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Abstract
For a nonlinear operator T satisfying certain structural assumptions, we prove that

the following statements are equivalent: i) T is surjective, ii) T is open at zero, and iii)
T has a bounded right inverse. The result applies to numerous scale-invariant PDEs in
regularity regimes where the equations are stable under weak∗ convergence. As examples
we consider the Jacobian equation and the incompressible Euler equations.

For the Jacobian, it is a long standing open problem to decide whether it is onto
between the critical Sobolev space and the Hardy space. Towards a negative answer, we
show that, if the Jacobian is onto, then it suffices to rule out the existence of surprisingly
well-behaved solutions. We also prove that the data-to-solution map is poorly-behaved,
by giving explicit examples where there are uncountably many energy-minimal solutions.

For the incompressible Euler equations, we show that, for any p <∞, the set of initial
data for which there are dissipative weak solutions in Lp

tL
2
x is meagre in the space of

solenoidal L2 fields.

Contents
1 Introduction 2
2 Notation and preliminary results 9
3 The Jacobian is a submersion nowhere 12
4 A nonlinear open mapping principle for positively homogeneous operators 14
5 Applications to the Jacobian equation 19
6 A general nonlinear open mapping principle for scale-invariant problems 25

Acknowledgments. A.G. and L.K. were supported by the Engineering and Physical Sciences Research Council
[EP/L015811/1]. S.L. was supported by the AtMath Collaboration at the University of Helsinki and the ERC
grant 834728-QUAMAP.

1



1 Introduction

The open mapping theorem is one of the cornerstones of functional analysis. When X and
Z are Banach spaces and L : X → Z is a bounded linear operator, it asserts the equivalence
of the following two conditions:

(i) Qualitative solvability: for all f ∈ Z there is u ∈ X with Lu = f , that is, L(X) = Z;
(ii) Quantitative solvability: for all f ∈ Z there is u ∈ X with Lu = f and ‖u‖X ≤ C‖f‖Z .

From a PDE perspective, the open mapping theorem justifies the method of a priori estimates
[68, §1.7]. For applications to nonlinear PDE, one would like to have an analogue of the open
mapping theorem in the case where L is replaced by a nonlinear operator T : X → Z, and
this is the main theme of the present paper.

1.1 A nonlinear open mapping principle

Attempts to adapt the open mapping theorem to nonlinear operators have been spurred
by the following problem of Rudin [62, page 67]:

Question 1.1. If X, Y and Z are Banach spaces and T is a continuous bilinear map of X×Y
onto Z, does it follow that T is open at (0, 0)?

Following [39], we say that the open mapping principle holds for T if T is open at the
origin. It is easy to see that, in general, T is not open at all points.

In general, the answer to Question 1.1 is negative. Cohen gave a counter-example in
[19] and, shortly thereafter, Horowitz gave in [39] a very simple example, consisting of the
operator T : R3 × R3 → R4 defined by

T (x, y) ≡ (x1y1, x1y2, x1y3 + x3y1 + x2y2, x3y2 + x2y1),

see also [8, 29].
Nonetheless, as the main theorem of this paper, we find a natural set of conditions under

which the open mapping principle holds:

Theorem A. Let X and Y be Banach spaces such that BX∗ is sequentially weak∗ compact.
We make the following assumptions:

(A1) T : X∗ → Y ∗ is a weak∗-to-weak∗ sequentially continuous operator.
(A2) T (au) = asT (u) for all a > 0 and u ∈ X∗, where s > 0.
(A3) For k ∈ N there are isometric isomorphisms σX∗k : X∗ → X∗, σY ∗k : Y ∗ → Y ∗ such that

T ◦ σX∗k = σY
∗

k ◦ T for all k ∈ N, σY
∗

k f
∗
⇀ 0 for all f ∈ Y ∗.

Then the following conditions are equivalent:

(i) T is onto: T (X∗) = Y ∗;
(ii) T is open at the origin;
(iii) For every f ∈ Y ∗ there exists u ∈ X∗ such that Tu = f and ‖u‖sX∗ ≤ C‖f‖Y ∗ .
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Here and in the sequel BX∗ denotes the unit ball of X∗. The hypothesis that BX∗ is
sequentially weak∗ compact holds, for instance, whenever X is separable or reflexive. In
general, the weak∗ topology on a dual space depends on the specific choice of predual [68,
Remark 1.9.10] and in fact it is only in this way that the spaces X and Y play a role in the
statement of Theorem A.

The assumption (A1) is not always necessary, but it holds automatically in finite dimen-
sional examples. An infinite dimensional case where it is not needed is the multiplication
operator (f, g) 7→ fg : Lp × Lq → Lr, where 1/p + 1/q = 1/r: this operator does not satisfy
(A1), although it verifies the open mapping principle [3, 4].

In Theorem A, instead of considering multilinear operators as in Question 1.1, we con-
sider the larger class of positively homogeneous operators, that is, operators satisfying (A2).
Nonetheless, many of the examples discussed in this paper are in fact multilinear.

The assumption (A3) may look somewhat mysterious. However, as Horowitz’s example
shows, it cannot be omitted. It should be thought of as generalized translation invariance
and indeed, when T is a constant-coefficient partial differential operator and X∗ and Y ∗ are
function spaces on Rn, natural choices of σX∗k and σY

∗
k include translations

σXk u(x) ≡ u(x− ke) and σY
∗

k f(x) ≡ f(x− ke), where e ∈ Rn \ {0}.

We note that the condition (A3) never holds if Y is finite-dimensional and that moreover,
when the target is two-dimensional, it is not needed: Downey has shown that, in this case,
the answer to Question 1.1 is positive [30, Theorem 12].

In order for the reader to have a better grasp of the meaning of (A3), we briefly sketch the
proof of Theorem A, explaining the role of this assumption in it. Suppose that, for all f in
some ball B ⊂ Y ∗, one can solve the equation Tu = f . Since T is weakly∗ continuous, it is not
difficult to use the Baire Category Theorem to deduce that there is a sub-ball B′ ⊆ B such
that one can actually solve Tu = f quantitatively in B′: that is, there is a constant C such
that, for all f ∈ B′, there is u ∈ X∗ with ‖u‖X∗ ≤ C and Tu = f . In other words: for weakly∗
continuous operators, qualitative solvability implies quantitative local solvability somewhere;
in general, one cannot even specify the location of B′. The assumption (A3) allows one to
shift the centre of the ball B′ to the origin and, in combination with (A2), it upgrades the
previous local statement to a global version.

The simple example T : R×L2(Rn)→ L2(Rn), (t, f) 7→ tf shows that there are operators
satisfying the assumptions of Theorem A which are not open at all points [30].

Compensated compactness theory [56, 69] abounds with operators that satisfy the as-
sumptions of Theorem A. The most famous examples are the Jacobian, the Hessian and the
div-curl product; see [20] for numerous examples and [36, 37] for a systematic study. In fact,
our motivation for Theorem A came from considering the Jacobian operator and the spaces

X∗ = Ẇ 1,np(Rn,Rn), Y ∗ = H p(Rn), 1 ≤ p <∞, (1.1)

see Question 1.2 below. The real-variable Hardy space H p(Rn) is defined by fixing any
Φ ∈ S (Rn) with

�
Rn Φ(x) dx 6= 0, denoting Φt(x) ≡ Φ(x/t)/tn for all (x, t) ∈ Rn× (0,∞) and

setting
H p(Rn) ≡

{
f ∈ S ′(Rn) : ‖f‖H p ≡ ‖ sup

t>0
|f ∗ Φt(·)|‖Lp <∞

}
.

We refer the reader to the monograph [66] for the theory of H p(Rn). Here we just note
that H p(Rn) = Lp(Rn), with equivalent norms, whenever p ∈ (1,∞) and that moreover
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H 1(Rn) ( {f ∈ L1(Rn) :
�
Rn f(x) dx = 0}. Indeed, loosely speaking, elements of H 1(Rn)

have an extra logarithm of integrability [65]. In (1.1), the space Ẇ 1,np(Rn,Rn) is the usual
homogeneous Sobolev space, seen as a Banach space, so that elements which differ by constants
are identified.

A standard way of showing that an operator is open at some point is to verify that its
derivative is surjective at that point, that is, that it verifies Lyusternik’s condition. However,
for p ∈ [1, 2) and for the spaces in (1.1), a Banach space geometry argument shows that neither
the Jacobian nor any other operator can ever verify this condition, see Section 3. Thus, to
study openness of operators between the spaces in (1.1), novel methods are required.

It is possible to refine Theorem A in such a way that it applies in much more general
situations. We will return to this point in Section 1.4 below, where we also discuss the
consequences of these improvements for certain nonlinear PDEs.

1.2 Applications to the Jacobian equation

As discussed in the last subsection, we are particularly interested in the Jacobian and,
therefore, in the prescribed Jacobian equation

Ju ≡ det Du = f in Rn. (1.2)

This first-order equation appears naturally in Optimal Transport [13] and can be seen as the
underdetermined analogue of the Monge–Ampère equation, see [34] for further discussion. It
has a deep geometric content as, formally, one has the change of variables formula

�
E

Ju(x) dx =
�
Rn

#
(
u−1(y) ∩ E

)
dy, E ⊂ Rn is measurable. (1.3)

Thus, if u is a solution of (1.2), f measures the size of its image, counted with multiplicity.
We consider the following long-standing open problem:

Question 1.2. For p ∈ [1,∞) and f ∈H p(Rn), is there u ∈ Ẇ 1,np(Rn,Rn) solving (1.2)?

To understand the motivation behind Question 1.2, it is important to recall that the
Jacobian benefits from an improved integrability: after a remarkable result of Müller [55],
Coifman, Lions, Meyers and Semmes proved in [21] that

u ∈ Ẇ 1,n(Rn,Rn) =⇒ Ju ∈H 1(Rn).

We note that, contrary to what was originally asked in [21], the third author showed in [51]
that Question 1.2 must be formulated in terms of the homogeneous Sobolev space, if it is to
have a positive answer.

A positive answer to Question 1.2 seems currently out of reach, as there is no systematic
way of building solutions to (1.2) for a general discontinuous f , although see [60] for some
endpoint cases. This is in contrast with the case of Hölder continuous f , where there is a
well-posedness theory which goes back to the works of Dacorogna and Moser [24, 54], see
also [23] and the references therein.

In this subsection, we focus on progress towards a negative answer to Question 1.2. The
main difficulty in proving non-existence of solutions to (1.2) is the underdetermined nature
of the equation: it implies that there is a multitude of possible solutions to rule out. Our
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investigations towards a negative answer to Question 1.2 are partially motivated from our
negative results [34] concerning the following variant of this question: one replaces Rn with a
bounded, smooth domain Ω and one imposes Dirichlet boundary conditions on solutions.

Question 1.2 is much more difficult than its analogue on a bounded domain, as the lack
of boundary conditions makes the problem even more underdetermined, see already Theorem
D below for a striking illustration of this phenomenon. The space Ẇ 1,np(Rn,Rn) is both
extremely large, and so there is an abundance of possible solutions to consider, and contains
many poorly-behaved maps, especially when p = 1. We now precise this last point.

When p = 1, there are continuous maps in Ẇ 1,n(Rn,Rn) which do not satisfy the change
of variables formula (1.3), as they map a null set E into a set of positive measure, and hence

0 =
�
E
f dx < |u(E)| ≤

�
Rn

#
(
u−1(y) ∩ E

)
dy.

It is thus possible for the equation (1.2) to hold a.e. in Rn, and hence also in the sense of
distributions, and yet for its geometric information to be completely lost. Maps as above are
said to violate the Lusin (N) property; their existence is classical and goes back to the work
of Cesari [17], see also [52] for a more refined version.

