:

I the feature set is rich enough to contain the required
information

I but in contains information that may be redundant or may not
be relevant

On the next slides we demonstrate why it is problematic.
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Linear regression revisited - training
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I The sum of squares of the residuals is on the training set is
NaN.

I This seems to be a perfect fit.
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Linear regression revisited - testing
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I The sum of squares of the residuals on the testing set is
190749 (compare to err1.te above).

I The estimator is over-fitted to the training set.
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Regularised regression - background
Regularised regression models impose penalty on the regression
coefficients:

β̂ = argmin
β


N∑

i=1
(yi − β0 −

p∑
j=1

xijβj)2 + λ
p∑

j=1
|βj |q


Where:

I the q = 2 case is referred to as Ridge regression
I the q = 1 case is called Lasso (least absolute shrinkage and

selection operator) method

Alternatively, one can represent the optimisation problem as:

β̂ = argmin
β


N∑

i=1
(yi − β0 −

p∑
j=1

xijβj)2


subject to

p∑
j=1
|βj |q ≤ t.
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Ridge regression - derivation

The coefficients of the Ridge regression (q = 2) can be directly
computed.

I Step 1. β1 = 1
N yi = ȳ .

I Step 2. Introduce the notation:

β = (βi )d
j=1, y = (yi − ȳ)N

i=1, x = (x)i ,j

Then, the objective function can be written as

(y− xβ)T (y− xβ) + λβTβ,

and
β̂ = (xT x + λI)−1xTy,

where I is the d × d identity matrix.
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Regularised regression - training with Lasso

−5 0 5 10 15

−
10

−
5

0
5

10

exact y−values

pr
ed

ic
te

d 
y−

va
lu

es

I The perfect fit in the previous case used most of the variables
(see ‘summary(train2)’)

I In the case of Lasso regularisation, when most of the
coefficients are used, the penalty term blows up (see later).
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Regularised regression - Lasso, testing
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The
regularised regression does a decent job: err3.te=113.4797069
(compare to err1.te and err2.te above).
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Lasso as a shrinkage method

−3 −2 −1 0 1

−
2

−
1

0
1

2

log(λ)

co
ef

fic
ie

nt
s

54 41 30 9 0

Regression coefficients

Machine Learning - p18/25



Lasso as a shrinkage method

β1

β 2

0 2 4 6

−
1

0
1

2
3

4

∑ resi
2

L1  norm

Machine Learning - p19/25



Ridge regression - regularisation only
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Cross-validation - Lasso
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Linear regression in sklearn
import numpy as np
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score
n_samples, n_features = 10, 5
np.random.seed(0)
y = np.random.randn(n_samples)
X = np.random.randn(n_samples, n_features)
lm = linear_model.LinearRegression()
lm.fit(X,y)
predictions = lm.predict(X)
print(predictions)

## [ 1.40977378 0.05327317 0.87351204 2.3979991 1.72087882 -0.6431204
## 0.88107802 -0.51570968 0.28830167 0.91424518]

print(lm.coef_)

## [ 1.64120907 -0.19746253 -1.1360001 0.04967949 2.13178637]

print(mean_squared_error(y, predictions))

## 0.0959236070718

print(r2_score(y, predictions))

## 0.89743447524
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Ridge regression in sklearn

rlm = linear_model.Ridge(alpha=1.0)
rlm.fit(X, y)
predictions = rlm.predict(X)
print(mean_squared_error(y, predictions))

## 0.295837585119

print(r2_score(y, predictions))

## 0.683678105029
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Lasso regression in sklearn

llm = linear_model.Lasso(alpha=0.1)
llm.fit(X,y)
predictions = llm.predict(X)
print(mean_squared_error(y, predictions))

## 0.444484380198

print(r2_score(y, predictions))

## 0.524738746861
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Further topics

I Elastic net (ref. HTF 3.4)
I Least angle regression and its relation to LASSO (ref. HTF

3.4.4)
I http://scikit-learn.org/stable/modules/linear_model.html
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Classification problem
I Given {xi}Ni=1 input, features, predictors, independent variables
I Corresponding categorical yi ∈ C output, response, dependent

variables,
I Aim is to predict y given (out of sample) x , or
I Estimate p(x) = P(y = c|x) for c ∈ C

I binary classification: |C| = 2
I multiclass classification: |C| > 2, one vs. rest, one vs. one

Some methods:

I Logistic regression
I Classification tree
I Random forests
I Support vector machines
I Neural networks
I etc.
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Can we use linear regression?
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Can we use linear regression?

