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Introduction

The celebrated paper by Onsager (1949) laid the premises for a
theory of liquids (not only liquid crystals) based on purely repulsive
intermolecular forces.

Canonical Ensemble

Suppose that N identical particles described by the coordinates

q = (q1, . . . , qN ) ∈ QN

Q single particle configurational space

are interacting via a diverging , steric pair-potential U .

partition function

ZN :=
1

N !

∫
QN

e−
1
kT U (q)dq1 . . . dqN

k Boltzmann constant T absolute temperature
U (q) :=

∑N
i<j=1 U(qi, qj) interaction energy U(qi, qj) = U(qj , qi)
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Helmholtz Free Energy

The objective is to compute the free energy

FN = −kT lnZN

without even possibly dreaming of averaging over the diverging
interactions.

Mayer functions

e−
1
kT U(qi,qj) = 1 + Φij

ZN =
1

N !
GN where GN :=

∫
QN

N∏
i<j

(1 + Φij)dq1 . . . dqN

For hard repulsion potentials

Φij = 0 when particles i and j are not in contact
Φij = −1 when particles i and j overlap
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idealized case

12r
0

∞

0r

U
(R)(r

12
)

Φ12(r1, r2) =

{
0 r12 > r0

−1 r12 < r0
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graph terminology

Rearranging terms,

GN =

∫
QN

N∏
i<j

(1 + Φij)dq1 . . . dqN

=

∫
QN

∑
G∈GN

∏
(i,j)∈G

Φijdq1 . . . dqN

GN collection of graphs on N labeled vertices
(i, j) edge joining vertices i and j

A vertex represents a particle
A edge represents a steric interaction
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missing steps

Onsager (1949)
Bp the same as ZN β1 pair-excluded volume
Np the same as N ρ := N

V number density
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I In his paper Onsager (1949) endeavours to prove that for
slender rods interacting via excluded volume the third virial
coefficient β2 is negligible compared to β1.

I Is the density expansion justified in the first place?

I When does the first term in this expansion suffice to estimate
properly ZN?

I Could there possibly be a justification not requiring any density
expansion?

I Once these questions are answered, we shall be able to write with
confidence the Onsager free-energy functional in the orientation
distribution density %, akin in form to Maier-Saupe’s, though
quite different in content.
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objective, in Onsager’s own words

Onsager (1949)
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Mayer’s Cluster Expansion

Onsager (1949) referred to the celebrated book by J. E. Mayer &
M. G. Mayer (1940), but the theory being invoked has an
interesting history that started earlier and has not yet seen an end.

I Ursell (1927) computes lnZN for a gas of

N impenetrable particles in a region B of volume V .

I Mayer (1937) derives a formula for lnZN , assuming it to be a
power series in the number density ρ = N

V .

FN
N

= kT

(
ln ρ− 1 +

∞∑
ν=1

1

ν + 1
βνρ

ν

)

βν := − 1

V

1

ν!

∫
Bν

∑
G∈G

(2)
ν+1

∏
(i,j)∈G

Φijdq1 . . . dqν+1
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irreducible integrals

βν := − 1

V

1

ν!

∫
Bν

∑
G∈G

(2)
ν+1

∏
(i,j)∈G

Φijdq1 . . . dqν+1

G
(2)
ν+1 collection of irreducible graphs on ν + 1 vertices

irreducible graphs

reducible graphs
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“irreducible” means “bi-connected”

I A graph G on n vertices is said to be connected , if there is a
path from any vertex to any other vertex.

I An articulation vertex of G is any vertex that, if removed (with
all links emanating from it), would disconnect G. In such a case
G is also said to be articulated .

I G is bi-connected , if it is connected and possesses no
articulation vertex.
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simple examples ν = 5

(a) and (b) bi-connected (c) disconnected (d) articulated
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Remarks

I Each irreducible integral βν encloses a cluster of ν + 1 particles.

