Mathematical Theories of Liquid Crystals

III. The Onsager Theory

Epifanio G. Virga
Mathematical Institute
University of Oxford
virga@maths.ox.ac.uk
on leave from
Department of Mathematics
University of Pavia, Italy
Summary
Introduction
Helmholtz Free Energy
Mayer's Cluster Expansion
Penrose's Tree Identity
Forest Cluster Expansion
Onsager's Functional
Phase Coexistence

Introduction

The celebrated paper by Onsager (1949) laid the premises for a theory of liquids (not only liquid crystals) based on purely repulsive intermolecular forces.

Canonical Ensemble

Suppose that N identical particles described by the coordinates

$$
\mathrm{q}=\left(q_{1}, \ldots, q_{N}\right) \in \mathscr{Q}^{N}
$$

2 single particle configurational space
are interacting via a diverging, steric pair-potential U.

partition function

$$
Z_{N}:=\frac{1}{N!} \int_{\mathscr{Q}^{N}} \mathrm{e}^{-\frac{1}{k T} \mathscr{U}(\mathrm{q})} \mathrm{d} q_{1} \ldots \mathrm{~d} q_{N}
$$

k Boltzmann constant $\quad T$ absolute temperature

$$
\mathscr{U}(\mathrm{q}):=\sum_{i<j=1}^{N} U\left(q_{i}, q_{j}\right) \quad \text { interaction energy } \quad U\left(q_{i}, q_{j}\right)=U\left(q_{j}, q_{i}\right)
$$

Helmholtz Free Energy

The objective is to compute the free energy

$$
F_{N}=-k T \ln Z_{N}
$$

without even possibly dreaming of averaging over the diverging interactions.

$$
\begin{gathered}
\text { Mayer functions } \\
\mathrm{e}^{-\frac{1}{k T} U\left(q_{i}, q_{j}\right)}=1+\Phi_{i j} \\
Z_{N}=\frac{1}{N!} G_{N} \quad \text { where } \quad G_{N}:=\int_{Q^{N}} \prod_{i<j}^{N}\left(1+\Phi_{i j}\right) \mathrm{d} q_{1} \ldots \mathrm{~d} q_{N}
\end{gathered}
$$

For hard repulsion potentials
$\Phi_{i j}=0$ when particles i and j are not in contact $\Phi_{i j}=-1$ when particles i and j overlap

graph terminology

Rearranging terms,

$$
\begin{aligned}
G_{N} & =\int_{\mathscr{Q}^{N}} \prod_{i<j}^{N}\left(1+\Phi_{i j}\right) \mathrm{d} q_{1} \ldots \mathrm{~d} q_{N} \\
& =\int_{\mathscr{Q}^{N}} \sum_{G \in \mathscr{G}_{N}} \prod_{(i, j) \in G} \Phi_{i j} \mathrm{~d} q_{1} \ldots \mathrm{~d} q_{N}
\end{aligned}
$$

\mathscr{G}_{N} collection of graphs on N labeled vertices (i, j) edge joining vertices i and j

A vertex represents a particle
A edge represents a steric interaction

Upon suitable rearrangement of the sum

$$
\begin{equation*}
e^{-w / k T}=1+\sum_{i>i} \Phi_{i j}+\sum \Phi_{i j} \Phi_{i^{\prime} j^{\prime}}+\cdots \tag{19}
\end{equation*}
$$

which now constitutes the integrand of equation 4, Mayer and Mayer obtain an expansion for the integral in terms of the irreducible cluster integrals

$$
\begin{gather*}
\beta_{1}=\frac{1}{\vec{V}} \int \Phi_{12} d \tau_{1} d \tau_{2} \tag{20}\\
\beta_{2}=\frac{1}{2 V} \int \Phi_{12} \Phi_{23} \Phi_{31} d \tau_{1} d \tau_{2} d \tau_{3}
\end{gather*}
$$

and these furnish the first two correction terms to the ideal gas laws in the expansion
$\log B_{p}=N_{p}\left\{1+\log \left(V / N_{p}\right)+\frac{1}{2} \beta_{1}\left(N_{p} / V\right)+\frac{1}{3} \beta_{2}\left(N_{p} / V\right)^{2}+\cdots\right\}$. (21)
Onsager (1949)
B_{p} the same as $Z_{N} \quad \beta_{1}$ pair-excluded volume
N_{p} the same as $N \quad \rho:=\frac{N}{V} \quad$ number density

- In his paper Onsager (1949) endeavours to prove that for slender rods interacting via excluded volume the third virial coefficient β_{2} is negligible compared to β_{1}.
- Is the density expansion justified in the first place?
- When does the first term in this expansion suffice to estimate properly Z_{N} ?
- Could there possibly be a justification not requiring any density expansion?
- Once these questions are answered, we shall be able to write with confidence the Onsager free-energy functional in the orientation distribution density ϱ, akin in form to Maier-Saupe's, though quite different in content.

objective, in Onsager's own words

We introduce a distribution-function $f(\mathbf{a})$ for the directions a of the axes of the cylindrical particles, normalized according to equation 26. When we neglect the terms which depend on β_{2} and higher cluster integrals in the expansion given by equation 27 , we arrive at the following formula for the configuration-integral

$$
\begin{align*}
\log B_{p}=N_{p}\{1+ & \left.\log \left(V / N_{p}\right)\right\}-\int f(\mathbf{a}) \log 4 \pi f(\mathbf{a}) d \Omega(\mathbf{a}) \\
& +\left(N_{p} / 2 V\right) \int \beta_{1}\left(\cos ^{-1}\left(\mathbf{a} \cdot \mathbf{a}^{\prime}\right)\right) f(\mathbf{a}) f\left(\mathbf{a}^{\prime}\right) d \Omega d \Omega^{\prime} . \tag{61}
\end{align*}
$$