If the answer to Question 1.2 is negative then Theorem A is likely to play a key role in
proving so. To see why, let us first explicitly state the following corollary:

Corollary B. Fix 1 ≤ p <∞. The following statements are equivalent:

(i) for all f ∈H p(Rn) there is u ∈ Ẇ 1,np(Rn,Rn) such that Ju = f ;
(ii) for all f ∈H p(Rn) there is u ∈ Ẇ 1,np(Rn,Rn) such that Ju = f and

‖Du‖nLnp(Rn) . ‖f‖H p(Rn) (1.4)

Thus, if the Jacobian J: Ẇ 1,np(Rn,Rn)→H p(Rn) is surjective, then there are solutions
satisfying the a priori estimate (1.4). The crucial point is that, if such an estimate holds, then
one may use a regularisation argument, together with powerful machinery from Geometric
Function Theory, to prove that there must exist rather well-behaved solutions. We rephrase
this loosely in the following principle:

the existence of rough solutions implies the existence of well-behaved solutions.

Hence, to give a negative answer to Question 1.2, it is enough to rule out the existence of
well-behaved solutions. The above principle is made precise in the following result:

Theorem C. Let Ω ⊂ Rn be a bounded open set and take f ∈H 1(Rn) such that f ≥ 0 in Ω.
Assume that J: Ẇ 1,n(Rn,Rn)→H 1(Rn) is onto. Then there is a solution u ∈ Ẇ 1,n(Rn,Rn)
of (1.2) such that:

(i) u is continuous in Ω;
(ii) u has the Lusin (N) property in Ω;
(iii)

�
Rn |Du|

n dx ≤ C‖f‖H 1 with C > 0 independent of f .

In particular, u satisfies the change of variables formula (1.3).
Moreover, if n = 2 and there is an open set Ω′ ⊆ Ω with f = 0 a.e. in Ω′, then:
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(iv) for any set E ⊂ Ω′, we have u(∂E) = u(E);
(v) for y ∈ u(Ω′), if C denotes a connected component of u−1(y)∩Ω′ then C intersects ∂Ω′.

In the supercritical regime p > 1, the first part of Theorem C holds automatically.
Nonetheless, one can still use the a priori estimate (1.4), together with regularisation ar-
guments, to get solutions with additional structure, see Section 5.1 for further details. The
second part of Theorem C also holds in any dimension if p is taken to be sufficiently large.

1.3 Other approaches to the Jacobian equation and Iwaniec’s programme

In the previous subsection we mostly focused on progress towards a negative answer to
Question 1.2. Now we turn to progress and evidence towards a positive answer.

The following result establishes an analogue of the atomic decomposition of H 1(Rn), giv-
ing a weak factorization on H p(Rn) in the spirit of the classical work of Coifman, Rochberg
and Weiss [22]:

Theorem 1.3. Let p ∈ [1,∞). For every f ∈H p(Rn) there are functions ui ∈ Ẇ 1,np(Rn,Rn)
and real numbers ci such that

f =
∞∑
i=1

ciJui, ‖ui‖Ẇ 1,np(Rn) ≤ 1,
∞∑
i=1
|ci| . ‖f‖H p(Rn). (1.5)

In particular, H p(Rn) is the smallest Banach space containing the range J(Ẇ 1,np(Rn,Rn)).

Theorem 1.3 was proved in [21] for p = 1, while the case p > 1 is much harder and was
established only recently by Hytönen in [41]. Question 1.2 can be restated as follows:

Question 1.4. Does the weak factorization (1.5) improve into a strong factorization?

In light of the surjectivity result

H 1(R) =
{
HωHγ − ω γ : ω, γ ∈ L2(R)

}
, (1.6)

one may hope for a positive answer to Question 1.4; here H denotes the Hilbert transform.
Indeed, (1.6) is a direct consequence of the strong factorization H 1(C+) = H 2(C+)·H 2(C+)
of analytical Hardy spaces and a proof can be found in [49].

To draw a closer analogy between Question 1.4 and (1.6) we note that, in the plane,
Question 1.4 is equivalent to deciding whether

H p(R2) =
{
|Sω|2 − |ω|2 : ω ∈ L2p(R2,R2)

}
,

where S is the Beurling–Ahlfors transform. We remark that one may think of S as the square
of a complex Hilbert transform [44]. We may also write{

Ju : u ∈ Ẇ 1,2p(R2,R2)
}

=
{
E ·B : E,B ∈ L2p(R2,R2), divE = 0, curlB = 0 in D ′(R2)

}
.

As such, the case n = 2 is a fundamental question about the structure of H p(R2). This
viewpoint and the intimate ties to commutators are studied in a general framework in [41, 49].

We now turn towards a less harmonic-analytical approach to Question 1.2. In [43], see
also [11], Iwaniec went further than Question 1.2 and conjectured the following:
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Conjecture 1.5. For each p ∈ [1,∞), the Jacobian has a fundamental solution: there is a
continuous map E : H p(Rn)→ Ẇ 1,np(Rn,Rn) such that J ◦ E = Id.

If f ∈H p(Rn) and Jv = f has a solution v ∈ Ẇ 1,np(Rn,Rn), then there exists a p-energy
minimiser for f , that is, a solution u with

�
Rn |Du|

np dx = min{
�
Rn |Dv|

np dx : Jv = f}. For
a dense set of data, there exists a solution and, consequently, a p-energy minimiser. In [43],
Iwaniec proposed the following route to Conjecture 1.5:

Strategy. A possible way of proving Conjecture 1.5 is to establish the following three claims:

(i) Every p-energy minimiser satisfies
�
Rn |Du|

np dx . ‖Ju‖pH p .
(ii) Given f ∈H p(Rn), the p-energy minimiser for f is unique up to rotations.
(iii) The set-valued map from f ∈ H p(Rn) to its p-energy minimisers u ∈ Ẇ 1,np(Rn,Rn)

has a continuous selector.

Corollary B says that (i) is equivalent to a positive answer to Question 1.2. In this direc-
tion, Iwaniec has suggested that one should prove (i) by constructing a Lagrange multiplier
for every p-energy minimiser. However, standard methods fail, see Section 3 for further dis-
cussion. Nevertheless, in the case n = 2, p = 1, a Lagrange multiplier is constructed in [49, 50]
for a large class of p-energy minimisers, which then automatically satisfy the a priori estimate�
R2 |Du|2 . ‖Ju‖H 1 . The methods of [50, 49] can be partly adapted to all the cases n ≥ 2,
p ∈ [1,∞).

Our main contribution in relation to Iwaniec’s programme is to show that (ii) is false:

Theorem D. Fix 1 ≤ p < ∞. There is a radially symmetric function f ∈ H p(Rn) which
has uncountably many p-energy minimisers, modulo rotations.

Theorem D shows that (1.2) is tremendously underdetermined. It also seems difficult to
work directly with p-energy minimisers: for instance, when p = 1, we cannot decide whether
they are necessarily continuous, not even over open sets where f ≥ 0. One possible takeaway
from Theorem D is that p-energy minimisers may not be the right solution to consider and
that instead one should study the potentially more regular solutions obtained from Theorem
C.

To conclude the discussion of the above strategy, we note that claim (iii) is a nonlinear
analogue of the classical Bartle–Graves theorem [7], see [9, page 86] for a good overview.
This theorem says that a bounded linear surjection between Banach spaces has a (possibly
nonlinear) continuous right inverse. Without extra assumptions, the Bartle–Graves theorem
does not generalise to multilinear mappings: in [32] it was constructed, for every m ≥ 2, a
continuous m-linear surjection T : X1 × · · · ×Xm → Z between Banach spaces which is open
at the origin but has no continuous right inverse. However, as a partial result towards (iii),
assuming surjectivity of J : Ẇ 1,np(Rn,Rn) → H p(Rn), one may use Corollary B to find a
bounded right inverse that is continuous outside a meagre set, although we do not prove such
a result here.

1.4 More general nonlinear open mapping principles and applications to
other PDEs

In Theorem 6.2 the positive homogeneity assumption of Theorem A is replaced by more
general scaling symmetries. For motivation, note that the positive n-homogeneity of the

7



Jacobian operator can be expressed as symmetry of the equation Ju = f under the scaling
uλ = λu, fλ = λnf for all λ > 0 but the Jacobian equation also has the other scaling symmetry
uλ(x) = λu(x/λ), fλ(x) = f(x/λ).

We describe Theorem 6.2 in non-technical terms. The main applications are to nonlinear
constant-coefficient PDE’s Tu = f , where u and f belong to function spaces X∗ and Y ∗ on
Rn or, in the case of evolutionary problems, on Rn × [0,∞). As before, T is assumed to be
weak∗-to-weak∗ continuous (and translation invariant).

We assume that the equation Tu(x, t) = f(x, t), (x, t) ∈ Rn × [0,∞), is invariant under a
one-parameter group of scalings

uλ(x, t) = 1
λα
u

(
x

λβ
,
t

λγ

)
, fλ(x, t) = 1

λδ
f

(
x

λβ
,
t

λγ

)
,

where α, β, γ, δ ∈ R are fixed and the group parameter λ > 0. We mostly focus on homoge-
neous function spaces which satisfy

‖uλ‖X∗ ≡ λr‖u‖X∗ , ‖fλ‖Y ∗ ≡ λs‖f‖Y ∗

for some r, s ∈ R. Assuming that either r, s > 0 or r, s < 0, Theorem 6.2 states the equivalence
of the following two claims (the critical case r = s = 0 is beyond the scope of this work):

(i) For all f ∈ Y ∗ there is u ∈ X∗ with Tu = f ;

(ii) For all f ∈ Y ∗ there is u ∈ X∗ with Tu = f and ‖u‖s/rX∗ ≤ C‖f‖Y ∗ .

This provides a far-reaching generalisation of the Banach–Schauder open mapping theorem
which applies to numerous equations arising from physics, at least in regularity regimes where
the equations are stable under weak∗ convergence.

Indeed, invariance under translations and scalings is a ubiquitous feature of natural pro-
cesses; it expresses the covariance principle that the solutions of a PDE representing a physical
phenomenon should not have a form which depends on the location of the observer or the units
that the observer is using to measure the system [16]. For the computation of the symmetry
groups of several representative PDEs from physics we refer to [57, §2.4] and for the general
role of scaling symmetries in physics and other sciences to [6].

We illustrate the applications of Theorem 6.2 by considering energy dissipating solutions
of the incompressible Euler equations

∂tu+ u · ∇u−∇P = 0, (1.7)
divu = 0, (1.8)
u(·, 0) = u0 (1.9)

in Rn × [0,∞), n ≥ 2. Note that (1.7)–(1.9) are invariant under all the scalings of the form

uλ(x, t) ≡ 1
λα
u

(
x

λβ
,

t

λα+β

)
, u0

λ(x, t) ≡ 1
λα
u0
(
x

λβ

)
, Pλ(x, t) ≡ 1

λ2αP

(
x

λβ
,

t

λα+β

)
.

Solutions which fail to conserve energy have been studied extensively in relation to the
so-called Onsager conjecture; see [15, 26, 42] and the references therein. By a theorem of
Székelyhidi and Wiedemann [67], for a dense set of data u0 ∈ L2

σ there exist infinitely many
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admissible solutions u ∈ L∞t L2
σ,x of (1.7)–(1.9), that is, ones satisfying the energy inequality�

Rn |u(x, t)|2 dx ≤
�
Rn |u

0(x)|2 dx for all t ≥ 0. For some data u0 ∈ L2
σ, a solution can even

be chosen to be compactly supported in time; indeed, Scheffer had already constructed in
[63] solutions of the Euler equations which are compactly supported and square integrable in
space-time. Nevertheless, Theorem 6.2 can be used to show that for a Baire-generic datum
u0 ∈ L2

σ the kinetic energy 1
2
�
Rn |u(x, t)|2 dx cannot undergo an Lq-type decay, q <∞:

Theorem E. Let n ≥ 2 and 2 < p < ∞. For a residual set of data u0 ∈ L2
σ the Cauchy

problem (1.7)–(1.9) has no solution u ∈ LptL2
σ,x. More precisely, for every M > 0, the set of

data with a solution u ∈MBLptL2
σ,x

is nowhere dense in L2
σ.