I For classical mass-point particles interacting in a region B in
space of volume V with a repulsive pair potential U

β1 =
1

V

∫
B2

∑
G∈G

(2)
2

∏
(i,j)∈G

(1− e−
1
kT U(qi,qj))dq1dq2 = V (2)

exc

β2 =
1

2V

∫
B3

∑
G∈G

(2)
3

∏
(i,j)∈G

(1−e−
1
kT U(qi,qj))dq1dq2dq3 =

1

2

(
V (3)

exc

)2

V
(2)
exc pair-excluded volume

V
(3)
exc triple-excluded volume
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I In Mayer’s theory the cluster integrals βν are scalars that only
depend on the pair interaction potential U . In particular, they
are independent of the density ρ.

I For hard spheres of volume V0

V (2)
exc = 8V0 V (3)

exc =

√
15

32
V (2)

exc =
√

30V0
β2

β2
1

=
15

64

I For hard cylinders of diameter D and height L

〈β2〉
〈β1〉2

= O((D/L) ln(L/D))

〈·〉 isotropic average
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equation of state

PV

RT
= 1 +

∞∑
ν=1

ν

ν + 1
βνρ

ν

R = Nk gas constant

virial coefficients

P

kT
= ρ+

∞∑
ν=1

Bν+1ρ
ν+1

Bν+1 :=
ν

ν + 1
βν

Bm virial coefficients
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rigorous proof

Born (1937) and Born & K. Fuchs (1938) gave a rigorous
mathematical proof of Mayer’s results.

I They used the method of steepest descent to estimate
configurational integrals for a large number of particles N .

I The main issue remained the convergence of the series delivering
FN or P .

I The lack of convergence was interpreted as the onset of
condensation, which the theory has the potential to detect, but
not to describe.
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I Lebowitz & O. Penrose (1964) and Ruelle (1969) proved
that Mayer’s virial expansion converges uniformly if

ρβ1 <

[
W
(

e
2

)
− 1
]2

W
(

e
2

) .
= 0.1447

W Lambert function
x = W (x)eW (x) W (x) = −1

This proof was not entirely phrased in the canonical ensemble,
but required the proof of convergence of two ancillary series in
the grand canonical fugacity (or activity), one for the pressure
and the other for the density.

I O. Penrose (1967) gave a proof of the same result based on a
surprising graph identity.
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Penrose’s Tree Identity∑
G∈G

(1)
ν

∏
(i,j)∈G

Φij =
∑
T∈Tν

∏
(i,j)∈T

Φij
∏

(h,k)∈T∗\T

(1 + Φhk)

G
(1)
ν set of all connected graph on ν vertices
Tν collection of Cayley’s trees on ν vertices

T ∗ maximal graph reducing to T

Cayley’s trees
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trees and forests

I A tree is a graph in which any two vertices are connected by
exactly one path.

I A tree is a connected acyclic graph.

I A graph with a single vertex is also a (singular) tree .

I Cayley (1889) proved that there are νν−2 trees on ν labeled
vertices.

I A forest is a disjoint union of trees.
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Penrose’s reduction (partition scheme)

I Assign a weight wi to every vertex i 6= 1 of a connected graph G,
defined as the number of edges in the shortest path joining i to 1.

I Delete all edges between vertices of equal weight.

I Delete, for every vertex i 6= 1, all edges connecting vertex i to a
vertex with weight wi − 1, but the one connecting the vertex i to
the vertex of weight wi − 1 with least index.

I Each of these steps leaves all the indices wi unchanged.
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maximal reducing graph T ∗

I Start with a tree T and assign weights wi to its vertices.

I Join all pairs of vertices with the same weight.

I Join every vertex i 6= 1 to all vertices of weight wi − 1 with labels
greater than the largest label of the vertices of weight wi − 1 to
which it is already joined in T .