The function $f(\mathbf{a})$ is implicitly determined by the condition

$$
\begin{equation*}
B_{p}=\text { maximum }, \tag{62}
\end{equation*}
$$

Onsager (1949)

Mayer's Cluster Expansion

Onsager (1949) referred to the celebrated book by J. E. MAYER \& M. G. MAYER (1940), but the theory being invoked has an interesting history that started earlier and has not yet seen an end.

- URSELL (1927) computes $\ln Z_{N}$ for a gas of
N impenetrable particles in a region \mathscr{B} of volume V.
- Mayer (1937) derives a formula for $\ln Z_{N}$, assuming it to be a power series in the number density $\rho=\frac{N}{V}$.

$$
\begin{gathered}
\frac{F_{N}}{N}=k T\left(\ln \rho-1+\sum_{\nu=1}^{\infty} \frac{1}{\nu+1} \beta_{\nu} \rho^{\nu}\right) \\
\beta_{\nu}:=-\frac{1}{V} \frac{1}{\nu!} \int_{\mathscr{B}^{\nu}} \sum_{G \in \mathscr{G}_{\nu+1}^{(2)}} \prod_{(i, j) \in G} \Phi_{i j} \mathrm{~d} q_{1} \ldots \mathrm{~d} q_{\nu+1}
\end{gathered}
$$

irreducible integrals

$$
\beta_{\nu}:=-\frac{1}{V} \frac{1}{\nu!} \int_{\mathscr{B}^{\nu}} \sum_{G \in \mathscr{G}_{\nu+1}^{(2)}} \prod_{(i, j) \in G} \Phi_{i j} \mathrm{~d} q_{1} \ldots \mathrm{~d} q_{\nu+1}
$$

$\mathscr{G}_{\nu+1}^{(2)} \quad$ collection of irreducible graphs on $\nu+1$ vertices irreducible graphs

reducible graphs

"irreducible" means "bi-connected"

- A graph G on n vertices is said to be connected, if there is a path from any vertex to any other vertex.
- An articulation vertex of G is any vertex that, if removed (with all links emanating from it), would disconnect G. In such a case G is also said to be articulated.
- G is bi-connected, if it is connected and possesses no articulation vertex.

simple examples $\nu=5$

(a)

(c)

(d)

(a) and (b) bi-connected (c) disconnected (d) articulated

Remarks

- Each irreducible integral β_{ν} encloses a cluster of $\nu+1$ particles.
- For classical mass-point particles interacting in a region \mathscr{B} in space of volume V with a repulsive pair potential U

$$
\begin{gathered}
\beta_{1}=\frac{1}{V} \int_{\mathscr{B}^{2}} \sum_{G \in \mathscr{G}_{2}^{(2)}} \prod_{(i, j) \in G}\left(1-\mathrm{e}^{-\frac{1}{k T} U\left(q_{i}, q_{j}\right)}\right) \mathrm{d} q_{1} \mathrm{~d} q_{2}=V_{\mathrm{exc}}^{(2)} \\
\beta_{2}=\frac{1}{2 V} \int_{\mathscr{B}^{3}} \sum_{G \in \mathscr{G}_{3}^{(2)}} \prod_{(i, j) \in G}\left(1-\mathrm{e}^{-\frac{1}{k T} U\left(q_{i}, q_{j}\right)}\right) \mathrm{d} q_{1} \mathrm{~d} q_{2} \mathrm{~d} q_{3}=\frac{1}{2}\left(V_{\mathrm{exc}}^{(3)}\right)^{2} \\
V_{\mathrm{exc}}^{(2)} \quad \text { pair-excluded volume } \\
V_{\mathrm{exc}}^{(3)} \quad \text { triple-excluded volume }
\end{gathered}
$$

- In Mayer's theory the cluster integrals β_{ν} are scalars that only depend on the pair interaction potential U. In particular, they are independent of the density ρ.
- For hard spheres of volume V_{0}

$$
V_{\mathrm{exc}}^{(2)}=8 V_{0} \quad V_{\mathrm{exc}}^{(3)}=\sqrt{\frac{15}{32}} V_{\mathrm{exc}}^{(2)}=\sqrt{30} V_{0} \quad \frac{\beta_{2}}{\beta_{1}^{2}}=\frac{15}{64}
$$

- For hard cylinders of diameter D and height L

$$
\frac{\left\langle\beta_{2}\right\rangle}{\left\langle\beta_{1}\right\rangle^{2}}=O((D / L) \ln (L / D))
$$

$\langle\cdot\rangle$ isotropic average
equation of state

$$
\begin{gathered}
\frac{P V}{R T}=1+\sum_{\nu=1}^{\infty} \frac{\nu}{\nu+1} \beta_{\nu} \rho^{\nu} \\
R=N k \quad \text { gas constant } \\
\text { virial coefficients } \\
\frac{P}{k T}=\rho+\sum_{\nu=1}^{\infty} B_{\nu+1} \rho^{\nu+1} \\
B_{\nu+1}:=\frac{\nu}{\nu+1} \beta_{\nu} \\
B_{m} \quad \text { virial coefficients }
\end{gathered}
$$

Born (1937) and Born \& K. Fuchs (1938) gave a rigorous mathematical proof of Mayer's results.