I Linear regression does not estimate P(y = c|x) well.
I Linear regression P(y = c|x) can go to infinite.
I Linear regression is not appropriate multiple classification.
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Binary logistic regression

In the binary classification case, let C = {0, 1}

Given x find p(x) = P(y = 1|x) where 0 ≤ p(x) ≤ 1

Binary classification:

p(x) = sigmod(β0 + βT
1 x)

sigmod(z) = 1
1 + e−z

p(x) = 1
1 + eβ0+βT

1 x
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Sigmod function
import matplotlib.pyplot as plt
import numpy as np
def sigmoid(z):

return 1.0 / (1.0 + np.exp(-z))
z = np.arange(-7, 7, 0.1)
phi_z = sigmoid(z)
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Multiclass logistic regression

|C| = m

P(y = ci |x) = exp(βi0+βT
i x)

1+
∑m−1

j=1 exp(βj0+βT
j x)

, i = 1, . . . ,m − 1

P(y = cm|x) = 1
1+

∑m−1
j=1 exp(βj0+βT

j x)
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Decision boundary
Often the binary classification prediction is of the form:

ŷ = p(y |x) =
{

0 if p(x) ≤ k
1 if p(x) > k

for some function p(x) ∈ R and a well chosen threshold k.
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Cost function
def cost_1(z):

return - np.log(sigmoid(z))
def cost_0(z):

return - np.log(1 - sigmoid(z))
z = np.arange(-10, 10, 0.1)
phi_z = sigmoid(z)
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Cost function

Maximum likelihood is used to estimate the parameters:

ˆ̀(β) =
∏
y=1

p(xi ;β)
∏
y=0

(1− p(xi ;β))

The log-likelihood can be written as

`(β) =
N∑

i=1
yi log p(xi ;β) + (1− yi) log(1− p(xi ;β))

=
N∑

i=1
yi(β0 + βT

1 xi)− log(1 + exp(β0 + βT
1 xi))

I The max of `(β) can be approximated with Gradient descent,
Conjugate gradient, Newton-Raphson algorithm. (HTF4.4.1)
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Logistic regression

Logistic regression is implemented in the sklearn.linear_model
package in Python.

from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=1000.0, random_state=0)
lr.fit(X_train, y_train)
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Performance Evaluation - Confusion matrix

I Accuracy: |TP+TN|/|M|
I Precision: |TP|/|TP+FP|
I Recall: |TP|/|TP+FN|
I F1 score: 2× Precision× Recall/|Precision + Recall
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Receiver operating characteristic (ROC)

I True positive rate: |true positive|/|positive|
I False positive rate: |false positive|/|negative|
I Evaluates (and compares) performance of f on a given

population {xi}Ni=1.
I Instead of fixing threshold k, ROC considers a whole range of

k’s and for each value of k plots the false positive rate
against the true positive rate.

I Area under ROC curve (AUC) is used to summarize the
overall performance. Higher AUC is good.
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Receiver operating characteristic (ROC)
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Receiver operating characteristic (ROC)
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Receiver operating characteristic (ROC)
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Receiver operating characteristic (ROC)
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Receiver operating characteristic (ROC)

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

p(x)

de
ns

ity
Densities of predictions (example 3)

Machine Learning - p18/41



Receiver operating characteristic (ROC)
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ROC in Python

from sklearn import svm, datasets
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
import matplotlib.pyplot as plt
plt.clf()
breast_cancer = load_breast_cancer()
print(breast_cancer.feature_names)

## ['mean radius' 'mean texture' 'mean perimeter' 'mean area'
## 'mean smoothness' 'mean compactness' 'mean concavity'
## 'mean concave points' 'mean symmetry' 'mean fractal dimension'
## 'radius error' 'texture error' 'perimeter error' 'area error'
## 'smoothness error' 'compactness error' 'concavity error'
## 'concave points error' 'symmetry error' 'fractal dimension error'
## 'worst radius' 'worst texture' 'worst perimeter' 'worst area'
## 'worst smoothness' 'worst compactness' 'worst concavity'
## 'worst concave points' 'worst symmetry' 'worst fractal dimension']
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ROC in Python