I Each of these steps leaves all the indices wi unchanged.
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1 5

2

4

3

6

bc

b b

b

bb

G
w1 = 0

w2 = w4 = 1
w3 = w5 = w6 = 2
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1 5

2

4

3
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bc

b b
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1 5

2

4

3

6

bc

b b

b

bb

T ∗

w1 = 0
w2 = w4 = 1

w3 = w5 = w6 = 2
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1 5

2

4

3

6

bc

b b

b

bb

T ∗

1 5

2

4

3

6

bc

b b

b

bb

T

5

2

4

3

6

b b

b

bb

T ∗ \ T
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proof of the identity

For a tree T ∈ Tν , denote by R(T ) the set of graphs in the family

G
(1)
ν of all connected graphs on ν vertices that can be reduced to T .∑

G∈G
(1)
ν

∏
(i,j)∈G

Φij =
∑
T∈Tν

∑
G∈R(T )

∏
(i,j)∈G

Φij

=
∑
T∈Tν

 ∏
(i,j)∈T

Φij +
∏

(i,j)∈T

Φij
∑

G∗⊂T∗\T

∏
(h,k)∈G∗

Φhk


=
∑
T∈Tν

∏
(i,j)∈T

Φij

1 +
∑

G∗⊂T∗\T

∏
(h,k)∈G∗

Φhk


=
∑
T∈Tν

∏
(i,j)∈T

Φij
∏

(h,k)∈T∗\T

(1 + Φhk)
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I E. Pulvirenti & Tsagkarogiannis (2012) recently gave a
proof of the very same Lebowitz-Penrose convergence sufficient
condition in the canonical ensemble .

I Morais & Procacci (2013) and Procacci & Yuhjtman
(2015), building on an improved tree identity, refined in general
the Lebowitz-Penrose convergence condition.

I However, such a refinement does not apply to purely repulsive
interactions, for which the old sufficient convergence condition is
still unsurpassed (Tate 2013).
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Forest Cluster Expansion

Irreducible cluster integrals have been used to compute the
coefficients of Mayer’s virial expansions. Much in the spirit of
Penrose’s proof of convergence, we propose a cluster expansion to
compute the configurational integral GN without assuming that it is
a power series of ρ.

forest expansion

GN =

∫
BN

∑
G∈GN

∏
(i,j)∈G

Φijdq1 . . . dqN

=

∫
BN

∑
F∈FN

∏
(i,j)∈F

Φij
∏

(h,k)∈F∗\F

(1 + Φhk)dq1 . . . dqN

FN collection of forests on N vertices
F ∗ maximal forest reducing to F
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limited connectivity

Neglecting all clusters that are not forests (all including cycles),

GN ≈
∫

BN

∑
F∈FN

∏
(i,j)∈F

Φijdq1 . . . dqN

=

∫
BN

N−1∑
n=0

∑
F∈F

(n)
N

(−1)n
∏

(i,j)∈F

fijdq1 . . . dqN

=V N
N−1∑
n=0

(−1)nC(n,N)

(
β1

V

)n

V := |B|
fij := −Φij

β1 = 1
V

∫
B2 f12(q1, q2)dq1dq2

F
(n)
N collection of forests on N vertices with n edges

C(n,N) cardinality of F
(n)
N
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asymptotic estimates

For N →∞,

C(n,N) ≈


(
N
n

) (
N−n

2

)n
n bounded

N2n

n!2n (1− 2n
N )

1
2 0 < γ < 1

2

NN−2

2N−n−1(N−n−1)!

(
2n
N − 1

)− 5
2 1

2 < γ 5 1

γ := lim
N→∞

n(N)

N

Britikov (1988)

neglecting large trees

Approximating C(n,N) as

C(n,N) ≈ N2n

2nn!

and neglecting for the moment all terms with n > dN2 e − 1 in GN
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GN ≈ V N
dN2 e−1∑
n=0

(−1)n
N2n

n!2n

(
β1

V

)n

= V N
dN2 e−1∑
n=0

Nn

n!
(−x)n

= V NQ

(⌈
N

2

⌉
,−Nx

)
e−Nx

x :=
1

2

β1N

V
=

1

2
ρβ1

Q(a, z) :=
Γ(a, z)

Γ(a)

Γ(a) Gamma function
Γ(a, z) incomplete Gamma function

Q(a, z) incomplete Gamma function ratio
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Temme (1979) proved the asymptotic estimate

Q(a, z) =
1

2
erfc

(
η

√
a

2

)
+

(
1

λ− 1
− 1

η

)
e−

1
2aη

2

√
2πa

+O

(
1

a

)
λ =

z

a
η =

√
2(λ− 1− lnλ)