Corollary F. Suppose τ > 0. An admissible solution u ∈ L∞t L2
σ,x with supp(u) ⊂ Rn × [0, τ ]

exists only for a nowhere dense set of data u0 ∈ L2
σ.

We define the operator T as a map from a solution u of (1.7)–(1.9) to the initial data
u0, thereby turning the Cauchy problem into a question about surjectivity of a nonlinear
operator. In fact, in order to make T weak∗-to-weak∗ sequentially continuous, we relax the
equation (1.7) into a linear one in the proof of Theorem E.

2 Notation and preliminary results

We write Ω for a domain in Rn. We use polar coordinates z = reiθ = x + iy ∈ C in
the plane. We write Br(x) for the usual Euclidean balls in Rn, and Sr ≡ Br (when x is
omitted, it is understood that x = 0). It is also useful to have notation for annuli: for r < R,
A(r,R) ≡ {x ∈ Rn : r < |x| < R}. Here | · | denotes the Euclidean norm of a vector in Rn and
likewise the Euclidean norm of a matrix A ∈ Rn×n. Unless stated otherwise, p is in [1,+∞).
The symbols a ≈ b and a . b mean that there is some constant C > 0 independent of a and
b such that C−1a ≤ b ≤ Ca and a ≤ Cb, respectively.

The rest of this section collects, for the convenience of the reader, some useful results
about Sobolev functions and Geometric Function Theory.

2.1 Radial stretchings and their generalisations

Given a planar Sobolev map u ∈W 1,p(R2,R2), we consider polar coordinates both in the
domain and in the target; that is, we want to write

u(reiθ) = ψ(r, θ) exp(iγ(r, θ)) (2.1)

for some functions ψ : (0,∞)×[0, 2π]→ [0,∞) and γ : (0,∞)×[0, 2π]→ R, where furthermore
we must have the compatibility conditions

ψ(r, 0) = ψ(r, 2π) and γ(r, 0)− γ(r, 2π) ∈ 2πZ for all r.

We will freely identify (r, θ) ≡ reiθ, adopting either notation whenever it is more convenient.
The existence of a representation as in (2.1) is a standard problem in lifting theory:

Proposition 2.1. Let Ω ⊂ R2 be a bounded, smooth, simply connected domain and p ≥ 2. Let
u ∈ W 1,p(Ω,R2) be such that 0 6∈ u(Ω) and, if p = 2, suppose moreover that u is continuous.
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There are functions ψ ∈ W 1,p(Ω, (0,∞)) and γ ∈ W 1,p
loc (Ω,R) such that the representation

(2.1) holds. If p = 2 then ψ and γ are also continuous.
Moreover, if 0 ∈ Ω and u−1({0}) = {0}, then (2.1) still holds with ψ ∈ W 1,p(Ω, [0,∞)),

γ ∈W 1,p
loc (Ω \ {0},R). If p = 2, then ψ is continuous in Ω and γ is continuous in Ω \ {0}.

Proof. Note that if u ∈ W 1,p then ψ = |u| is also in W 1,p. Thus, as 0 6∈ u(Ω), it suffices
to prove the existence of γ ∈ W 1,p(Ω,R) such that u/|u| = eiγ . Since u is continuous,
u/|u| ∈W 1,p

loc (Ω,S1), and so the existence of γ follows from the results in [10], see also [12].
For the last part let ε > 0 and consider the keyhole domains

Ω1,ε = B \
(
{(r, θ) : |θ| ≤ ε} ∪Bε

)
Ω2,ε = B \

(
{(r, θ) : |π − θ| ≤ ε} ∪Bε

)
.

From the first part we know that we can write, for i = 1, 2, u(r, θ) = ψ(r, θ)eiγi(r,θ) in Ωi,ε

with γi ∈W 1,p(Ωi,ε). For almost every (r, θ) ∈ Ω1,ε ∩ Ω2,ε,

ψ(r)eiγ1(r,θ) = u = ψ(r)eiγ2(r,θ) ⇐⇒ γ1(r, θ)− γ2(r, θ) = 2πk(r)

where k(r) ∈ Z. As γ1, γ2 are continuous in Ω1,ε ∩ Ω2,ε, we must have k(r) = k, so that
without loss of generality, upon redefining, γ1 we may assume k = 0. Hence we may define

γε(r, θ) =

γ1(r, θ) if (r, θ) ∈ Ω1,ε

γ2(r, θ) if (r, θ) ∈ Ω2,ε

to find that we may write u = ψ(r)eiγε(r,θ) with γε ∈ W 1,2(B \ Bε). By a similar argument,
we see that we may take γε = γδ in B \ (Bδ ∪ Bε), so that in fact u = ψ(r)eiγ(r,θ) with
γ ∈ W 1,2

loc (B \ {0}). Since u(0) = 0, ψ extends to a continuous function on Ω. It is now
immediate from our construction that the claimed regularity properties hold.

Remark 2.2. The conclusion of Proposition 2.1 is false if p < 2, see [12, §4].
A function f : BR(0) → R is said to be radially symmetric if |x| = |y| =⇒ f(x) = f(y)

and we identify any such function with a function f : [0,+∞) → R in the obvious way. For
such a function, it is natural to look for solutions of (1.2) possessing some symmetry, in this
case ∂θψ = 0 if a representation as in (2.1) holds. We thus arrive at the following definition:
Definition 2.3. When p ∈ [1,∞), k ∈ Z and f ∈H p(R2) is radially symmetric, a mapping
of the form

φk(z) = φk(reiθ) ≡
ρ(r)√
|k|
e2πikθ, ρ2(r) =

� r

0
2sf(s) ds

is called a generalised radial stretching. We simply refer to φ1 as a radial stretching.
Generalised radial stretchings are also spherically symmetric in the sense that they map

circles centred at zero to circles centred at zero.
Clearly it is not the case that any radially symmetric f ∈ H p(R2) admits generalised

radial stretchings as solutions of (1.2): for instance, we must have

either
� r

0
2sf(s) ds ≤ 0 for a.e. r, or

� r

0
2sf(s) ds ≥ 0 for a.e. r.

In general, it is not completely clear what the relation between the regularity of f and the
regularity of φk is, but see [34], [50, §3] and [70, §7]. In this direction, the following is a useful
criterion:
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Lemma 2.4. Let k ∈ Z and φk be as in Definition 2.3. For 1 ≤ p < ∞, φk ∈ Ẇ 1,p(R2,R2)
if and only if ρ is absolutely continuous on (0,+∞) and

‖Dφk‖pLp(R2) ≈
� ∞

0

∣∣∣∣∣ ρ̇(r)
k

∣∣∣∣∣
p

+
∣∣∣∣∣k ρ(r)

r

∣∣∣∣∣
p
 r dr <∞.

We omit the proof, as it is a straightforward adaptation of [5, Lemma 4.1].

2.2 The Lusin (N) property and the change of variables formula

The following notions are very relevant in relation to the change of variables formula:

Definition 2.5. Let u : Ω→ Rn be a continuous map which is differentiable a.e. in Ω. Then:

(i) u has the Lusin (N) property if |u(E)| = 0 for any E ⊂ Ω such that |E| = 0;
(ii) u has the (SA) property if |u(E)| = 0 for any open set E ⊂ Ω with Ju = 0 a.e. in E.

In the one-dimensional case, the Lusin (N) property is well understood: for instance, on
an interval, a continuous function of bounded variation has the Lusin (N) property if and
only if it is absolutely continuous. However, in higher dimensions, the situation is much more
complicated, although we have the following characterisation, proved in [53]:

Proposition 2.6. Let u ∈ W 1,n(Ω,Rn) be a continuous map with Ju ≥ 0 in Ω. Then u has
the Lusin (N) property if and only if it has the (SA) property.

We remark that Proposition 2.6 is in general false if Ju 6≥ 0, see [59] for a counterexample.
The following result, see [52], is also useful for our purposes:

Proposition 2.7. Let u ∈W 1,n(Ω,Rn) be a continuous map such that, for some K ≥ 1,

diam(u(Br(x)) ≤ Kdiam(u(∂Br(x)) for all Br(x) b Ω. (2.2)

Then u has the Lusin (N) property.

The change of variables formula is closely related to the Jacobian determinant; the follow-
ing result, together with the definition of the topological degree, can be found in [33].

Theorem 2.8. Let u ∈ C0(Ω,Rn)∩W 1,n(Ω,Rn) be a map with the Lusin (N) property. Then
�
E

Judx =
�
Rn
N (y, u,E) dy for all measurable sets E ⊂ Ω, (2.3)

where N is the multiplicity function, defined as N (y, u,E) ≡ #{x ∈ E : u(x) = y}, and
�
E

Ju dx =
�
Rn

deg(y, u,E) dy for all open sets E ⊂ Ω, (2.4)

where deg(y, u,E) denotes the topological degree of u at y with respect to E.
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2.3 Mappings of finite distortion

In this subsection we recall some useful facts about mappings of finite distortion and, for
simplicity, we focus on the planar case n = 2, see [2]. The reader can also find these and
higher-dimensional results in [38, 44].

Definition 2.9. Let u ∈W 1,1
loc (Ω,R2) be such that 0 ≤ Ju ∈ L1

loc(Ω). We say that u is a map
of finite distortion if there is a function K : Ω→ [2,∞] such that K <∞ a.e. in Ω and

|Du(x)|2 ≤ K(x) Ju(x) for a.e. x in Ω.

If u has finite distortion, we can set Ku(x) = |Du|2
Ju(x) if Ju(x) 6= 0 and Ku(x) = 2 otherwise;

this function is the (optimal) distortion of u.

We summarise here some of the key analytic and topological properties of mappings of
finite distortion in the plane:

Theorem 2.10. Let Ω ⊂ R2 and let u ∈W 1,2
loc (Ω,R2) be a map of finite distortion. Then:

(i) u has a continuous representative and, whenever r < R and BR(x0) ⊂ Ω,(
oscBr(x0)u

)2
≤ C

log(R/r)

�
BR(x0)

|Du|2 dx;

(ii) u has the Lusin (N) property;
(iii) u is differentiable a.e. in Ω;
(iv) if Ku ∈ L1(Ω) then u is open and discrete;
(v) if Ku ∈ L1(Ω) then for each Ω′ b Ω there is m = m(Ω′) such that

N (y, u,Ω′) ≤ m for all y ∈ u(Ω′).

Whenever u is a map of finite distortion we always implicitly assume that u denotes the
continuous representative of the equivalence class inW 1,2

loc (Ω,R2). If u is such that Ku ∈ L1(Ω),
we say that u has integrable distortion; the theory of such maps was pioneered in [45].

We remark that the first three properties of Theorem 2.10 are a consequence of the fact
that mappings of finite distortion are monotone in the sense of Lebesgue:

Proposition 2.11. Let u ∈ W 1,2
loc (Ω,R2) be a map of finite distortion; then (2.2) holds. In

fact, if we measure the diameter in Rn with respect to the `∞ norm, we can take K = 1.

3 The Jacobian is a submersion nowhere

Let X,Y be Banach spaces. We use the following terminology:

Definition 3.1. A function F : X → Y is said to be a submersion at x0 ∈ X if F is Gâteaux-
differentiable at x0 and F ′(x0) : X → Y is onto.

In analogy to the finite dimensional case, if F is a submersion at x0, it is open at x0, see
for instance [27, Corollary 15.2]. More precisely:
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Theorem 3.2. Let F : X → Y be a locally Lipschitz submersion at x0 ∈ X. For all R > 0
sufficiently small, there is r > 0 such that Br(F (x0)) ⊆ F (BR(x0)).