X = breast_cancer.data
y = breast_cancer.target
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.33, random_state=44)
#sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001,
# C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None,
#solver=’warn’, max_iter=100, multi_class=’warn’, verbose=0, warm_start=False, n_jobs=None)
clf = LogisticRegression(penalty='l2', C=0.1)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("Accuracy", metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 0.9521276595744681)
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ROC in Python
y_pred_proba = clf.predict_proba(X_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc), color='red')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate',fontsize=6)
plt.ylabel('True Positive Rate',fontsize=6)
plt.title('RoC example',fontsize=6)
plt.legend(loc="lower right",fontsize=6)
plt.show()
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Classification tree

I Classification trees use splitting rules to segment the predictor
into regions R1,. . . , RM .

I We estimate

P(y = ci |x ∈ Rj) ≈ 1
Nj

∑
xi∈Rj

1(yi = ci) =: pji

where Nj = #{xi ∈ Rj}.
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Classification tree
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Error functions

I Predicted class: i(j) = argmaxi pji .
I Measures of error Q(Rj) = Q(j) in Rj :

I Miss-classification error: 1− pji(j),
I Gini index:

∑|C|
k=1 pji(1− pji)

I Cross-entropy: −
∑|C|

k=1 pji log pji
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Classification tree - the algorithm

The exact optimum is expensive to compute. Good approximations
can be find.

Growing the tree

I The decision tree is determined by recursive partitioning
(splitting (sub)regions in two).

I For a given region R, find j and s, such that

Rl(j , s) := {xi |x j
i ≤ s}, Ru(j , s) := {xi |x j

i > s},

and j , s minimises:

|Rl(j , s)|Q(Rl(j , s)) + |Ru(j , s)|Q(Ru(j , s)).

I Grow the tree until a minimum node size is reached.
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Classification tree - the algorithm

Pruning the tree

I Given a large (over-fitted) tree T0 defined by the regions
R1,. . . ,R|T0|, find a sub-tree Tα that minimises the cost
complexity criterion:

Cα(T ) =
|T |∑

m=1
NmQ(Rm) + α|T |.
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Classification tree - example
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Classification tree - example - training
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Classification tree - fit on full tree
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Predictions

Accuracy on test set is 0.8245614 compared to 0.8576998 on
training set.
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Classification tree - example - pruning
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Classification tree - fit on pruned tree

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

points.1

po
in

ts
.2

Predictions

Accuracy on test set is 0.8187135 compared to 0.8479532 on
training set.
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Classification Tree - Pros and Cons

I Tree methods are simple and useful for interpretation.
I Performance is not competitive with the best supervised

learning approaches.
I Bagging and boosting are used to grow multiple trees which

are combined to yield a single consensus prediction.
I Combining a large number of trees can often result in dramatic

improvements in prediction accuracy.
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Random Forests

Let the (weak) predictor be classification/regression tree T . The
aim is to build a large number of de-correlated trees and bag them.

The algorithm:

1. For m = 1, . . .M

I draw a bootstrap sample Sm from S of a predefined size.
I grow a tree Tm to Sm until a predefined minimum node size is

reached by repeating the following steps:
I select k factors/dimension at random out of d (X ⊆ Rd),
I pick the best split point among the k,
I split the node into two child nodes.

2. Define the predictor f ∗fr by bagging {Tm}Mm=1.
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Random Forests

Properties:

I random forests tend to perform well on trees (that may be
noisy but have small bias),

I performance depends on the choice of k,
I best practice default value for k: b

√
dc for classification,

I best practice default value for k: bd/3c for regression.