In the case of interest,

λ = −2x, η = α+iβ,

{
1
2 (α2 − β2) = −µ,
αβ = −π

µ(x) = 1+2x+ln 2x

GN ≈ V N
{

e−Nx 0 < x < x0

−eiπd
N
2 e 1

2x+1
1√
πN

e(dN2 e−bN2 c)x(2ex)
N
2 x > x0

x0 root of µ(x) = 0

The same asymptotic estimate also holds for n > bN2 c+ 1
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I For x > x0, GN fails to be definite in sign, and our
approximation breaks down.

I But, for x < x0, computing FN , we arrive at

lim
N→∞

FN
N

= kT

(
ln ρ− 1 +

1

2
β1ρ

)
Palffy-Muhoray, Virga & Zheng (2017)

FN = −kT ln

(
1

N !
GN

)
≈− kT ln

(
V N

N !
e−

1
2Nρβ1

)
≈ kT

(
lnN !−N lnV +

1

2
Nρβ1

)
≈ kT

(
N lnN −N −N lnV +

1

2
Nρβ1

)
= kTN

(
lnN − lnV − 1 +

1

2
ρβ1

)
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density compatibility requirement

x < x0 ⇐⇒ ρβ1 < W
(

1
e

) .
= 0.2785

I Forest clusters reproduce Onsager’s free energy functional in the
limit of limited connectivity without assuming any power
series in the density.

I The density compatibility requirement signals the density at
which connectivity starts playing a role in the cluster expansion.
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Onsager’s Functional

Having established on a different basis the same approximation that
Onsager derived from Mayer’s cluster expansion, we use Onsager’s
very argument to construct the free-energy functional.

Multi-species argument

The ensemble of N particles is partitioned in M subsystems, the
particles of each of which share one and the same orientation in space.

Ω orientation manifold
Ω(i) partition components

Ω = ∪Mi=1Ω(i)

ωi ∈ Ω(i) core orientation in Ω(i)

Ni number of particles in Ω(i)∑M
i=1Ni = N

∆ωi measure of Ω(i)
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Ni = N%(ωi)∆ωi

M∑
i=1

%(ωi)∆ωi = 1

% orientational distribution density

free-energy component

FN = NkT

(
ln
N

V
− 1

)
+ kT

1

2

N2

V
β1

FNi = NikT

(
ln
Ni
Vi
− 1

)
+ kT

1

2V

M∑
i,j=1

NiNjβ1(ωi, ωj)

Vi = V∆ωi β1(ω1, ω2) :=
1

V

∫
B2

f12(x1, ω1;x2, ω2)dx1dx2
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composed free energy

FN =

M∑
i=1

FNi

=

M∑
i=1

kTNi

(
ln
Ni
Vi
− 1

)
+ kT

1

2V

M∑
i,k=1

NiNjβ(ωi, ωj)

= kTN

M∑
i=1

%(ωi)∆ωi (ln ρ0%(ωi)− 1)

+
1

2
kTNρ0

M∑
i,j=1

%(ωi)∆ωi%(ωj)∆ωjβ1(ωi, ωj)

ρ0 = N
V number density
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continuum limit

FN
kTN

=

∫
Ω

%(ω) (ln ρ0%(ω)− 1) dω +
1

2
ρ0

∫
Ω2

β1(ω, ω′)%(ω)%(ω′)dωdω′∫
Ω

%(ω)dω = 1

(dimensionless) free energy per particle

FO[%] :=

∫
Ω

%(ω) ln %(ω)dω +
1

2
ρ0

∫
Ω2

β1(ω, ω′)%(ω)%(ω′)dωdω′

complete free energy

FN = kTN (ln ρ0 − 1 + FO[%])
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equilibrium (intergral) equation