The submersion condition also plays an important role in Lyusternik’s theory of con-
strained variational problems, through the existence of Lagrange multipliers. We remark
that, in that setting, it is customary to additionally require kerF ′(x0) to be complemented in
X. Here we do not discuss further the existence of Lagrange multipliers nor their properties,
referring instead the interested reader to [71, §43] for their general theory. In the context of
Question 1.2, Lagrange multipliers were considered in the third author’s doctoral thesis [50].

The purpose of this section is to concisely illustrate some of the advantages of Theorem A
over the very classical Theorem 3.2. In particular, in Proposition 3.4, we show that Theorem
3.2 does not apply to the Jacobian. We begin with the following straightforward lemma:

Lemma 3.3. Suppose F : X → Y is Gâteaux-differentiable. If Y ∗ does not embed into X∗

then F is a submersion at no point.

Proof. We prove the contrapositive. Suppose F is a submersion at some x0 ∈ X, that is,
T ≡ F ′(x0) : X → Y is onto. By the classical open mapping principle, T ∗ : Y ∗ → X∗ is
bounded by below and is thus an isomorphism onto its image. Thus Y ∗ embeds into X∗.

The main result of this section is the following:

Proposition 3.4. Let p ∈ [1, 2) and suppose T : Ẇ 1,np(Rn,Rn) → H p(Rn) is Gâteaux-
differentiable. Then T is a submersion at no point.

Proof. The case p = 1 is simple: (H 1(Rn))∗ = BMO(Rn) is not reflexive and thus it cannot
embed into a reflexive space, such as Ẇ 1,n(Rn,Rn)∗.

For p ∈ (1, 2), we begin by using the isomorphism (−∆)1/2 : Ẇ 1,np(Rn,Rn)→ Lnp(Rn,Rn).
Thus it suffices to show that Lp′ does not embed into L(np)′ for p ∈ (1, 2), where q′ denotes
the Hölder conjugate of q. Since p′ > 2, we appeal to Lemma 3.5 below to complete the
proof.

Thus, it remains to prove the next lemma, where H is a Hilbert space.

Lemma 3.5. Let p ∈ [1, 2], q ∈ [1,∞). If Lq(Rn) embeds into Lp(Rn, H) then 1 ≤ p ≤ q ≤ 2.

This result is well-known to the experts and a very complete statement can be found in
[1, Proposition 12.1.10], which we quote here:

Proposition 3.6. Let p, q ∈ [1,∞). Then Lq(Rn) embeds into Lp(Rn) if and only if one of
the following conditions holds:

(i) 1 ≤ p ≤ q ≤ 2,
(ii) 2 < p <∞ and q ∈ {2, p}.

Lemma 3.5 is essentially deduced from Proposition 3.6, as the vector-valued Lp space poses
only minor changes to the proof. We sketch a proof of Lemma 3.5 here, in order to improve
the readability of the paper. The proof relies on the notions of (Rademacher) type and cotype
of a Banach space:
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Definition 3.7. Let (εi)∞i=1 be a sequence of i.i.d. random variables such that

P(εi = 1) = P(εi = −1) = 1
2 .

A Banach space X has type p, p ∈ [1, 2] if there is a constant C such that(
E
∥∥∥ n∑
i=1

εixi
∥∥∥p)1/p

≤ C
(

n∑
i=1
‖xi‖p

)1/p

for any vectors xi ∈ X. Likewise, X has cotype q, q ∈ [2,+∞], if there is C such that(
n∑
i=1
‖xi‖q

)1/q

≤ C
(
E
∥∥∥ n∑
i=1

εixi
∥∥∥q)1/q

for any vectors xi ∈ X.

The range of p and q in the definitions of type and cotype are natural and are determined
by Khintchine’s inequality. Moreover, if X is of type p then it is also of type r for any r < p;
if it is of cotype q, it is also of cotype r for any r > q.

Example 3.8. As before, X is a Banach space.

(i) A Hilbert space H has type and cotype 2: this follows from the parallelogram law.
(ii) If X has type p then X∗ has cotype p′, although the converse is not true.
(iii) If p ∈ [1, 2] then `p has type p and if p ∈ [2,+∞] then `p has cotype p. Moreover, these

values are optimal, as can be seen by considering the standard basis.
(iv) If X has type p and cotype q, the space Lr(Rn, X) has type min{r, p} and cotype

max{r, q}.

The reader may find details and further examples in [1, 40].

Proof of Lemma 3.5. Clearly type and cotype are inherited by subspaces. Thus, if p ∈ [1, 2]
and if Lq(Rn) embeds into Lp(Rn, H), then Lq(Rn) must have type p and cotype 2. Since `q
embeds into Lq(Rn), the same can be said for `q. Hence, the optimality in Example 3.8(iii)
shows that p ≤ q ≤ 2.

Remark 3.9. Inspection of the proof reveals that, in Proposition 3.4, the following stronger
conclusion holds: for any u ∈ Ẇ 1,np(Rn,Rn), T ′u : Ẇ 1,np(Rn,Rn) → H p(Rn) does not have
closed range. This condition also appears naturally in relation to the existence of Lagrange
multipliers, see e.g. [27, §26.2].

4 A nonlinear open mapping principle for positively
homogeneous operators

The main goal of this section is to prove Theorem A. A related nonlinear uniform bound-
edness principle is proved in Proposition 4.3 and a precise statement concerning atomic de-
compositions in terms of T is proved in Proposition 4.4.
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In the case of the Jacobian, by adapting a standard proof of the standard Open Mapping
Theorem to Question 1.2 one obtains the following statement: if J(Ẇ 1,np(Rn,Rn)) = H p(Rn),
then for every f ∈H p(Rn) there exist u, v ∈ Ẇ 1,np(Rn,Rn) with

Ju+ Jv = f and
�
Rn

(|Du|np + |Dv|np) dx ≤ C‖f‖pH p .

Thus, quantitative control is gained at the expense of introducing an extra term Jv. In
Theorem A and Corollary B, the extra term is removed, leading to a genuinely nonlinear
version of the Open Mapping Theorem.

4.1 The proof of Theorem A

Here we give a slightly more precise version of Theorem A:

Theorem 4.1. Let X and Y be Banach spaces such that BX∗ is sequentially weak∗ compact.
We make the following assumptions:

(A1) T : X∗ → Y ∗ is a weak∗-to-weak∗ sequentially continuous operator.
(A2) T (au) = asT (u) for all a > 0 and u ∈ X∗, where s > 0.
(A3) For k ∈ N there are isometric isomorphisms σX∗k : X∗ → X∗, σY ∗k : Y ∗ → Y ∗ such that

T ◦ σX∗k = σY
∗

k ◦ T for all k ∈ N, σY
∗

k f
∗
⇀ 0 for all f ∈ Y ∗.

Then the following conditions are equivalent:

(i) T (X∗) is non-meagre in Y ∗.
(ii) T (X∗) = Y ∗.
(iii) T is open at the origin.
(iv) For every f ∈ Y ∗ there exists u ∈ X∗ such that

Tu = f, ‖u‖sX∗ ≤ C‖f‖Y ∗ . (4.1)

A sufficient condition for BX∗ to be sequentially weak∗ compact is that X is a weak Asplund
space [64, Theorem 3.5]. For instance, reflexive or separable spaces are weak Asplund [28].

Proof of Theorem A. We have (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) and so we just prove (i) ⇒ (iv).
Assume that (i) holds. We may write T (X∗) as a union ∪∞`=1K`, where

K` ≡
{
f ∈ Y ∗ : there exists u ∈ X∗ with Tu = f and ‖u‖sX∗ ≤ `‖f‖Y ∗

}
.

Since balls in X∗ are sequentially weak∗ compact, by (A1), the sets K` are norm-closed. Now,
by the Baire Category Theorem, some K` contains a closed ball B̄r(f0).

Our aim is to solve (4.1) whenever ‖f‖Y ∗ = r; assumption (A2) then implies the claim.
Suppose, therefore, that ‖f‖Y ∗ = r. For every k ∈ N we have f0 +(σY ∗k )−1f ∈ B̄r(f0). Hence,
we may choose uk ∈ X∗ such that Tuk = f0 + (σY ∗k )−1f and

‖σX∗k uk‖sX∗ = ‖uk‖sX∗ ≤ `‖f0 + (σY ∗k )−1f‖Y ∗ ≤ `(‖f0‖Y ∗ + r).
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Since balls in X∗ are sequentially weak∗ compact, after passing to a subsequence if need
be, σX∗k uk converges weakly∗ to some u ∈ X∗, so that T (σX∗k uk)

∗
⇀ Tu. By the lower

semicontinuity of the norm we have

‖u‖sX∗ ≤ lim inf
k→∞

‖σX∗k uk‖sX∗ ≤ `(‖f0‖Y ∗ + r).

On the other hand, (A3) gives

T (σX∗k uk) = σY
∗

k (Tuk) = σY
∗

k f0 + f
∗
⇀ f,

so that, by (A1), Tu = f . Thus u solves (4.1) and the proof is complete.

The theory of Compensated Compactness provides many examples of nonlinear operators
to which Theorem A applies. Here we give a general formulation in the spirit of [35], see also
[56, 69], which we then illustrate with more concrete examples.

Example 4.2. Let A be an l-th order homogeneous linear operator, which for simplicity we
assume to have constant coefficients; that is, for v ∈ C∞(Rn,V),

Av =
∑
|α|=l

Aα∂
αv, Aα ∈ Lin(V,W),

where V,W are finite-dimensional vector spaces. For p ∈ [1,+∞) and s ∈ N, s ≥ 2, take

X∗ = LpsA (Rn,V), Y ∗ = H p(Rn).

Here LpsA (Rn,V) is the space of those v ∈ Lps(Rn,V) such that Av = 0 in the sense of
distributions. We will further need the following standard non-degeneracy assumption:

the symbol of A, seen as a matrix-valued polynomial, has constant rank. (4.2)

Whenever (4.2) holds, we say that A has constant rank. We will not discuss this assumption
here but it holds in all of the examples below; the reader may find other characterizations of
constant rank operators in [36, 58].

Let T : X∗ → Y ∗ be a homogeneous sequentially weakly continuous operator. Under
the assumption (4.2), such operators were completely characterised in [35], and they are
often called Compensated Compactness quantities. They can be realised as certain constant-
coefficient partial differential operators and so they necessarily satisfy (A3) if one takes the
isometries σX∗k , σY

∗
k to be translations. The following are standard examples of such operators:

(i) A = curl and T = J. For this example, take V = Rn×n and choose A in such a way
that Av = 0 if and only if v = Du, for some u : Rn → Rn. For instance, we may take
(curl v)ijk = ∂kvij − ∂jvik. We also choose s = n and so X∗ = Ẇ 1,np(Rn,Rn). The
only positively n-homogeneous sequentially weakly continuous operator X∗ → Y ∗ is the
Jacobian, and in particular we recover Corollary B.

(ii) A = curl2 and T = H. Here A is chosen similarly to the previous example, but now
Av = 0 if and only if v = D2u, for some u : Rn → R. Again we take s = n and so
X∗ = Ẇ 2,np(Rn,Rn). We may take T = H: X∗ → Y ∗ to be the Hessian, and Theorem
A shows that it satisfies the open mapping principle.
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The two previous examples admit a straightforward generalisation, where one considers s-th
order minors (instead of the determinant) and a j-th order curl (instead of j = 1, 2).

(iii) A = (div, curl) and T = 〈·, ·〉. In this example, s = 2 and T is the standard inner product
acting on a pair v ≡ (B,E) : Rn → Rn×Rn; here, B is thought of as a “magnetic field”
and E as an “electric field”. As before, Theorem A shows that T satisfies the open
mapping principle.

We conclude this subsection by comparing the above example with [21]. There, the authors
address the problem of deciding whether Compensated Compactness quantities are surjective,
particularly when p = 1. Thus Theorem A can be read as saying that openness at zero is a
necessary condition for a positive answer to this problem.