- They used the method of steepest descent to estimate configurational integrals for a large number of particles N.
- The main issue remained the convergence of the series delivering F_{N} or P.
- The lack of convergence was interpreted as the onset of condensation, which the theory has the potential to detect, but not to describe.
- Lebowitz \& O. Penrose (1964) and Ruelle (1969) proved that Mayer's virial expansion converges uniformly if

$$
\begin{aligned}
& \rho \beta_{1}<\frac{\left[W\left(\frac{\mathrm{e}}{2}\right)-1\right]^{2}}{W\left(\frac{\mathrm{e}}{2}\right)} \doteq 0.1447 \\
& \quad W \quad \text { Lambert function } \\
& x=W(x) \mathrm{e}^{W(x)} \quad W(x) \geqq-1
\end{aligned}
$$

This proof was not entirely phrased in the canonical ensemble, but required the proof of convergence of two ancillary series in the grand canonical fugacity (or activity), one for the pressure and the other for the density.

- O. Penrose (1967) gave a proof of the same result based on a surprising graph identity.

Penrose's Tree Identity

$$
\sum_{G \in \mathscr{G}_{\nu}^{(1)}} \prod_{(i, j) \in G} \Phi_{i j}=\sum_{T \in \mathscr{T}_{\nu}} \prod_{(i, j) \in T} \Phi_{i j} \prod_{(h, k) \in T^{*} \backslash T}\left(1+\Phi_{h k}\right)
$$

$\mathscr{G}_{\nu}^{(1)}$ set of all connected graph on ν vertices
\mathscr{T}_{ν} collection of Cayley's trees on ν vertices
$T^{*} \quad$ maximal graph reducing to T

Cayley's trees

trees and forests

- A tree is a graph in which any two vertices are connected by exactly one path.
- A tree is a connected acyclic graph.
- A graph with a single vertex is also a (singular) tree.
- Cayley (1889) proved that there are $\nu^{\nu-2}$ trees on ν labeled vertices.
- A forest is a disjoint union of trees.

Penrose's reduction (partition scheme)

- Assign a weight w_{i} to every vertex $i \neq 1$ of a connected graph G, defined as the number of edges in the shortest path joining i to 1 .
- Delete all edges between vertices of equal weight.
- Delete, for every vertex $i \neq 1$, all edges connecting vertex i to a vertex with weight $w_{i}-1$, but the one connecting the vertex i to the vertex of weight $w_{i}-1$ with least index.
- Each of these steps leaves all the indices w_{i} unchanged.

maximal reducing graph T^{*}

- Start with a tree T and assign weights w_{i} to its vertices.
- Join all pairs of vertices with the same weight.
- Join every vertex $i \neq 1$ to all vertices of weight $w_{i}-1$ with labels greater than the largest label of the vertices of weight $w_{i}-1$ to which it is already joined in T.
- Each of these steps leaves all the indices w_{i} unchanged.

$$
\begin{gathered}
w_{1}=0 \\
w_{2}=w_{4}=1 \\
w_{3}=w_{5}=w_{6}=2
\end{gathered}
$$

$$
\begin{gathered}
w_{1}=0 \\
w_{2}=w_{4}=1 \\
w_{3}=w_{5}=w_{6}=2
\end{gathered}
$$

$$
\begin{gathered}
w_{1}=0 \\
w_{2}=w_{4}=1 \\
w_{3}=w_{5}=w_{6}=2
\end{gathered}
$$

proof of the identity

For a tree $T \in \mathscr{T}_{\nu}$, denote by $\mathscr{R}(T)$ the set of graphs in the family $\mathscr{G}_{\nu}^{(1)}$ of all connected graphs on ν vertices that can be reduced to T.

$$
\sum_{G \in \mathscr{G}_{\nu}^{(1)}} \prod_{(i, j) \in G} \Phi_{i j}=\sum_{T \in \mathscr{T}_{\nu}} \sum_{G \in \mathscr{R}(T)} \prod_{(i, j) \in G} \Phi_{i j}
$$

$$
\begin{aligned}
& =\sum_{T \in \mathscr{T}_{\nu}}\left\{\prod_{(i, j) \in T} \Phi_{i j}+\prod_{(i, j) \in T} \Phi_{i j} \sum_{G^{*} \subset T^{*} \backslash T} \prod_{(h, k) \in G^{*}} \Phi_{h k}\right\} \\
& =\sum_{T \in \mathscr{T}_{\nu}} \prod_{(i, j) \in T} \Phi_{i j}\left\{1+\sum_{G^{*} \subset T^{*} \backslash T} \prod_{(h, k) \in G^{*}} \Phi_{h k}\right\} \\
& =\sum_{T \in \mathscr{T}_{\nu}} \prod_{(i, j) \in T} \Phi_{i j} \prod_{(h, k) \in T^{*} \backslash T}\left(1+\Phi_{h k}\right)
\end{aligned}
$$

- E. Pulvirenti \& Tsagkarogiannis (2012) recently gave a proof of the very same Lebowitz-Penrose convergence sufficient condition in the canonical ensemble.
- Morais \& Procacci (2013) and Procacci \& Yuhjtman (2015), building on an improved tree identity, refined in general the Lebowitz-Penrose convergence condition.
- However, such a refinement does not apply to purely repulsive interactions, for which the old sufficient convergence condition is still unsurpassed (Tate 2013).