Machine Learning - p35/41



Python Examples - data preparation

from sklearn.cross_validation import train_test_split
from sklearn import datasets
iris = datasets.load_iris()
print(iris.feature_names)

## ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

print(iris.target_names)

## ['setosa' 'versicolor' 'virginica']

X = iris.data[:, [2, 3]]
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.3, random_state=0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
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Python Examples - Logistic Regression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=1000.0, random_state=0)
lr.fit(X_train_std, y_train)
y_pred = lr.predict(X_test)
print("Accuracy", metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 0.24444444444444444)
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Python Examples - Decision Tree
from sklearn.tree import DecisionTreeClassifier
# sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,
# min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
# random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
# class_weight=None, presort=False)
tree = DecisionTreeClassifier(criterion='entropy', max_depth=2, random_state=1)
tree.fit(X_train, y_train)
y_pred = tree.predict(X_test)
print("Accuracy", metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 0.91111111111111109)
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Python Examples - Pruning tree

I Pruning helps us to avoid overfitting
I Any additional split that does not add significant value is not

worth while.
I Avoid overfitting by changing the parameters like

max_leaf_nodes, min_samples_leaf, max_depth
I max_leaf_nodes: Reduce the number of leaf nodes
I min_samples_leaf: Restrict the size of sample leaf
I max_depth: Reduce the depth of the tree to build a generalized

tree
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Python Examples - Random Forest
from sklearn.ensemble import RandomForestClassifier
# sklearn.ensemble.RandomForestClassifier(n_estimators=’warn’, criterion=’gini’, max_depth=None,
# min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
# max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True,
# oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None)
forest = RandomForestClassifier(criterion='entropy',n_estimators=50, random_state=1)
forest.fit(X_train, y_train)
y_pred = forest.predict(X_test)
print("Accuracy", metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 0.97777777777777775)
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Further topics

I k-nearest neighbour classifier (13.3 HTF)
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This lecture
I Support vector machines, linear & separable case (3.1-2

Burgess)
I Support vector machines, linear & non-separable case (3.5

Burgess)
I Support vector machines, non-linear case (4 Burgess)
I Examples

Main literature:

I A Tutorial on Support Vector Machines for Pattern Recognition
by C. Burgess, Data mining and knowledge discovery 2.2
(1998): 121-167.

Further read:

I The Elements of Statistical Learning by T. Hastie, R.
Tibshirani and J. Friedman, Second edition, Springer, 2009
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Support vector machine, separable case
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Support vector machine, separable case

Observations: points vi ∈ Rd and labels ui ∈ {−1, 1} for
i = 1, . . . ,N.

Linear decision function:

〈w , vi〉+ b ≥ 0, for ui = 1
〈w , vi〉+ b ≤ 0, for ui = −1

Several w , b suitable pairs may exist. Which one is the “best”?
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Support vector machine, separable case

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

Margin

w

<w,v>+b=0

Machine Learning - p5/22



Support vector machine - a bit of geometry

HEARST, Marti A., et al., 1998. Support vector
machines. IEEE Intelligent Systems, 13(4), 18–28.
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Support vector machine, separable case

Formulation as an optimisation problem:

The aim is to find the separating hyper-plane with the largest
margin:

argmax
w ,b

2
‖w‖ = argmin

w ,b
1
2‖w‖

2.

constrained to:

〈w , vi〉+ b ≥ 1, for ui = 1
〈w , vi〉+ b ≤ −1, for ui = −1

or in short:

ui (〈w , vi〉+ b)− 1 ≥ 0, for i = 0, . . . ,N.

The penalisation factor C is to be tuned by cross-validation.
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Support vector machine, separable case
Lagrangian formulation

LP = 1
2‖w‖

2 −
N∑

i=1
αiui (〈w , vi〉+ b) +

N∑
i=1

αi .

required: αi ≥ 0 for i = 1, . . . ,N.
Karush-Kuhn-Tucker conditions (necessary and sufficient for convex
problems) for i = 1, . . . ,N:

∂
∂w LP = w −

N∑
i=1

αiuivi = 0,

∂
∂b LP = −

N∑
i=1

αiui = 0,

ui (〈w , vi〉+ b)− 1 ≥ 0,
α ≥ 0,

αi (ui (〈w , vi〉+ b)− 1) = 0.
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Support vector machine, separable case

The condition αi (ui (〈w , vi〉+ b)−1) = 0 implies that at least one of

I αi = 0,
I ui (〈w , vi〉+ b) = 1

must hold.