4.2 A nonlinear uniform boundedness principle

We also present a nonlinear version of the Uniform Boundedness Principle in the spirit
of Theorem A; under certain structural conditions, a family of operators which is pointwise
bounded in a ball is uniformly bounded in a sub-ball.

Proposition 4.3. Let X and Z be Banach spaces and let I be an index set. Suppose the
following conditions hold:

(i) For every i ∈ I, the mapping Ti : X → Z is such that u 7→ ‖Tiu‖Z : X → R is weakly
sequentially lower semicontinuous.

(ii) There is ε > 0 such that supi∈I ‖Ti(u)‖Z <∞ whenever ‖u‖X ≤ ε.
(iii) For j ∈ N there are isometric isomorphisms σXk : X → X and σZk : Z → Z such that

Ti ◦ σXk = σZk ◦ Ti for all i ∈ I and k ∈ N,
σXk u ⇀ 0 for all u ∈ X.

Then there exists δ > 0 such that

sup
‖u‖X≤δ

sup
i∈I
‖Tiu‖Z <∞.

Proof. By (ii), we may write εBX = ∪∞`=1C`, where C` ≡ {u ∈ εBX : supi∈I ‖Tiu‖Z ≤ `}
and (i) shows that each C` is norm closed. Thus, by the Baire Category Theorem, some C`
contains a closed ball B̄δ(u0).

Let now ‖u‖X ≤ δ and i ∈ I. By (iii), we have u+ σXk u0 = σXk [u0 + (σXk )−1u] ∈ B̄(u0, δ)
and moreover u+ σXk u0 ⇀ u. So by (i) and again (iii), we have

‖Tiu‖Z ≤ lim inf
k→∞

‖TiσXk [u0 + (σXk )−1u]‖Z = lim inf
k→∞

‖σZk T [u0 + (σXk )−1u]‖Z ≤ `.

The proof is complete.
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4.3 A trichotomy on atomic decompositions in terms of T

It is conceivable that J: Ẇ 1,np(Rn,Rn) → H p(Rn) is not surjective but Theorem 1.3
improves to a finitary decomposition of H p(Rn) in terms of Jacobians. In Proposition 4.4,
we formulate a rather precise trichotomy about infinitary and finitary decompositions in the
setting of Theorem A.

Given T as in Theorem A, if every f ∈ Y ∗ can be written as

f =
n∑
j=1

cj Tuj , cj ∈ R, uj ∈ BX∗ , (4.3)

then, following [29], T is said to be 1/n-surjective. If, furthermore,
n∑
j=1
|cj | . ‖f‖Y ∗ (4.4)

for all f ∈ Y ∗, then T is said to be 1/n-open. Dixon [29] generalised Horowitz’s example
by constructing, for every n ∈ N, a continuous 1/n-surjective bilinear map between Banach
spaces which is not 1/n-open.

In Proposition 4.4 we show that under the assumptions of Theorem A, 1/n-surjectivity
implies 1/n-openness.

Proposition 4.4. Suppose X, Y and T satisfy the assumptions of Theorem A. Then one of
the following three conditions holds:

(i) There exists n ∈ N such that formulas (4.3)–(4.4) hold for all f ∈ Y ∗ but the set
{
∑n−1
j=1 cjTuj : cj ∈ R, uj ∈ BX∗} is meagre in Y ∗.

(ii) {∑∞j=1 cj Tuj : ∑∞j=1 |cj | <∞, uj ∈ BX∗} = Y ∗, but span(T (X∗)) is meagre in Y ∗.
(iii) {∑∞j=1 cj Tuj : ∑∞j=1 |cj | <∞, uj ∈ BX∗} is meagre in Y ∗.

Proof. We first show that if neither of (ii) and (iii) holds, then (i) does. Since span(T (X∗))
is not meagre in Y ∗ and can be written as the union of the closed sets

Dn ≡
{

n∑
j=1

cjTuj : cj ∈ R, uj ∈ BX∗
}
,

the Baire Category Theorem implies that one of the sets Dn contains a ball. Now (4.3)–(4.4)
follow by applying Theorem A to the operator

T̃ : Rn × BnX∗ → Y ∗, T̃
(
{cj}nj=1, {uj}nj=1

)
≡

n∑
j=1

cj Tuj .

Claim (i) follows by choosing the smallest n ∈ N such that T : X∗ → Y ∗ is 1/n-surjective.
Suppose then that (i) and (iii) do not hold; we intend to prove claim (ii). If span(T (X∗))

were non-meagre, the proof above would yield a contradiction. Now, since (iii) was assumed
to fail, {∑∞j=1 cjTuj : ∑∞j=1 |cj | <∞, uj ∈ BX} is non-meagre in Y ∗. Thus one of the closed
sets D̃` ≡ {

∑∞
j=1 cjTuj : ∑∞j=1 |cj | ≤ `, uj ∈ BX}, ` ∈ N, contains a ball. Hence the set

D̃2` = D̃` − D̃` contains a ball centred at zero and now the claim follows from (A2). The
proof of the proposition is complete.
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Remark 4.5. Note that T : L2(R2,R2) → H 1(R), T (ω, η) ≡ HωHη − η ω satisfies (i),
while for all n ≥ 2 and p ∈ [1,∞) the Jacobian from the inhomogeneous Sobolev space
W 1,np(Rn,Rn) into H p(Rn) satisfies (iii), see [50]. We are not aware of operators satisfying
the assumptions of Theorem A and condition (ii) of Proposition 4.4.

5 Applications to the Jacobian equation

This section contains two parts: in the first one, we use Theorem A to prove Theorem C
and, in the second one, we prove Theorem D.

5.1 Existence of well-behaved solutions

In this subsection we focus on the case n = 2 for simplicity and we assume throughout
that J: Ẇ 1,2p(R2,R2) → H p(R2) is surjective. We are particularly interested in the case
p = 1. Our goal is to illustrate the way in which Theorem A yields the following principle:

the existence of rough solutions implies the existence of well-behaved solutions.

The following is an example a rough solution, and something that we would like to avoid:

Example 5.1 ([52]). There is a map u ∈W 1,2(R2,R2) such that

Ju = 0 a.e. in R2 and u([0, 1]× {0}) = [0, 1]2.

In particular, u does not have the Lusin (N) property.

The main result of this subsection is the following theorem, which shows that in some
sense it suffices to deal with non-pathological solutions.

Theorem 5.2. Let Ω ⊂ R2 be a bounded open set and take f ∈H 1(R2) such that f ≥ 0 in Ω.
Assume that J: Ẇ 1,2(R2,R2) → H 1(R2) is onto. Then there is a solution u ∈ Ẇ 1,2(R2,R2)
of (1.2) such that:

(i) u is continuous in Ω;
(ii) u has the Lusin (N) property in Ω.
(iii)

�
R2 |Du|2 dx ≤ C‖f‖H 1 with C > 0 independent of f .

In particular, u satisfies the change of variables formula (2.3). Moreover, let Ω′ ⊆ Ω be an
open set such that f = 0 a.e. in Ω′. Then:

(iv) for any set E ⊂ Ω′, we have u(∂E) = u(E);
(v) for y ∈ u(Ω′), if C denotes a connected component of u−1(y)∩Ω′ then C intersects ∂Ω′.

Before proceeding with the proof, we note that (iv) is a type of degenerate monotonicity
which had already appeared in the study of the hyperbolic Monge–Ampère equation [18, 47].
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Proof. The point of the proof is to perturb f appropriately; then the solution u is obtained
as a limit of mappings of integrable distortion.

Let B+ be a ball containing Ω and let B− be another ball, disjoint from Ω, and with the
same volume as B+. Consider the perturbations

fε ≡ f + εa, a ≡ χB+ − χB− ,

which satisfy fε > 0 a.e. in Ω. Clearly a ∈ H 1(R2), being bounded, compactly supported
and with zero mean. Hence fε → f in H 1(R2) and, from Corollary B, we see that we can
choose solutions uε of Juε = fε such that

�
R2 |Duε|2 ≤ C‖fε‖H 1 for all ε > 0. Since the maps

uε have finite distortion, we can apply Theorem 2.10(i) to conclude that the family (uε) is
equicontinuous. Hence, upon normalising the maps so that uε(x0) = 0 for some fixed x0 ∈ Ω′,
and up to taking subsequences, (uε) converges both locally uniformly in Ω and weakly in
Ẇ 1,2(R2,R2) to a limit u. This already proves (i) and (iii).

To prove (ii), we note that each uε satisfies (2.2), c.f. Proposition 2.11. Since u is the
uniform limit of the sequence (uε), u also satisfies (2.2) and (ii) follows from Proposition 2.7.

For (iv), note that ε ≤ fε in Ω and so each map uε, having integrable distortion, is
open; it follows that ∂uε(E) ⊆ uε(∂E). Suppose, for the sake of contradiction, that there is
y ∈ u(E)\u(∂E). On the one hand, there is some δ > 0 such that, for all ε small enough,

Bδ(y) ∩ ∂uε(intE) ⊂ Bδ(y) ∩ uε(∂E) = ∅;

on the other hand, since y ∈ u(intE), for all ε small enough,

Bδ(y) ∩ uε(intE) 6= ∅.

It follows that Bδ(y) ⊆ uε(intE). We also have that |uε(intE)| → 0 as ε→ 0: by the change
of variables formula,

|uε(intE)| ≤
�
uε(intE)

N (y, uε, intE) dy =
�
E

Juε = ε|E| → 0.

Thus, since |Bδ(y)| ≤ |uε(E)|, a contradiction is reached by sending ε→ 0.
Finally, (v) follows from (iv), as shown for instance in [47, Lemma 2.10].

In view of the change of variables formula, it is useful to control the multiplicity function.
For the following proposition we again assume that the Jacobian is surjective.

Proposition 5.3. Let Ω ⊂ R2 be an open set and let Y ≡ {f ∈ H p(R2) : f ≥ c a.e. in Ω},
where c > 0. Suppose that fj ∈ Y is a sequence converging weakly to f in H p(R2). For any
maps uj ∈ Ẇ 1,2p(R2,R2) satisfying Juj = fj and the a priori estimate (1.4), we have that

sup
j

sup
y∈uj(Ω′)

N (y, uj ,Ω′) <∞, whenever Ω′ b Ω.

Proof. We claim that the sequence uj is equicontinuous and converges to u ∈ Ẇ 1,2p(R2,R2),
a solution of Ju = f , uniformly in Ω′. Once the claim is proved, the conclusion follows: u
has integrable distortion in Ω and so by Theorem 2.10(v) it is at most m-to-one in Ω′, for
some m ∈ N. Thus, for all j sufficiently large, uj is also at most m-to-one in Ω′: if not,
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there are arbitrarily large j and points x(j)
1 , . . . , x

(j)
m+1 ∈ Ω′ such that uj(x(j)

i ) = y for some
y ∈ Rn and all i ∈ {1, . . . ,m+ 1}. By compactness, we can further assume that x(j)

i → xi for
i = 1, . . . ,m+ 1. However, there are at least two different points y1 6= y2 such that

{y1, y2} ⊂ u({x1, . . . , xm+1});

for the sake of definiteness, say u(x1) = y1, u(x2) = y2. Let ε < |y1−y2| and take j sufficiently
large so that, for i = 1, 2,

|uj(x(j)
i )− uj(xi)| <

ε

4 , |uj(xi)− u(xi)| <
ε

4;

this is possible from equicontinuity of the sequence uj and the fact that it converges to u
uniformly. The triangle inequality gives |y1 − y2| = |u(x1)− u(x2)| < ε, a contradiction.

To prove the claim, we assume that the Jacobian is surjective and we use Corollary B. If
p > 1 we appeal to Morrey’s inequality,

[uj ]C0,1−2/p(R2) .p ‖Duj‖L2p(R2) ≤ C,

while for p = 1 we use Theorem 2.10(i) instead. Either way, after normalizing the maps so that
uj(x0) = 0, where x0 ∈ Ω, we see that the sequence (uj) is precompact in the local uniform
topology over Ω′. Hence we may assume that uj converges to some map u ∈ Ẇ 1,2p(R2,R2)
uniformly in Ω′ and also weakly in Ẇ 1,2p(R2,R2).