Forest Cluster Expansion

Irreducible cluster integrals have been used to compute the coefficients of Mayer's virial expansions. Much in the spirit of Penrose's proof of convergence, we propose a cluster expansion to compute the configurational integral G_{N} without assuming that it is a power series of ρ.

forest expansion

$$
\begin{aligned}
& G_{N}=\int_{\mathscr{B}^{N}} \sum_{G \in \mathscr{G}_{N}} \prod_{(i, j) \in G} \Phi_{i j} \mathrm{~d} q_{1} \ldots \mathrm{~d} q_{N} \\
&=\int_{\mathscr{B}^{N}} \sum_{F \in \mathscr{F}_{N}} \prod_{(i, j) \in F} \Phi_{i j} \prod_{(h, k) \in F^{*} \backslash F}\left(1+\Phi_{h k}\right) \mathrm{d} q_{1} \ldots \mathrm{~d} q_{N} \\
& \quad \mathscr{F}_{N} \text { collection of forests on } N \text { vertices } \\
& \quad F^{*} \text { maximal forest reducing to } F
\end{aligned}
$$

Neglecting all clusters that are not forests (all including cycles),

$$
\begin{aligned}
G_{N} & \approx \int_{\mathscr{B}^{N}} \sum_{F \in \mathscr{F}_{N}} \prod_{(i, j) \in F} \Phi_{i j} \mathrm{~d} q_{1} \ldots \mathrm{~d} q_{N} \\
& =\int_{\mathscr{B}^{N}} \sum_{n=0}^{N-1} \sum_{F \in \mathscr{F}_{N}^{(n)}}(-1)^{n} \prod_{(i, j) \in F} f_{i j} \mathrm{~d} q_{1} \ldots \mathrm{~d} q_{N} \\
& =V^{N} \sum_{n=0}^{N-1}(-1)^{n} C(n, N)\left(\frac{\beta_{1}}{V}\right)^{n}
\end{aligned}
$$

$$
\begin{gathered}
V:=|\mathscr{B}| \\
f_{i j}:=-\Phi_{i j} \\
\beta_{1}=\frac{1}{V} \int_{\mathscr{B}^{2}} f_{12}\left(q_{1}, q_{2}\right) \mathrm{d} q_{1} \mathrm{~d} q_{2}
\end{gathered}
$$

$\mathscr{F}_{N}^{(n)} \quad$ collection of forests on N vertices with n edges $C(n, N) \quad$ cardinality of $\mathscr{F}_{N}^{(n)}$

For $N \rightarrow \infty$,

$$
\begin{gathered}
C(n, N) \approx \begin{cases}\binom{N}{n}\left(\frac{N-n}{2}\right)^{n} & n \text { bounded } \\
\frac{N^{2 n}}{n!2^{n}}\left(1-\frac{2 n}{N}\right)^{\frac{1}{2}} & 0<\gamma<\frac{1}{2} \\
\frac{N^{N}}{2^{N-n-1}(N-n-1)!}\left(\frac{2 n}{N}-1\right)^{-\frac{5}{2}} & \frac{1}{2}<\gamma \leqq 1\end{cases} \\
\gamma:=\lim _{N \rightarrow \infty} \frac{n(N)}{N}
\end{gathered}
$$

Britikov (1988)
neglecting large trees
Approximating $C(n, N)$ as

$$
C(n, N) \approx \frac{N^{2 n}}{2^{n} n!}
$$

and neglecting for the moment all terms with $n>\left\lceil\frac{N}{2}\right\rceil-1$ in G_{N}

$$
\begin{aligned}
& G_{N} \approx V^{N} \sum_{n=0}^{\left[\frac{N}{2}\right]-1}(-1)^{n} \frac{N^{2 n}}{n!2^{n}}\left(\frac{\beta_{1}}{V}\right)^{n} \\
&= V^{N} \sum_{n=0}^{\left[\frac{N}{2}\right]-1} \frac{N^{n}}{n!}(-x)^{n} \\
&=V^{N} Q\left(\left\lceil\frac{N}{2}\right\rceil,-N x\right) \mathrm{e}^{-N x} \\
& x:=\frac{1}{2} \frac{\beta_{1} N}{V}=\frac{1}{2} \rho \beta_{1} \\
& Q(a, z):=\frac{\Gamma(a, z)}{\Gamma(a)}
\end{aligned}
$$

$\Gamma(a)$ Gamma function
$\Gamma(a, z)$ incomplete Gamma function $Q(a, z)$ incomplete Gamma function ratio

Temme (1979) proved the asymptotic estimate

$$
\begin{aligned}
Q(a, z) & =\frac{1}{2} \operatorname{erfc}\left(\eta \sqrt{\frac{a}{2}}\right)+\left(\frac{1}{\lambda-1}-\frac{1}{\eta}\right) \frac{\mathrm{e}^{-\frac{1}{2} a \eta^{2}}}{\sqrt{2 \pi a}}+O\left(\frac{1}{a}\right) \\
\lambda & =\frac{z}{a} \quad \eta=\sqrt{2(\lambda-1-\ln \lambda)}
\end{aligned}
$$