δFO%[δ%] =

∫
Ω

{
ln %(ω) + 1 + ρ0

∫
Ω

β1(ω, ω′)%ω′dω′
}
δ%(ω)dω

δFO(%)[δ%] = λ

∫
Ω

δ%(ω)dω

ln %(ω) + ρ0

∫
Ω

β1(ω, ω′)%(ω′)dω′ = λ

%(ω) =
e−ρ0

∫
Ω
β1(ω,ω′)dω′∫

Ω
e−ρ0

∫
Ω
β1(ω,ω′)dω′dω

β1 effective potential
ρ0 effective reciprocal temperature
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Excluded volume of congruent cylinders

d diameter
l height

θ angle between axes

β1(θ) = l2d

{
2 sin θ +

d

l

(
π

2
+
π

2
| cos θ|+ 2E(sin θ) +

d2

l2
π

2
sin θ

)}
E(k) :=

∫ π
2

0

√
1− k2 sin2 xdx

complete elliptic integral of the second kind
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approximate formula

In the limit as d
l � 1,

β1(θ) ≈ 2l2d sin θ
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isotropic covolume

2b := 〈β1〉iso =
1

2

∫ π

0

β1(θ) sin θdθ = l2d
π

2
= 2v0

l

d

v0 particles’ volume

volume fraction

φ =
Nv0

V
= ρ0v0

dimensionless concentration

c := ρ0b = φ
l

d

Onsager’s free-energy functional

FO[%] =

∫
S2

%(ω) ln %(ω)dω + c
4

π

∫
S2×S2

sin θ(ω, ω′)%(ω)%(ω′)dωdω′
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Onsager’s uniaxial trial density

%O(α;ϑ) :=
1

4π

α

sinhα
cosh(α cosϑ)

α > 0 parameter
ω = (ϕ, ϑ) polar coordinates on S2

%O is symmetric about the polar axis
dω = sinϑdϑdϕ measure on S2

α = 0, 5, 10, 20
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FO[%O] = ln

(
α cothα

4π

)
− 1 +

arctan(sinhα)

sinhα
+

2c

sinh2 α
I2(2α)

I2 Bessel function of order 2

scaled free energy

As α→ 0, FO[%O]→ c− ln 4π. Taking the free energy of the
isotropic state as a reference ,

F (c, α) := FO[%O] + ln 4π − c

= ln(α cothα)− 1 +
arctan(sinhα)

sinhα
+ c

(
2

sinh2 α
I2(2α)− 1

)

F (c, α) =
1

90

(
1− c

4

)
α4 +O(α6)
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Free-energy landscape

cc
.
= 3.681
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Bifurcation analysis

Kayser & Raveché (1978)
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I Computing the nematic scalar order parameter S for the
minimizer αm of F (c, α), we obtain a function of c:

S(c) := 3π

∫ π

0

(
cos2 ϑ− 1

3

)
%O(αm;ϑ) sinϑdϑ

I S(cc)
.
= 0.41

I Kayser & Raveché (1978) considered only solutions to the
nonlinear integral equation for % that bifurcate from the
isotropic solution 1

4π and preserve the uniaxial symmtery.

I They adopted two strategies:

1. Expand % in a series of Legendre polynomials and solve for the
coefficients of the expansion;

2. Solve numerically by an iterative scheme the nonlinear integral
equation for a uniaxial density %.

I They proved analytically that c = 4 is a transcritical
bifurcation point.
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recent results

Recently, Vollmer (2017) studied a class of functionals that include
Onsager’s free-energy functional as a special case. For the latter, the
bifurcation analysis in the parameter

λ := π
8c

shows that

I The first bifurcation from the isotropic solution 1
4π is

transcritical and it occurs at

λ2 = π
32 (c = 4)

I All other bifurcations from the isotropic solution occur at

λs =
Γ
(
s
2 + 1

2

)
Γ
(
s
2 −

1
2

)
Γ
(
s
2 + 1

)
Γ
(
s
2 + 2

)
Γ Euler’s function
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I The nontrivial critical points % of Onsager’s free-energy
functional are uniaxial in the vicinity of the isotropic solution
in a neighbourood of c = 4.

I The isotropic solution is the only solution for

λ =
16

W
(

2
π

) (c 5 0.010)

W Lambert function

I Every critical point % is bounded .