5.2 Energy minimisers with prescribed Jacobian

For each f ∈H p(Rn), we define the p-energy of f as

Ep(f) ≡ inf
{�

Rn
|Dv|np dx : v ∈ Ẇ 1,np(Rn,Rn) satisfies Jv = f a.e. in Rn

}
.

Note that f ∈H p(Rn) has a solution in Ẇ 1,np(Rn,Rn) if and only if Ep(f) <∞; in particular,

Ep : H p(Rn)→ [0,+∞) (5.1)

if and only if J : Ẇ 1,np(Rn,Rn)→H p(Rn) is onto. We use the following terminology [43]:

Definition 5.4. Given f ∈H p(Rn), we say that u ∈ Ẇ 1,np(Rn,Rn) is a p-energy minimiser
for f if �

Rn
|Du|np dx = Ep(f) and Ju = f a.e. in Rn.

If all p-energy minimisers v of f can be written as v = Qvu, for some Qv ∈ SO(n), then
we say that the p-energy minimisers for f are unique modulo rotations.

Recall that a map in Ẇ 1,np is defined only modulo constants. For simplicity, we will
typically assume that p-energy minimisers are normalised so that they map zero to zero.

We begin with a simple abstract lemma:

Lemma 5.5. Assume (5.1) holds. Then Ep : H p(Rn)→ [0,+∞) is sequentially weakly lower
semicontinuous. In particular, for any bounded set B ⊂ H p(Rn), the set of weak continuity
points of Ep : B → [0,+∞) is residual in the weak topology of B.
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Proof. The sequential weak lower semicontinuity follows immediately from the sequential
weak continuity of the Jacobian and the convexity of the norm in Ẇ 1,2p; then Ep|B is also
sequentially weak lower semicontinuous. Since the weak topology is metrisable on bounded
sets, Baire’s theorem (see for instance [46, Exercise (24.16)]) then asserts that Ep is a Baire-1
function and hence its set of weak continuity points is residual in B.

Remark 5.6. When B ⊂ H p(Rn) is a closed ball, and if Ep is finite-valued, we must have
that all weak continuity points of Ep are located in ∂B. Indeed, if there is a weak continuity
point f ∈ B\∂B of Ep, then we derive a contradiction as follows: take a sequence fj ∈ B
which converges to f weakly but not strongly. By weak continuity of Ep at f , and passing to
a subsequence if need be, we can find a sequence of p-energy minimisers uj of fj such that
Duj ⇀ Du in Lnp(Rn,Rn×n) and ‖Duj‖Lnp → ‖Du‖Lnp . Since Lebesgue spaces are uniformly
convex they have the Radon–Riesz property, that is, Duj → Du strongly in Lnp, see [14,
Proposition 3.32] and [25]. Hence we deduce that fj → f strongly in Lp(Rn), which is absurd.

Our interest in the continuity points of Ep comes from the following straightforward lemma:

Lemma 5.7. Let uj be a p-energy minimiser for fj. Suppose that f is a strong (respectively
weak) continuity point of Ep and that fj → f (respectively fj ⇀ f) in Lp(Rn). Then, up to a
subsequence, uj → u in Ẇ 1,np(Rn,Rn) and u is a p-energy minimiser for f .

We would like to use methods similar to the ones in Section 5.1 to deduce that p-energy
minimisers are well-behaved solutions. One of the main difficulties with this approach, how-
ever, is that we do not know how to find strong continuity points of Ep and, in light of Remark
5.6, the situation with weak continuity points is not very satisfying: if fj ⇀ f in Lp and, for
all large j, ‖fj‖ > ‖f‖, then it follows that Ep(fj) 6→ Ep(f). Hence one is forced to consider
perturbations with norm not exceeding that of f .

It may be that the difficulty in finding strong continuity points of Ep is genuine; the main
result of this subsection certainly shows that the multi-valued map

f 7→
{
u : ‖Du‖npLnp = Ep(f)

}
is rather badly behaved. Indeed, we will now prove Theorem D, which we restate here:

Theorem 5.8. Fix 1 ≤ p < ∞. There is a radially symmetric function f ∈ H p(Rn) which
has uncountably many p-energy minimisers, modulo rotations.

A more informative statement can be found in Corollary 5.13, at the end of the section.
The proof of Theorem 5.8 relies mostly on elementary tools and the most sophisticated result
that we use is the following:

Theorem 5.9 (Sierpiński). Let (Xn) be disjoint closed sets such that I = ⋃
n∈NXn, where

I = [a, b] ⊂ R. There is at most one n ∈ N such that Xn is non-empty.

Theorem 5.9 is only needed to obtain uncountably many distinct minimisers, as non-
uniqueness follows already from more elementary means. We also note that Theorem 5.9
holds more generally for a compact, connected Hausdorff space, see e.g. [31, Theorem 6.1.27].
In the case of an interval the proof is simple and so we give it here for the sake of completeness:
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Proof. Take Y ≡ ⋃n ∂Xn = I\
⋃
n int(Xn), which is closed, thus a complete metric space.

We observe that the set Y has empty interior in I, i.e. any open interval L contains an
open set U disjoint from Y . Indeed, from the Baire Category Theorem we see that there is
an open set U ⊆ L and some Xm which is dense in U . Since Xm is closed, we must have
U ⊆ intXm and thus U is disjoint from Y .

By the Baire Category Theorem there is also some open subinterval J of I and some
n ∈ N such that ∂Xn is dense in Y ∩ J . Since ∂Xn is closed we have ∂Xn ∩ J = Y ∩ J . Thus
(Y \∂Xn) ∩ J = ∅.

Suppose now that Xn 6= I. It follows that J intersects Y \∂Xn. Indeed, since Y has empty
interior in I, J intersects I\Xn and so it intersects int(Xk) for some k. Actually, J must
intersect ∂Xk: otherwise, int(Xk) ∩ J is non-empty, open and closed in J , thus intXk = J ,
since J is connected; clearly this is impossible, since Xk is disjoint from Xn. So we proved
that J intersects Y \∂Xn, contradicting the previous paragraph.

We are now ready to begin the proof of Theorem 5.8, whose core idea is contained in the
following lemma.

Lemma 5.10. Let u be a p-energy minimiser for a radially symmetric function f ∈H p(R2).
For α0 ∈ [0, 2π], consider the set

Xα0 ≡
{
α ∈ [0, 2π] : uα = uα0 modulo rotations

}
, where uα(z) ≡ u(eiαz). (5.2)

Assume that f ∈ C0(BR) has a sign. If Xα0 = [0, 2π] then there is k ∈ Z such that

u(z) = φk(z) in BR, modulo rotations.

Proof. If Xα0 = [0, 2π] then, for any α ∈ [0, 2π] and z ∈ BR, we have |u(eiαz)| = |u(z)|; that
is, circles in BR, centred at zero, are mapped to circles centred at zero.

For each r ∈ (0, R), we have 0 6∈ u(Sr). Indeed, for each ball B b BR, there is c = c(B) > 0
such that f ≥ c in B (or f ≤ −c, but by reversing orientations we can always consider the
first case without loss of generality). Thus, in Br, u is a map of integrable distortion and so,
by Theorem 2.10, it is both continuous and open. Therefore ∂(u(Br)) ⊆ u(∂Br) = u(Sr) and
we see that u(Sr) 6= {0}. Since u(Sr) is a circle, we conclude that 0 6∈ u(Sr).

By Proposition 2.1 we may write

u(r, θ) = ψ(r, θ)eiγ(r,θ) (5.3)

where ψ ∈ W 1,2p(BR, [0,∞)), γ ∈ W 1,2p
loc (BR,R). Moreover, ψ is continuous in BR, γ is

continuous in BR \ {0} and further γ(r, 2π) − γ(r, 0) ∈ 2πZ for a.e. r ∈ (0, R). From the
representation (5.3), it is not difficult to formally derive the formulae

Ju = 1
2r
∂(ψ2, γ)
∂(r, θ) = 1

2r
(
∂r(ψ2)∂θγ − ∂θ(ψ2)∂rγ

)
, (5.4)

|Du|2 = |∂rψ|2 + |ψ∂rγ|2 + |∂θψ|
2

r2 + |ψ∂θγ|
2

r2 . (5.5)

Due to the regularity of ψ and γ, the right-hand sides in (5.4)–(5.5) define locally integrable
functions and so a density argument shows that these formulae hold a.e. in BR(0).
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For r < R, u(Sr) = Sr′ , that is, ψ(r, θ) is independent of θ. Thus (5.4) reduces to

∂r(ψ2)∂θγ = 2rf(r), (5.6)

which is valid for almost every (r, θ) ∈ Br \ {0}. Since both ψ and the right-hand side are
independent of θ we must have γ(r, θ) = 2πkθ+β(r) and additionally there is the compatibility
constraint k ∈ Z. Since u is a p-energy minimiser, (5.5) readily implies that β is constant.
We integrate both sides of (5.6), using ψ(0) = 0, to find

ψ(r)2 = 1
k

� r

0
2sf(s) ds for r < R.

Thus, modulo rotations, u = φk in BR.

In fact, the same argument applied in an annulus A(R0, R) gives the following variant:

Lemma 5.11. Consider the setup of Lemma 5.12, but replace BR by A(R0, R). Then there
is k ∈ Z and c ∈ R such that, in A(R0, R),

u(z) = ψ(r)e2πikθ modulo rotations, where ψ(r)2 =
� r

R0

2sf(s) ds+ c.

We now combine the previous two lemmas.

Lemma 5.12. There is a radially symmetric f ∈ H p(R2), admitting a p-energy minimiser
u, for which we have X0 6= [0, 2π], where X0 is as in (5.2).

Proof. We take a function f : R2 → R satisfying the following conditions:

f ∈ C1(Rn) is radially symmetric,�
B2

f dx =
�
R2
f dx = 0

f(r) < 0 if 0 < r < 1, f > 0 if 1 < r < 2, f(r) = (4− r)+ if 3 < r.

(5.7)

By [48, Theorem 4], there is v ∈ C1(B4,R2) such that Jv = f and v = 0 on ∂B4; in particular,
by extending v by zero outside B4, we have v ∈W 1,2p(R2,R2). Since the 2p-Dirichlet energy
is convex, the Direct Method, combined with the weak continuity of the Jacobian, shows that
f has at least one p-energy minimiser and we call it u, using it to define the sets in (5.2).

Suppose, for the sake of contradiction, that X0 = [0, 2π]. Using Lemmas 5.10 and 5.11,
we deduce that there are angles α, α′ ∈ [0, 2π), numbers k, k′ ∈ Z and c ∈ R such that

u = eiαφk in B1, u = eiα
′ (
ψ(r)e2πik′θ

)
in A(1, 2),

where, for r ∈ (1, 2),
ψ(r)2 = 1

k′

� r

1
2sf(s) ds+ c.

In the notation of Definition 2.3, we must have

eiα+2πikθ ρ(1)√
|k|
≡ TrS1u|B1 = TrS1u|A(1,2) ≡ eiα

′+2πik′θc
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in L2p(S1). It is easy to conclude that α = α′, k = k′ and c = ρ(1)/
√
|k|, and so, modulo

rotations, actually u = φk in B2. It is now easy to verify directly that, for f as in (5.7), we
have � 2

0
|ρ̇(r)|2 dr = +∞,

and so by Lemma 2.4 u 6∈W 1,2(B2,R2), which is a contradiction. Alternatively, one can infer
that u 6∈W 1,2(B2,R2) from [50, Theorem 3.4].

Proof of Theorem 5.8. Let f and u be as in Lemma 5.12. For each α ∈ [0, 2π], it is easy
to check that the set Xα is closed. We may write, for some index set A,

[0, 2π] =
⋃
α∈A

Xα, where the union is disjoint.