In the case of interest,
$\lambda=-2 x, \quad \eta=\alpha+i \beta, \quad\left\{\begin{array}{l}\frac{1}{2}\left(\alpha^{2}-\beta^{2}\right)=-\mu, \quad \mu(x)=1+2 x+\ln 2 x \\ \alpha \beta=-\pi\end{array}\right.$

$$
\begin{gathered}
G_{N} \approx V^{N}\left\{\begin{array}{ll}
\mathrm{e}^{-N x} & 0<x<x_{0} \\
-\mathrm{e}^{i \pi\left\lceil\frac{N}{2}\right\rceil} \frac{1}{2 x+1} \frac{1}{\sqrt{\pi N}} \mathrm{e}
\end{array} \mathrm{e}^{\left(\left\lceil\frac{N}{2}\right\rceil-\left\lfloor\frac{N}{2}\right\rfloor\right) x}(2 \mathrm{e} x)^{\frac{N}{2}}\right. \\
x_{0} \quad \text { root of } \mu(x)=0
\end{gathered}
$$

The same asymptotic estimate also holds for $n>\left\lfloor\frac{N}{2}\right\rfloor+1$

- For $x>x_{0}, G_{N}$ fails to be definite in sign, and our approximation breaks down.
- But, for $x<x_{0}$, computing F_{N}, we arrive at

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{F_{N}}{N}=k T\left(\ln \rho-1+\frac{1}{2} \beta_{1} \rho\right) \\
& \text { PalfFY-Muhoray, Virga \& ZhENG (2017) } \\
& F_{N}=-k T \ln \left(\frac{1}{N!} G_{N}\right) \approx-k T \ln \left(\frac{V^{N}}{N!} \mathrm{e}^{-\frac{1}{2} N \rho \beta_{1}}\right) \\
& \approx k T\left(\ln N!-N \ln V+\frac{1}{2} N \rho \beta_{1}\right) \\
& \approx k T\left(N \ln N-N-N \ln V+\frac{1}{2} N \rho \beta_{1}\right) \\
&= k T N\left(\ln N-\ln V-1+\frac{1}{2} \rho \beta_{1}\right)
\end{aligned}
$$

density compatibility requirement

$$
x<x_{0} \Longleftrightarrow \rho \beta_{1}<W\left(\frac{1}{\mathrm{e}}\right) \doteq 0.2785
$$

- Forest clusters reproduce Onsager's free energy functional in the limit of limited connectivity without assuming any power series in the density.
- The density compatibility requirement signals the density at which connectivity starts playing a role in the cluster expansion.

Onsager's Functional

Having established on a different basis the same approximation that Onsager derived from Mayer's cluster expansion, we use Onsager's very argument to construct the free-energy functional.

Multi-species argument

The ensemble of N particles is partitioned in M subsystems, the particles of each of which share one and the same orientation in space.

$$
\left.\begin{array}{cc}
\Omega & \text { orientation manifold } \\
\Omega^{(i)} & \text { partition components } \\
& \Omega=\cup_{i=1}^{M} \Omega^{(i)}
\end{array}\right]
$$

$$
N_{i}=N \varrho\left(\omega_{i}\right) \Delta \omega_{i} \quad \sum_{i=1}^{M} \varrho\left(\omega_{i}\right) \Delta \omega_{i}=1
$$

ϱ orientational distribution density
free-energy component

$$
F_{N}=N k T\left(\ln \frac{N}{V}-1\right)+k T \frac{1}{2} \frac{N^{2}}{V} \beta_{1}
$$

$$
F_{N_{i}}=N_{i} k T\left(\ln \frac{N_{i}}{V_{i}}-1\right)+k T \frac{1}{2 V} \sum_{i, j=1}^{M} N_{i} N_{j} \beta_{1}\left(\omega_{i}, \omega_{j}\right)
$$

$$
V_{i}=V \Delta \omega_{i} \quad \beta_{1}\left(\omega_{1}, \omega_{2}\right):=\frac{1}{V} \int_{\mathscr{B}^{2}} f_{12}\left(\boldsymbol{x}_{1}, \omega_{1} ; \boldsymbol{x}_{2}, \omega_{2}\right) \mathrm{d} \boldsymbol{x}_{1} \mathrm{~d} \boldsymbol{x}_{2}
$$

composed free energy

$$
\begin{aligned}
F_{N} & =\sum_{i=1}^{M} F_{N_{i}} \\
& =\sum_{i=1}^{M} k T N_{i}\left(\ln \frac{N_{i}}{V_{i}}-1\right)+k T \frac{1}{2 V} \sum_{i, k=1}^{M} N_{i} N_{j} \beta\left(\omega_{i}, \omega_{j}\right) \\
& =k T N \sum_{i=1}^{M} \varrho\left(\omega_{i}\right) \Delta \omega_{i}\left(\ln \rho_{0} \varrho\left(\omega_{i}\right)-1\right) \\
& +\frac{1}{2} k T N \rho_{0} \sum_{i, j=1}^{M} \varrho\left(\omega_{i}\right) \Delta \omega_{i} \varrho\left(\omega_{j}\right) \Delta \omega_{j} \beta_{1}\left(\omega_{i}, \omega_{j}\right) \\
& \rho_{0}=\frac{N}{V} \quad \text { number density }
\end{aligned}
$$

continuum limit

$$
\begin{gathered}
\frac{F_{N}}{k T N}=\int_{\Omega} \varrho(\omega)\left(\ln \rho_{0} \varrho(\omega)-1\right) \mathrm{d} \omega+\frac{1}{2} \rho_{0} \int_{\Omega^{2}} \beta_{1}\left(\omega, \omega^{\prime}\right) \varrho(\omega) \varrho\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime} \\
\int_{\Omega} \varrho(\omega) \mathrm{d} \omega=1
\end{gathered}
$$