If αi > 0, that is when vi is on the margin, then vi is a support
vector, hence the name.
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Support vector machine, separable case

From KKT, we have:

w =
N∑

i=1
αiuivi , (∗)

0 =
N∑

i=1
αiui . (∗∗)

Dual problem

Maximise:

LD =
N∑

i=1
αi − 1

2
∑
i ,j
αiαjuiuj〈vi , vj〉.

subject to constraints (KKT).
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Support vector machine, non-separable case

Formulation as an optimisation problem:

In the non-separable case we allow points within the margin, but at
a cost/penalty:

argmin
w ,b

1
2‖w‖

2 + C
( N∑

i=1
ξi

)
.

constrained to:

〈w , vi〉+ b ≥ 1− ξi , for ui = 1
〈w , vi〉+ b ≤ −1 + ξi , for ui = −1

ξi ≥ 0, i = 1, . . . ,N
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Support vector machine, non-separable case
Lagrangian formulation:

LP = 1
2‖w‖

2 + C
∑
i=1

ξi −
N∑

i=1
αi{ui (〈w , vi〉+ b)− 1+ ξi}−

N∑
i=1

µiξi .

The KKT conditions: for i = 1, . . . ,N (*), (**), and:

∂
∂ξi

LP = C − αi − µi = 0,
ui (〈w , vi〉+ b)− 1 + ξi ≥ 0,

ξi ≥ 0,
αi ≥ 0,
µi ≥ 0,

αi {ui (〈w , vi〉+ b)− 1 + ξi} = 0,
µiξi = 0.
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Support vector machine, non-separable case

The condition αi {ui (〈w , vi〉+ b)− 1 + ξi} = 0 implies that at
least one of

I αi = 0,
I ui (〈w , vi〉+ b) = 1− ξi

must hold.

If αi > 0, that is when vi is on the margin or on the wrong side of
the margin, then vi is a support vector.
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Support vector machine, non-separable case

Dual formulation:

Maximise:

LD =
N∑

i=1
αi − 1

2
∑
i ,j
αiαjuiuj〈vi , vj〉

subject to
0 ≤ αi ≤ C ,
N∑

i=1
αiui = 0.
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Non-linear support vector machines

If a hyper-plane does not work on the original data in the original
space, it may work on the transformed data in another space.

That is, for some function Φ : Rd → H, a hyper-plane might be a
good separator, that maximises

LD =
N∑

i=1
αi − 1

2
∑
i ,j
αiαjuiuj〈Φ(vi ),Φ(vj)〉

subject to
0 ≤ αi ≤ C ,
N∑

i=1
αiui = 0.
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Non-linear support vector machines
Note that the optimisation depends on the vi ’s only through:

〈Φ(vi ),Φ(vj)〉.

Generalisation: replace the inner product with kernel

K (vi , vj).

Mercer’s condition: Given K (, ), there exists a pair {H,Φ} such
that K (x , y) = 〈Φ(x),Φ(y)〉 if and only if∫

g(x)2dx <∞

implies ∫
K (x , y)g(x)g(y)dxdy ≥ 0.
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Non-linear support vector machines

Examples of kernel functions:

K (x , y) = 〈x , y〉p, polynomial

K (x , y) = e−γ‖x−y‖2
, radial basis

K (x , y) = tanh(κ〈x , y〉 − δ), sigmoid
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SVM Classifier in sklearn

# SVM Classifier
from sklearn.svm import SVC
from sklearn import datasets
from sklearn import metrics
from sklearn.model_selection import train_test_split
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = iris["target"]
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
# sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto_deprecated’, coef0=0.0,
# shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None,
# verbose=False, max_iter=-1, decision_function_shape=’ovr’, random_state=None)
svm_clf = SVC(kernel="linear", C= 5)
svm_clf.fit(X_train, y_train)
y_pred = svm_clf.predict(X_test)
print("Accuracy", metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 1.0)
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SVM Classifier in sklearn
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SVM Classifier in sklearn

from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
gamma1, gamma2 = 0.1, 5
C1, C2 = 0.001, 1000
hyperparams = ((gamma1, C1), (gamma1, C2),

(gamma2, C1), (gamma2, C2))
svm_clfs = []
for gamma, C in hyperparams:

rbf_kernel_svm_clf =SVC(kernel="rbf", gamma=gamma, C=C)
rbf_kernel_svm_clf.fit(X, y)
svm_clfs.append(rbf_kernel_svm_clf)
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SVM Classifier in sklearn
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Further topics

I Numerical implementation of SVM for large data-sets and/or
high dimensions (ref. 5 Burgess, 12.3.5 HFT)

I SVMs for regression (ref. 12.3.6 HTF)
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Artificial Intelligence

I The idea of AI is to teaching machine to behave more like the
human brain.