For distinct α, α′ ∈ A, Xα and Xα′ correspond to distinct equivalence classes of p-energy
minimisers, and so by Lemma 5.12 we must have #A > 1. But now Theorem 5.9 shows that
A must be uncountable.

We also note that the proof of Lemma 5.10 yields the following corollary:

Corollary 5.13. Let f ∈H p(R2) be radially symmetric and suppose u is its unique p-energy
minimiser, modulo rotations. If u is continuous then u = φk for some k ∈ Z.

Clearly the continuity assumption is not restrictive if p > 1.

Proof. As in the proof of Lemma 5.10 we conclude that u maps circles centred at zero to
circles and that (r, θ) 7→ |u(reiθ)| is independent of θ. Thus we write simply |u(r)|.

We show that the set {r ∈ (0,∞) : |u(r)| > 0} is connected. Suppose, by way of contra-
diction, that there are r1 < r2 < r3 such that |u(r1)|, |u(r3)| > 0 but |u(r2)| = 0. We get
another p-energy minimiser for f by setting

v(z) =

u(z), |z| ≤ r2,

eiπu(z), |z| > r2,

contradicting the assumption that the p-energy minimiser for f is unique modulo rotations.
Thus we can write, for some 0 ≤ R1 ≤ R2 ≤ ∞,{

r ∈ (0,∞) : |u(r)| > 0
}

= (R1, R2)

and clearly we must have f(r) = 0 if r 6∈ (R1, R2). Thus φk(z) = 0 if r 6∈ (R1, R2) and
so u = φk outside A(R1, R2). Moreover, can use Lemma 5.11 to conclude that u = φk in
A(R1, R2), modulo rotations, and the conclusion follows.

6 A general nonlinear open mapping principle for
scale-invariant problems

The main result of this section is Theorem 6.2, which is a generalisation of Theorem A to
a wider class of translation-invariant, scaling-invariant PDEs. Section 6.2 illustrates the way
in which Theorem 6.2 can be applied to some physical nonlinear equations.
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6.1 A more general nonlinear open mapping principle

We begin by formulating a model problem abstractly as follows:

if g − 1 ∈ Y ∗, does there exist v with Jv = f and v − id ∈ X∗? (6.1)

Here X∗ and Y ∗ are suitably chosen function spaces. In smooth domains Ω ( Rn, examples
of (6.1) include the Dirichlet problem for the Jacobian equation, that is,Jv = g in Ω,

v = id on ∂Ω;
(6.2)

the condition g − 1 ∈ Y ∗ is codified in the compatibility condition
�

Ω
(g − 1) dx = 0.

We return to the abstract formulation (6.1). When n = 2, denoting f ≡ g − 1 and
u ≡ v − id we get the following question, equivalent to (6.1):

if f ∈ Y ∗, does there exist u ∈ X∗ with Tu ≡ Ju+ divu = f? (6.3)

The latter formulation has the advantage that X∗ and Y ∗ are vector spaces, which makes the
problem more amenable to scaling arguments.

In Example 6.1 we discuss a representative special case of (6.3). Here T does not map X∗
into Y ∗ and we therefore need to choose a set D ( X∗ as the domain of definition of T .

Example 6.1. Let X∗ = Ẇ 1,q(R2,R2) and Y ∗ = Lp(R2) with p ∈ [2,∞) and q ∈ [p, 2p].
Since T = J + div does not map Ẇ 1,q(R2,R2) into Lp(R2), it is natural to set

D = {u ∈ Ẇ 1,q(R2,R2) : Tu ∈ Lp(R2)}

and study the range of
T = J + div: D → Y ∗. (6.4)

Note that we may write T ◦ τDλ = τY
∗

λ ◦ T for all λ > 0, where

τDλ u(x) = uλ(x) ≡ λu
(
x

λ

)
, τY

∗
λ f(x) = fλ(x) ≡ f

(
x

λ

)
give multiples of isometries:

‖τDλ u‖Ẇ 1,q = λ2/q‖u‖Ẇ 1,q , ‖τY ∗λ f‖Lp = λ2/p‖f‖Lp

for all u ∈ D, f ∈ Y ∗ and λ > 0.

Since the set D contains the proper dense subspace C∞c (R2,R2), it is neither weakly
nor strongly closed in Ẇ 1,q(R2,R2). This difficulty is reflected in the somewhat awkward
assumption (Â4) of Theorem 6.2 below.

Before formulating the result recall that when a direct sum of Banach spaces X = ⊕mi=1Xi

is endowed with the norm ‖w‖X ≡
∑M
i=1 ‖wi‖Xi , the dual norm of X∗ = ⊕mi=1X

∗
i is of the

form ‖u‖X∗ = max1≤i≤m ‖ui‖X∗i .
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Theorem 6.2. Let X1, . . . , XI and Y1, . . . , YJ be Banach spaces and denote X = ⊕Ii=1Xi and
Y = ⊕Jj=1Yj. Suppose BX∗ is sequentially weak∗ compact and 0 ∈ D ⊂ X∗.

We make the following assumptions:

(Â1) T : D → Y ∗ is a weak∗-to-weak∗ sequentially continuous operator.
(Â2) For λ > 0, there exist bijections τDλ : D → D and τY ∗λ : Y ∗ → Y ∗ such that

T ◦ τDλ = τY
∗

λ ◦ T for all λ > 0,
‖(τDλ u)i‖X∗i = λri‖ui‖X∗i for all λ > 0, i = 1, . . . , I, u ∈ X∗,
‖(τY ∗λ f)j‖Y ∗j = λsj‖fj‖Y ∗j for all λ > 0, j = 1, . . . , J, f ∈ X∗,

where 0 < r1 ≤ · · · ≤ rI and 0 < s1 ≤ · · · ≤ sJ .
(Â3) There exist sequences of isometric bijections σDk : D → D with σDk (0) = 0 and isometric

isomorphisms σY ∗k : Y ∗ → Y ∗ such that

T ◦ σDk = σY
∗

k ◦ T for all k ∈ N, σY
∗

k f
∗
⇀ 0 for all f ∈ Y ∗.

(Â4) For ` ∈ N, the sets D` ≡ {u ∈ D : ‖u‖X∗ ≤ `, ‖Tu‖Y ∗ ≤ `} are weakly∗ sequentially
closed in X∗.

The following conditions are then equivalent:

(i) T (D) is non-meagre in Y ∗.
(ii) T (D) = Y ∗.
(iii) T is open at the origin.
(iv) For every f ∈ Y ∗ there exists u ∈ D such that

Tu = f,


∑I
i=1 ‖ui‖

sJ/ri
X∗i

≤ C‖f‖Y ∗ , ‖f‖Y ∗ ≤ 1,∑I
i=1 ‖ui‖

s1/ri
X∗i

≤ C‖f‖Y ∗ , ‖f‖Y ∗ > 1.
(6.5)

Proof. We first show (i) ⇒ (iii), so assume (i) holds. Write D = ∪∞`=1D` and note that
T (D) = ∪∞`=1T (D`). Since BX∗ is weak∗ sequentially compact and T : D → Y ∗ is weak∗-to-
weak∗ sequentially continuous, the sets T (D`) are closed in Y and, therefore, complete. By
the Baire Category Theorem, one of the sets T (D`) contains a ball B̄η(f0). Clearly η ≤ `. We
first show that

T (D ∩ `BX∗) ⊃ ηBY ∗ . (6.6)

Suppose f ∈ Y ∗ with ‖f‖Y ∗ ≤ η. Since the maps σY ∗k : Y ∗ → Y ∗ are isometries, we get
f0 + (σY ∗k )−1f ∈ B̄η(f0) ⊂ T (D`) for every k ∈ N. For every k ∈ N, choose uk ∈ D` such that
Tuk = f0 + (σY ∗k )−1f . By (Â3), each σDk maps D` into D`. Thus, passing to a subsequence as
in the proof of Theorem A, and using (Â4), σDk uk ⇀ u ∈ D`; by (Â1) we get Tu = f . Thus
(6.6) is proved.

We are ready to show openness of T at zero. Let ε > 0; our aim is to find δ > 0 such that
T (D ∩ εBX∗) ⊃ δBX∗ . We first note that for each λ > 0 we have

τDλ (D ∩ `BX∗) = {u ∈ D : ‖ui‖X∗i ≤ λ
ri` for i = 1, . . . , I}.
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By choosing λ = min1≤i≤I(ε/`)1/ri we get max1≤i≤I λ
ri` ≤ ε so that

T (D ∩ εBX∗) ⊃ T (τDλ (D ∩ `BX∗)) = τY
∗

λ T (D ∩ `BX∗).

By using (6.6) and selecting δ = min1≤i≤I min1≤j≤J η(ε/`)sj/ri we get

τY
∗

λ T (D ∩ `BX∗) ⊃ τY
∗

λ (ηBY ∗) = λs1ηBY ∗1 × · · · × λ
sJηBY ∗J ⊃ δBY ∗ ,

as wished.
We now prove (iii) ⇒ (iv), so as above take some ε > 0 and get δ > 0 in such a way that

δBY ∗ ⊂ T (D ∩ εBX∗). Assume, without loss of generality, that δ ≤ 1. Let f ∈ Y ∗ and define
λ > 0 via

‖f‖Y ∗ ≡ µ = min
1≤j≤J

λsjδ =

λsJ δ, µ ≤ δ,
λs1δ, µ > δ.

In either case, denote µ = λsj0 δ. Then

f ∈ τY ∗λ (δBY ∗) ⊂ τY
∗

λ T (D ∩ εBX∗) = TτDλ (D ∩ εBX∗)
= T{u ∈ D : ‖ui‖X∗i ≤ λ

riε for i = 1, . . . , I}.

Suppose now u ∈ D satisfies ‖ui‖X∗i ≤ λ
riε for i = 1, . . . , I. Then, for all i,

‖ui‖
sj0/ri
X∗i

≤ λsj0εsj0/ri ≤ εsj0/ri

δ
µ.

We conclude that

f ∈ T
{
u ∈ D : ‖ui‖X∗i ≤ λ

riε for all i
}
⊂ T

u ∈ D :
I∑
i=1
‖ui‖

sj0/ri
X∗i

≤ Cµ

 ,
where

C =
I∑
i=1

εsj0/ri

δ
,

which yields (6.5) in the cases ‖f‖Y ∗ ≤ δ and ‖f‖Y ∗ > 1. In the bounded regime δ < ‖f‖Y ∗ ≤ 1,
one obviously has λs1 ≈δ λsJ so that (6.5) holds for all f .

We conclude the proof of the theorem by noting that (iv) ⇒ (ii) ⇒ (i).

Remark 6.3. Inspection of the proof of Theorem 6.2 shows that, in the statement of the
theorem, one may replace all occurrences of Y ∗ with K, where K ⊂ Y ∗ is a closed convex
cone. Recall that K is said to be a cone if af ∈ K whenever a > 0 and f ∈ K.

Such a generalisation is occasionally useful, since it may be interesting to consider smaller
data sets. For instance, in the case Question 1.2, natural examples include the set of radially
symmetric data K = {f ∈H p(Rn) : f(x) ≡ f(|x|)} and, when p > 1, the set of non-negative
data K = {f ∈ Lp(Rn) : f ≥ 0}.

Returning to Example 6.1, it is easy to check that the assumptions of the theorem are
satisfied, and so we may apply it to get the following:

Corollary 6.4. Let p ∈ [2,∞) and q ∈ [p, 2p]. The following claims are equivalent:
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(i) For all f ∈ Lp(R2) there exists u ∈ Ẇ 1,q(R2,R2) with Ju+ divu = f .
(ii) For all f ∈ Lp(R2) there exists u ∈ Ẇ 1,q(R2,R2) with

Ju+ divu = f, ‖Du‖qLq ≤ C‖f‖
p
Lp .