(dimensionless) free energy per particle

$$
\mathscr{F}_{\mathrm{O}}[\varrho]:=\int_{\Omega} \varrho(\omega) \ln \varrho(\omega) \mathrm{d} \omega+\frac{1}{2} \rho_{0} \int_{\Omega^{2}} \beta_{1}\left(\omega, \omega^{\prime}\right) \varrho(\omega) \varrho\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime}
$$

complete free energy

$$
F_{N}=k T N\left(\ln \rho_{0}-1+\mathscr{F}_{\mathrm{O}}[\varrho]\right)
$$

equilibrium (intergral) equation

$$
\begin{gathered}
\delta \mathscr{F} \mathrm{O} \varrho[\delta \varrho]=\int_{\Omega}\left\{\ln \varrho(\omega)+1+\rho_{0} \int_{\Omega} \beta_{1}\left(\omega, \omega^{\prime}\right) \varrho \omega^{\prime} \mathrm{d} \omega^{\prime}\right\} \delta \varrho(\omega) \mathrm{d} \omega \\
\delta \mathscr{F}_{\mathrm{O}}(\varrho)[\delta \varrho]=\lambda \int_{\Omega} \delta \varrho(\omega) \mathrm{d} \omega \\
\ln \varrho(\omega)+\rho_{0} \int_{\Omega} \beta_{1}\left(\omega, \omega^{\prime}\right) \varrho\left(\omega^{\prime}\right) \mathrm{d} \omega^{\prime}=\lambda \\
\varrho(\omega)=\frac{\mathrm{e}^{-\rho_{0} \int_{\Omega} \beta_{1}\left(\omega, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}}}{\int_{\Omega} \mathrm{e}^{-\rho_{0} \int_{\Omega} \beta_{1}\left(\omega, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}} \mathrm{d} \omega} \\
\beta_{1} \quad \text { effective potential } \\
\rho_{0} \quad \text { effective reciprocal temperature }
\end{gathered}
$$

Excluded volume of congruent cylinders

$d \quad$ diameter
$l \quad$ height
θ

$$
\begin{gathered}
\beta_{1}(\theta)=l^{2} d\left\{2 \sin \theta+\frac{d}{l}\left(\frac{\pi}{2}+\frac{\pi}{2}|\cos \theta|+2 E(\sin \theta)+\frac{d^{2}}{l^{2}} \frac{\pi}{2} \sin \theta\right)\right\} \\
E(k):=\int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2} \sin ^{2} x} \mathrm{~d} x \\
\text { complete elliptic integral of the second kind }
\end{gathered}
$$

approximate formula

In the limit as $\frac{d}{l} \ll 1$,

$$
\beta_{1}(\theta) \approx 2 l^{2} d \sin \theta
$$

isotropic covolume

$$
\begin{gathered}
2 b:=\left\langle\beta_{1}\right\rangle_{\text {iso }}=\frac{1}{2} \int_{0}^{\pi} \beta_{1}(\theta) \sin \theta \mathrm{d} \theta=l^{2} d \frac{\pi}{2}=2 v_{0} \frac{l}{d} \\
v_{0} \quad \text { particles' volume } \\
\text { volume fraction } \\
\\
\phi=\frac{N v_{0}}{V}=\rho_{0} v_{0}
\end{gathered}
$$

dimensionless concentration

$$
c:=\rho_{0} b=\phi \frac{l}{d}
$$

Onsager's free-energy functional

$$
\mathscr{F}_{\mathrm{O}}[\varrho]=\int_{\mathbb{S}^{2}} \varrho(\omega) \ln \varrho(\omega) \mathrm{d} \omega+c \frac{4}{\pi} \int_{\mathbb{S}^{2} \times \mathbb{S}^{2}} \sin \theta\left(\omega, \omega^{\prime}\right) \varrho(\omega) \varrho\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime}
$$

Onsager's uniaxial trial density

$$
\varrho_{\mathrm{O}}(\alpha ; \vartheta):=\frac{1}{4 \pi} \frac{\alpha}{\sinh \alpha} \cosh (\alpha \cos \vartheta)
$$

$\alpha>0 \quad$ parameter
$\omega=(\varphi, \vartheta) \quad$ polar coordinates on \mathbb{S}^{2}
ϱ_{O} is symmetric about the polar axis $\mathrm{d} \omega=\sin \vartheta \mathrm{d} \vartheta \mathrm{d} \varphi \quad$ measure on \mathbb{S}^{2}

$$
\mathscr{F}_{\mathrm{O}}\left[\varrho_{\mathrm{O}}\right]=\ln \left(\frac{\alpha \operatorname{coth} \alpha}{4 \pi}\right)-1+\frac{\arctan (\sinh \alpha)}{\sinh \alpha}+\frac{2 c}{\sinh ^{2} \alpha} I_{2}(2 \alpha)
$$