I Neural Networks move machine learning closer to AI.
I Make learning algorithms much better and easier to use.
I Make revolutionary advances in machine learning and

neuroscience.
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Single Neuron

In 1943, neurophysiologist Warren McCulloch and mathematician
Walter Pitts wrote a paper on how neurons might work. In order to
describe how neurons in the brain might work, they modeled a
simple neural network using electrical circuits 1.

1http:
//www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
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Single Neuron

I Input layer: An input X = (x1, ..., xn)
I Activation: weighted sum of input features
I Activation function: logistic function f (.) applied to the

weighted sum
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Multiple Input Neuron
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Activation function
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Activation functions 2

2https://towardsdatascience.com
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Multilayer Perceptron (MLP)

Image Souce: neuralnetworksanddeeplearning.com

Machine Learning - p8/27



Multilayer Perceptron (MLP)

I Feed-forward: MLP maps sets of input data onto a set of
appropriate outputs.

I Fully-connected: MLP consists of multiple layers of nodes in a
directed graph, with each layer fully connected to the next one.

I Nonlinear: Except for the input nodes, each node is a
neuronwith a nonlinear activation function.

I Backpropagation: MLP utilizes backpropagation for training
the network.
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ForwardFeeding
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Backpropagation (BP)

I BP is a common method of training artificial neural networks.
I BP propagates the errors backward and adjust the weights.
I BP is normally used with an optimization method such as

gradient descent.
I BP calculates the gradient of a loss function with respect to all

the weights in the network.
I The gradient is fed to the optimization method which in turn

uses it to update the weights, in an attempt to minimize the
loss function.
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Back Propagation
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Back Propagation
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Back Propagation
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MLP example - generating data
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
X, y = make_moons(n_samples=500, noise=0.2, random_state=18)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
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MLPClassifier in sklearn

from sklearn.neural_network import MLPClassifier
#MLPClassifier(hidden_layer_sizes=(100, ), activation=’relu’, solver=’adam’, alpha=0.0001, batch_size=’auto’,
#learning_rate=’constant’, learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None,
#tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
#validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10)
mlp = MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=1000)
mlp.fit(X_train, y_train)
predictions = mlp.predict(X_test)
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report, confusion_matrix
print(accuracy_score(y_test,predictions))

## 0.952
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MLPClassifier in sklearn
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Tips on MLPClassifier

I Multi-layer Perceptron is sensitive to feature scaling, so it is
highly recommended to scale your data.

I Sale each attribute on the input vector X to [0, 1] or [-1, +1],
or standardize it to have mean 0 and variance 1.

I Finding a reasonable regularization parameter using
GridSearchCV

I L-BFGS converges faster and with better solutions on small
datasets. For relatively large datasets, however, Adam is very
robust. It usually converges quickly and gives pretty good
performance. SGD with momentum or nesterov’s momentum,
on the other hand, can perform better than those two
algorithms if learning rate is correctly tuned.
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Visualizing Neural Nets

http://playground.tensorflow.org is a website where you can tweak
and visualize neural networks.
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TensorFlow

I TensorFlow is an open source software library for numerical
computation using data flow graphs.

I TensorFlow was originally developed by researchers and
engineers working on the Google Brain Team within Google’s
Machine Intelligence.

I The flexible architecture allows you to deploy computation to
one or more CPUs or GPUs in a desktop, server, or mobile
device with a single API.
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Keras

I Keras is a high-level neural networks API, written in Python
and capable of running on top of TensorFlow, CNTK, or
Theano.