I All bifurcation branches either meet infinity or they meet
another bifurcation branch.
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bifurcation scenario

Vollmer (2017)
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Entropy competition

The Onsager theory is athermal : temperature plays no role in it.
There is no exchange between kinetic and potential energies. The
ordering transition that gives rise to the nematic phase results from
the competition between two forms of entropies:

FO[%] =

∫
Ω

%(ω) ln %(ω)dω︸ ︷︷ ︸
orientational

+
1

2
ρ0

∫
Ω2

β1(ω, ω′)%(ω)%(ω′)dωdω′︸ ︷︷ ︸
positional or packing

Packing particles more closely, thus minimising their excluded
volume , increases the volume they can explore by sliding one over
the other: this maximises their free volume .
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Phase Coexistence

Onsager’s theory is not only able to explain the isotropic-to-nematic
transition. It is perhaps the first example of density functional
theory, as it also describes phase separation and the coexistence of
nematic and isotropic phases.

motivation

Onsager’s original motivation was indeed to explain the phase
separation of tobacco mosaic viruses in diluted solutions.

again in Onsager’s own words

. . .
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tobacco mosaic virus
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what Onsager might have seen

Bawden, Pirie, Bernal & Fankuchen (1936)
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tactoids

Bawden, Pirie, Bernal & Fankuchen (1936)
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complete free energy

FN = kTN (ln ρ0 − 1 + FO[%])

N number of particles
V volume occupied by the system

ρ0 = N
V number density

FO density functional

FO[%] =

∫
Ω

%(ω) ln %(ω)dω +
1

2
ρ0

∫
Ω2

β1(ω, ω′)%(ω)%(ω′)dωdω′

chemical potential

At equilibrium ,

µ =
∂FN
∂N

pressure

P = −∂FN
∂V
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free energy density

In a homogenous system,

FN = V fe fe := kTρ0 (ln ρ0 − 1 + FO[%])

µ =
∂fe

∂ρ0

= kT

(
ln ρ0 +

∫
Ω

%eq(ω) ln %eq(ω)dω + ρ0

∫
Ω2

β1(ω, ω′)%eq(ω)%eq(ω′)dωdω′
)

P = ρ0
∂fe

∂ρ0
− fe

= kTρ0

(
1 +

1

2
ρ0

∫
Ω2

β1(ω, ω′)%eq(ω)%eq(ω′)dωdω′
)

%eq equilibrium density, which makes FO stationary
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Phase Coexistence Criterion

JµK = 0 JP K = 0

rods’ density functional

FO[%] =

∫
S2

%(ω) ln %ωdω + c
4

π

∫
S2×S2

sin θ(ω, ω′)%(ω)%(ω′)dωdω′

c = ρ0b = φ ld dimensionless concentration

coexistence equations

s
ln c+

∫
S2

%eq(ω) ln %eq(ω)dω + c
8

π

∫
S2×S2

sin(ω, ω′)%eq(ω)%(ω′)dωdω′
{

= 0

s
c

(
1 + c

4

π

∫
S2×S2

sin(ω, ω′)%eq(ω)%eq(ω′)dωdω′
){

= 0
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I The two possibly coexisting phases are the isotropic phase and
the aligned phase.

I Onsager found a solution to the coexistence equations in his class
of trial equilibrium densities.

ci
.
= 3.340 ca

.
= 4.486

I The scalar order parameter in the aligned coexisting phase
is larger than the scalar order parameter at the transition

S(ca)
.
= 0.84

I The concentration ratio is also larger than expected from
experiment

ca
ci

.
= 1.34
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c = ci c = 4 c = ca
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volume fraction

lever rule

Suppose that the solution is prepared with a (dimensionless)
concentration ci 5 c 5 ca. Let Vi and Va be the volumes occupied by
the two coexisting phases. Let Ni and Na be the corresponding
numbers of particles.

Vi + Va = V Ni +Na = N
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The solutions to these equations are

Vi

V
=

ca − c
ca − ci

Va

V
=

c− ci
ca − ci

Ni

N
=
ci
c

ca − c
ca − ci

Na

N
=
ca
c

c− ci
ca − ci
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