I_{2} Bessel function of order 2

scaled free energy

As $\alpha \rightarrow 0, \mathscr{F}_{\mathrm{O}}\left[\varrho_{\mathrm{O}}\right] \rightarrow c-\ln 4 \pi$. Taking the free energy of the isotropic state as a reference,

$$
\begin{gathered}
F(c, \alpha):=\mathscr{F}_{\mathrm{O}}\left[\varrho_{\mathrm{O}}\right]+\ln 4 \pi-c \\
=\ln (\alpha \operatorname{coth} \alpha)-1+\frac{\arctan (\sinh \alpha)}{\sinh \alpha}+c\left(\frac{2}{\sinh ^{2} \alpha} I_{2}(2 \alpha)-1\right) \\
F(c, \alpha)=\frac{1}{90}\left(1-\frac{c}{4}\right) \alpha^{4}+O\left(\alpha^{6}\right)
\end{gathered}
$$

Free-energy landscape

Bifurcation analysis

Kayser \& Raveché (1978)

- Computing the nematic scalar order parameter S for the minimizer α_{m} of $F(c, \alpha)$, we obtain a function of c :

$$
S(c):=3 \pi \int_{0}^{\pi}\left(\cos ^{2} \vartheta-\frac{1}{3}\right) \varrho_{\mathrm{O}}\left(\alpha_{\mathrm{m}} ; \vartheta\right) \sin \vartheta \mathrm{d} \vartheta
$$

- $S\left(c_{\mathrm{c}}\right) \doteq 0.41$
- Kayser \& Raveché (1978) considered only solutions to the nonlinear integral equation for ϱ that bifurcate from the isotropic solution $\frac{1}{4 \pi}$ and preserve the uniaxial symmtery.
- They adopted two strategies:

1. Expand ϱ in a series of Legendre polynomials and solve for the coefficients of the expansion;
2. Solve numerically by an iterative scheme the nonlinear integral equation for a uniaxial density ϱ.

- They proved analytically that $c=4$ is a transcritical bifurcation point.

recent results

Recently, Vollmer (2017) studied a class of functionals that include Onsager's free-energy functional as a special case. For the latter, the bifurcation analysis in the parameter

$$
\lambda:=\frac{\pi}{8 c}
$$

shows that

- The first bifurcation from the isotropic solution $\frac{1}{4 \pi}$ is transcritical and it occurs at

$$
\lambda_{2}=\frac{\pi}{32} \quad(c=4)
$$

- All other bifurcations from the isotropic solution occur at

$$
\lambda_{s}=\frac{\Gamma\left(\frac{s}{2}+\frac{1}{2}\right) \Gamma\left(\frac{s}{2}-\frac{1}{2}\right)}{\Gamma\left(\frac{s}{2}+1\right) \Gamma\left(\frac{s}{2}+2\right)}
$$

Γ Euler's function

- The nontrivial critical points ϱ of Onsager's free-energy functional are uniaxial in the vicinity of the isotropic solution in a neighbourood of $c=4$.
- The isotropic solution is the only solution for

$$
\lambda \geqq \frac{16}{W\left(\frac{2}{\pi}\right)} \quad(c \leqq 0.010)
$$

W Lambert function

- Every critical point ϱ is bounded.
- All bifurcation branches either meet infinity or they meet another bifurcation branch.

bifurcation scenario

Entropy competition

The Onsager theory is athermal: temperature plays no role in it. There is no exchange between kinetic and potential energies. The ordering transition that gives rise to the nematic phase results from the competition between two forms of entropies:

$$
\mathscr{F}_{\mathrm{O}}[\varrho]=\underbrace{\int_{\Omega} \varrho(\omega) \ln \varrho(\omega) \mathrm{d} \omega}_{\text {orientational }}+\frac{1}{2} \rho_{0} \underbrace{\int_{\Omega^{2}} \beta_{1}\left(\omega, \omega^{\prime}\right) \varrho(\omega) \varrho\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime}}_{\text {positional or packing }}
$$

Packing particles more closely, thus minimising their excluded volume, increases the volume they can explore by sliding one over the other: this maximises their free volume.

Phase Coexistence

Onsager's theory is not only able to explain the isotropic-to-nematic transition. It is perhaps the first example of density functional theory, as it also describes phase separation and the coexistence of nematic and isotropic phases.

motivation

Onsager's original motivation was indeed to explain the phase separation of tobacco mosaic viruses in diluted solutions.
again in Onsager's own words
not nearly enough to explain why a solution of 2 per cent tobacco virus in 0.005 normal NaCl forms two phases.

tobacco mosaic virus

N. tabacum

what Onsager might have seen

Bawden, Pirie, Bernal \& Fankuchen (1936)
tactoids

Bawden, Pirie, Bernal \& Fankuchen (1936)
complete free energy

$$
F_{N}=k T N\left(\ln \rho_{0}-1+\mathscr{F}_{\mathrm{O}}[\varrho]\right)
$$

N number of particles
V volume occupied by the system
$\rho_{0}=\frac{N}{V} \quad$ number density
\mathscr{F}_{O} density functional

$$
\mathscr{F}_{\mathrm{O}}[\varrho]=\int_{\Omega} \varrho(\omega) \ln \varrho(\omega) \mathrm{d} \omega+\frac{1}{2} \rho_{0} \int_{\Omega^{2}} \beta_{1}\left(\omega, \omega^{\prime}\right) \varrho(\omega) \varrho\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime}
$$