I Keras is developed with a focus on enabling fast
experimentation.
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Keras in Python

import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import mnist

## Using TensorFlow backend.

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.utils import np_utils
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Keras - load data

nb_classes = 10
(X_train, y_train), (X_test, y_test) = mnist.load_data()
print("X_train original shape", X_train.shape)

## ('X_train original shape', (60000, 28, 28))

print("y_train original shape", y_train.shape)

## ('y_train original shape', (60000,))
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Keras - data preprocessing

X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print("Training matrix shape", X_train.shape)

## ('Training matrix shape', (60000, 784))

print("Testing matrix shape", X_test.shape)

## ('Testing matrix shape', (10000, 784))
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Keras - build model

model = Sequential()
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
# Dropout helps protect the model from memorizing
# or "overfitting" the training data
model.add(Dense(10))
model.add(Activation('softmax'))
# This special "softmax" activation among other things
# ensures the output is a valid probaility distribution
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Keras - train the model

model.compile(loss='categorical_crossentropy',
optimizer='adam',metrics=['accuracy'])

model.fit(X_train, Y_train,
batch_size=128, nb_epoch=4,
verbose=0,
validation_data=(X_test, Y_test))
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Keras - evaluate the model
score = model.evaluate(X_test, Y_test, verbose=0)
print(score[1])

## 0.9805
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Deep Learning in Finance

Machine Learning - p2/29



Deep Neural Networks (DNNs)

I DNN is ANN with multiple hidden layers of units between the
input and output layers.

I DNNs can model complex non-linear relationships.
I DNNs are designed as feedforward and backpropagation

networks.
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Vanishing/Exploding Gradients Problem

I X. Glorot and Y. Bengio found this problem in 2010 in paper
“Understanding the difficulty of training deep feedforward neural
networks”.

I For DNNs gradients often get vanishing/exploding as the
algorithm progresses down to the many layers.

I For RNN long term dependencies can not be efficiently
captured.
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Activation functions

I The sigmoid function is continuous and differentiable but it
saturates at 0 or 1, with a derivative extremely close to 0.

I The ReLU function suffers from a problem known as the dying
ReLUs, i.e. some neurons stop outputting anything rather than
0.

I The variant of the ReLU function is used to sovle the gradient
problems, such as LeakyReLUa(z) = max(az , z).
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Convolutional Neural Network (CNN)
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Problem for Image Recognition
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Convolutional Neural Network (CNN)

I CNN is a type of feed-forward artificial neural network.
I The connectivity pattern between its neurons is inspired by the

organization of the animal visual cortex.
I CNN is a variation of multilayer perceptrons designed to use

minimal amounts of preprocessing.
I CNN has wide applications in image and video recognition,

recommender systems and natural language processing.
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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CNN in Keras

from keras.layers import Convolution1D, MaxPooling1D
model = Sequential()
model.add(Convolution1D(input_shape = TRAIN_SIZE,

nb_filter=64,
filter_length=2,
border_mode='valid',
activation='relu',
subsample_length=1))

model.add(MaxPooling1D(pool_length=2))
model.add(Dense(250))
model.add(Dropout(0.25))
model.add(Activation('relu'))
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CNN Example
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Recurrent Neural Network (RNN)

I RNN is a class of artificial neural network where connections
between units form a directed cycle.

I Unlike feed-forward neural networks, RNNs can use their
internal memory to process arbitrary sequences of inputs.

I RNN is applicable to tasks such as sequential data processing.
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Recurrent Neural Network (RNN)1

1http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Recurrent Neural Network (RNN)2

2http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNN Example - Shakespeare 3

Train with 3-layer RNN with 512 hidden nodes on each layer

3http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Long-Short-Term-Memory in RNN4

4Cristopher Olah, “Understanding LSTM Networks” (2015)
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Long-Short-Term-Memory in RNN5

5Cristopher Olah, “Understanding LSTM Networks” (2015)
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LSTM in Keras

from keras.layers.recurrent import LSTM
model = Sequential()
model.add(LSTM(input_shape = (EMB_SIZE,),

input_dim=EMB_SIZE, output_dim=HIDDEN_RNN,
return_sequences=True))

model.add(Dense(1))
model.add(Activation('linear'))
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LSTM Example - Algebraic Geometry 6

6http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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LSTM Example - Linux Source Code 7

Train 474MB of C code with 3-layer LSTMs

7http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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LSTM Example - Time series
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Further Readings

I Deep Learning By Ian Goodfellow and Yoshua Bengio and
Aaron Courville MIT Press, 2016

I Neural Networks and Deep Learning By Michael Nielsen,
Online book, 2016

I Learning Deep Architectures for AI By Yoshua Bengio, NOW
Publishers, 2009
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