Remark 6.5. When Ω ⊂ Rn is a smooth, bounded domain, n ≤ p < ∞, X = W 1,p
0 (Ω,R2)

and Y ∗ = Lp(Ω)/R, the question about surjectivity of the operator T = div + J is closely
related to [34, Question 1.2]. It would be interesting to find out whether Theorems A and 6.2
can be adapted to bounded domains.

6.2 Examples

In this subsection we illustrate the use of Theorem 6.2 in the model cases of the 3D
Navier-Stokes equations and Euler equation.

Example 6.6. We illustrate the use of Theorem 6.2 in the model case of the homogeneous,
incompressible Navier-Stokes equations in R3 × [0,∞):

∂tu+ u · ∇u− ν∆u−∇P = 0, (6.7)
divu = 0, (6.8)
u(·, 0) = u0, (6.9)

where u is the velocity field, P is the pressure, ν > 0 is the viscosity and u0 is the initial data.
The equations are invariant under the scalings u→ uλ, P → Pλ and u0 → u0

λ,

uλ(x, t) ≡ 1
λ
u

(
x

λ
,
t

λ2

)
, Pλ(x, t) ≡ 1

λ2P

(
x

λ
,
t

λ2

)
, u0

λ(x) = 1
λ
u0
(
x

λ

)
.

We divide the discussion into the following three steps: i) formally determining T ; ii) choosing
relevant ambient spaces X∗ and Y ∗; iii) choosing the domain of definition D.

We begin by choosing the operator T we wish to study. We incorporate (6.7)–(6.8) into
the choice of the function spaces and choose, formally, T (u) = u(·, 0). As the sought range we
consider Y ∗ = Lqσ = {v ∈ Lq(R3,R3) : div v = 0}. We wish to choose the domain of definition
D to be a suitable set of functions which satisfy (6.7)–(6.9) for some u0 ∈ Lqσ. We also need
to determine the ambient space X∗.

In order for Theorem 6.2 to be applicable, we wish to consider regularity regimes where
T is weakly∗ sequentially continuous and the sets D` = {u ∈ D : ‖u‖X ≤ `, ‖Tu‖Y ∗ ≤ `} are
weakly∗ compact. It is natural to set X∗ = Lpt (Lqσ)x ∩ LrtẆ 1,s

x for suitable p, q, r, s ∈ [1,∞].
For condition (Â2) of Theorem 6.2 we compute, for all p, q, r, s ∈ [1,∞],

‖u0
λ‖Lq = λ3/q−1‖u0‖Lq ,

‖uλ‖LptLqx = λ2/p+3/q−1‖u‖LptLqx ,

‖uλ‖Lrt Ẇ 1,s
x

= λ2/r+3/s−2‖u‖
Lrt Ẇ

1,s
x
.

Thus (Â2) requires the compatibility condition 2/p+ 3/q − 1 = 2/r + 3/s− 2 to hold.
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For simplicity, we set q = 2 and we consider the most familiar choice of exponents, that
is, X∗ = L∞t L

2
σ,x ∩ L2

t Ẇ
1,2
x . Recall that u ∈ X is called a weak solution of (6.7)–(6.9) if u

satisfies� τ

0
〈u, ∂tϕ〉dt+

� τ

0
〈u⊗ u,Dϕ〉 dt− ν

� τ

0
〈Du,Dϕ〉 dt+ 〈u0, ϕ(0)〉 − 〈u(τ), ϕ(τ)〉 = 0 (6.10)

for all ϕ ∈ C∞c (R3× [0,∞),R3) with divϕ = 0 and almost every τ > 0. In (6.10), 〈·, ·〉 denotes
the inner product in L2

x. This prompts us to set

D ≡ {u ∈ L∞t L2
σ,x ∩ L2

t Ẇ
1,2
x : u is a weak solution of (6.7)–(6.9) for some u0 ∈ L2

σ},
T : D → Y ∗, T (u) ≡ u0 if (6.10) holds.

We briefly indicate why T : (D,wk∗) → (Y ∗,wk∗) is sequentially continuous and the sets
D` are weakly∗ closed for all ` ∈ N. When u ∈ D, we have ∂tu ∈ L4/3(0, τ, (W 1,2

σ )∗) for
all τ > 0 (see [61, Lemma 3.7]). Thus, by using the Aubin–Lions lemma and a diagonal
argument, if uj ∗⇀ u in D, then every subsequence has a subsequence converging strongly in
L2(0, T, L2(BR,R3)) for all T,R > 0. The strong convergence and (6.10) imply that every
subsequence of (u0

j )j∈N has a subsequence converging weakly∗ to u0. This implies the two
claims made above.

Theorem 6.2 now says that solvability of (6.7)–(6.9) for all u0 ∈ L2
σ is equivalent to

solvability with the a priori estimate

‖u‖L∞t L2
x

+ ‖u‖
L2
t Ẇ

1,2
x
≤ C‖u(·, 0)‖L2 .

Such an estimate is satisfied by Leray–Hopf solutions [61].

Example 6.7. Our next aim is to prove Theorem E on energy dissipating solutions of the
incompressible Euler equations in Rn × [0,∞), n ≥ 2. Recall that given u0 ∈ L2

σ, a mapping
u ∈ LptL2

σ,x, 2 ≤ p ≤ ∞, is a weak solution of the Cauchy problem (1.7)–(1.9) if
� ∞

0

�
Rn

(u·∂tϕ+u⊗u : Dϕ) dx dt+
�
Rn
u0 ·ϕ(·, 0) dt = 0 ∀ϕ ∈ C∞c,σ(Rn×[0,∞),Rn). (6.11)

We cannot deduce Theorem E directly via Theorem 6.2. Indeed, the integral condition
(6.11) leads to a well defined mapping T from a weak solution u ∈ LptL2

σ,x of (1.7)–(1.9) to
the initial data u0 ∈ L2

σ but does not easily lend itself to a domain of definition D ⊂ LptL
2
σ,x

satisfying condition (Â4) of Theorem 6.2. We therefore consider a relaxed problem where
u⊗ u ∈ Lp/2t L1

x is replaced by a general matrix-valued mapping S.
In order to apply Theorem 6.2 we embed L1(Rn,Rn×n) into the space of signed Radon

measures M(Rn,Rn×n) which is the dual of the separable Banach space C0(Rn,Rn×n). We
endow M(Rn,Rn×n) with the dual norm. In the relaxed problem we require u ∈ LptL2

σ,x and
S ∈ Lp/2t Mx to satisfy
� ∞

0

�
Rn

(u · ∂tϕ+ S : Dϕ) dx dt+
�
Rn
u0 · ϕ(·, 0) dt = 0 ∀ϕ ∈ C∞c,σ(Rn × [0,∞),Rn). (6.12)

The point is that unlike (6.11), condition (6.12) is stable under weak∗ convergence because of
linearity. Theorem E is proved via the following lemma.

30



Lemma 6.8. Let n ≥ 2 and p ∈ (2,∞). For a residual set of data u0 ∈ L2
σ there exists no

couple (u, S) ∈ LptL2
σ,x × L

p/2
t Mx satisfying (6.12).

Proof. Assume, for the sake of contradiction, that for a non-meagre set of data u0 ∈ L2
σ

there exists a solution (u, S) ∈ LptL2
σ,x × L

p/2
t Mx of (6.12).

Denote D = {(u, S) ∈ LptL2
σ,x × L

p/2
t Mx : (6.12) holds for some u0 ∈ L2

σ}. Let us define
T : D → L2

σ by T (u, S) ≡ u0. Our intention is to verify the assumptions of Theorem 6.2 with
two incompatible scalings. A simple application of Theorem 6.2 then implies the claim.

Let (u, S) ∈ D and fix α, β ∈ R. Given λ > 0 we set

uλ,α,β(x, t) ≡ 1
λα
u

(
x

λβ
,

t

λα+β

)
, (6.13)

Sλ,α,β(x, t) ≡ 1
λ2αS

(
x

λβ
,

t

λα+β

)
, (6.14)

u0
λ,α,β(x, t) ≡ 1

λα
u0
(
x

λβ

)
. (6.15)

Now (6.12) and (6.13)–(6.15) imply that
� ∞

0

�
Rn

(uλ,α,β · ∂tϕ+ Sλ,α,β : Dϕ) dx dt+
�
Rn
u0
λ,α,β · ϕ(·, 0) dt = 0

for all ϕ ∈ C∞c,σ(Rn × [0,∞);Rn) so that (uλ,α,β, Sλ,α,β) ∈ D and T (uλ,α,β, Sλ,α,β) = u0
λ,α,β.

Now

‖uλ,α,β‖LptL2
x

= λ
nβ
2 +α+β

p
−α‖u‖LptL2

x
= λ

(np+2)β−(2p−2)α
2p ‖u‖LptL2

x
,

‖Sλ,α,β‖Lp/2
t Mx

= λ
nβ+ 2(α+β)

p
−2α‖S‖

L
p/2
t Mx

= λ
(np+2)β−(2p−2)α

p ‖S‖
L
p/2
t Mx

,

‖u0
λ,α,β‖L2 = λ

nβ
2 −α‖u0‖L2 = λ

nβ−2α
2 ‖u0‖L2 .

As long as the powers of λ above are positive, Theorem 6.2 implies that for every u0 ∈ L2
σ we

can choose a solution of (6.12) such that it satisfies

‖u‖
npβ−2pα

(np+2)β−(2p−2)α
LptL

2
x

+ ‖S‖
npβ/2−pα

(np+2)β−(2p−2)α

L
p/2
t Mx

≤ Cα,β‖u0‖L2 .

Let now 0 < ε < np/(np+ 2). Choose α, β > 0 such that

npβ − 2pα
(np+ 2)β − (2p− 2)α = ε.

We conclude that for every u0 ∈ L2
σ there exists a solution (u, S) of (6.12) with

‖u‖εLptL2
x

+ ‖S‖
ε
2

L
p/2
t Mx

≤ Cε‖u0‖L2 .

Let ‖u0‖L2 = 1 and fix γ > 0 with β − γ small. Choose (ũ, S̃) such that

T (ũ, S̃) = u0
λ,α,γ , ‖ũ‖εLpTL2

x
+ ‖S̃‖ε/2

L
p/2
t Mx

≤ Cε‖u0
λ,α,γ‖L2 = Cελ

nγ−2α
2 .
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Next choose (u, S) ∈ LptL2
σ,x × L

p/2
t Mx such that (uλ,α,β, Sλ,α,β) = (ũ, S̃). Now T (u, S) = u0

but

‖u‖LptL2
x

= λ
− (np+2)β−(2p−2)α

2p ‖ũ‖LptL2
x

= λ−
nβ−2α

2ε ‖ũ‖LptL2
x

≤ C
1
ε
ε λ

nγ−2α
2ε −nβ−2α

2ε = C
1
ε
ε λ

n(γ−β)
2ε .

By varying λ > 0 we get u = 0, which yields a contradiction with u(·, 0) = u0.

It is intriguing that despite being highly underdetermined, (6.12) generically requires that
the kinetic energy of u does not enjoy Lq decay. Note, for instance, that for every u0 ∈ L2

σ

one gets a solution of (6.12) by setting u(x, t) ≡ u0(x) and S(x, t) ≡ 0.

Proof of Theorem E. Let M > 0 and suppose, by way of contradiction, that the set of
data with a solution u ∈ MBLptL2

σ,x
is not nowhere dense in L2

σ. In particular, defining T as
in the proof of Lemma 6.8, T ({(u, S) ∈ D : (u, S) ∈MBLptL2

σ,x
×MB

L
p/2
t Mx

}) is not nowhere
dense in L2

σ. On the other hand, T ({(u, S) ∈ D : (u, S) ∈ MBLptL2
σ,x
×MB

L
p/2
t Mx

}) is closed
in L2

σ, and therefore it has a non-empty interior, contradicting Lemma 6.8.
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