chemical potential
At equilibrium,

$$
\mu=\frac{\partial F_{N}}{\partial N}
$$

pressure

$$
P=-\frac{\partial F_{N}}{\partial V}
$$

In a homogenous system,

$$
\begin{gathered}
F_{N}=V f_{\mathrm{e}} \quad f_{\mathrm{e}}:=k T \rho_{0}\left(\ln \rho_{0}-1+\mathscr{F}_{\mathrm{O}}[\varrho]\right) \\
\mu=\frac{\partial f_{\mathrm{e}}}{\partial \rho_{0}} \\
=k T\left(\ln \rho_{0}+\int_{\Omega} \varrho_{\mathrm{eq}}(\omega) \ln \varrho_{\mathrm{eq}}(\omega) \mathrm{d} \omega+\rho_{0} \int_{\Omega^{2}} \beta_{1}\left(\omega, \omega^{\prime}\right) \varrho_{\mathrm{eq}}(\omega) \varrho_{\mathrm{eq}}\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime}\right) \\
P=\rho_{0} \frac{\partial f_{\mathrm{e}}}{\partial \rho_{0}}-f_{\mathrm{e}} \\
=k T \rho_{0}\left(1+\frac{1}{2} \rho_{0} \int_{\Omega^{2}} \beta_{1}\left(\omega, \omega^{\prime}\right) \varrho_{\mathrm{eq}}(\omega) \varrho_{\mathrm{eq}}\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime}\right)
\end{gathered}
$$

$\varrho_{\text {eq }}$ equilibrium density, which makes \mathscr{F}_{O} stationary

Phase Coexistence Criterion

$$
\llbracket \mu \rrbracket=0 \quad \llbracket P \rrbracket=0
$$

rods' density functional

$$
\begin{gathered}
\mathscr{F}_{\mathrm{O}}[\varrho]=\int_{\mathbb{S}^{2}} \varrho(\omega) \ln \varrho \omega \mathrm{d} \omega+c \frac{4}{\pi} \int_{\mathbb{S}^{2} \times \mathbb{S}^{2}} \sin \theta\left(\omega, \omega^{\prime}\right) \varrho(\omega) \varrho\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime} \\
c=\rho_{0} b=\phi \frac{l}{d} \quad \text { dimensionless concentration }
\end{gathered}
$$

coexistence equations

$$
\begin{gathered}
\llbracket \ln c+\int_{\mathbb{S}^{2}} \varrho_{\mathrm{eq}}(\omega) \ln \varrho_{\mathrm{eq}}(\omega) \mathrm{d} \omega+c \frac{8}{\pi} \int_{\mathbb{S}^{2} \times \mathbb{S}^{2}} \sin \left(\omega, \omega^{\prime}\right) \varrho_{\mathrm{eq}}(\omega) \varrho\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime} \rrbracket=0 \\
\llbracket c\left(1+c \frac{4}{\pi} \int_{\mathbb{S}^{2} \times \mathbb{S}^{2}} \sin \left(\omega, \omega^{\prime}\right) \varrho_{\mathrm{eq}}(\omega) \varrho_{\mathrm{eq}}\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime}\right) \rrbracket=0
\end{gathered}
$$

- The two possibly coexisting phases are the isotropic phase and the aligned phase.
- Onsager found a solution to the coexistence equations in his class of trial equilibrium densities.

$$
c_{\mathrm{i}} \doteq 3.340 \quad c_{\mathrm{a}} \doteq 4.486
$$

- The scalar order parameter in the aligned coexisting phase is larger than the scalar order parameter at the transition

$$
S\left(c_{\mathrm{a}}\right) \doteq 0.84
$$

- The concentration ratio is also larger than expected from experiment

$$
\frac{c_{\mathrm{a}}}{c_{\mathrm{i}}} \doteq 1.34
$$

volume fraction

lever rule
Suppose that the solution is prepared with a (dimensionless)
concentration $c_{\mathrm{i}} \leqq c \leqq c_{\mathrm{a}}$. Let V_{i} and V_{a} be the volumes occupied by the two coexisting phases. Let N_{i} and N_{a} be the corresponding numbers of particles.

$$
V_{\mathrm{i}}+V_{\mathrm{a}}=V \quad N_{\mathrm{i}}+N_{\mathrm{a}}=N
$$

The solutions to these equations are

$$
\begin{array}{cc}
\frac{V_{\mathrm{i}}}{V}=\frac{c_{\mathrm{a}}-c}{c_{\mathrm{a}}-c_{\mathrm{i}}} & \frac{V_{\mathrm{a}}}{V}=\frac{c-c_{\mathrm{i}}}{c_{\mathrm{a}}-c_{\mathrm{i}}} \\
\frac{N_{\mathrm{i}}}{N}=\frac{c_{\mathrm{i}}}{c} \frac{c_{\mathrm{a}}-c}{c_{\mathrm{a}}-c_{\mathrm{i}}} & \frac{N_{\mathrm{a}}}{N}=\frac{c_{\mathrm{a}}}{c} \frac{c-c_{\mathrm{i}}}{c} \frac{c_{\mathrm{a}}-c_{\mathrm{i}}}{}
\end{array}
$$

Sources

- F.C. Bawden, N.W. Pirie, J.D. Bernal \& I. Fankuchen, Liquid crystalline substances from virus-infected plants, Nature, 138, 1936, 1051-1052.
- M. Born, The statistical mechanics of condensing systems, Physica, 4, 1937, 1034-1044.
- M. Born \& K. Fuchs, The statistical mechanics of condensing systems, Proc. R. Soc. Lond. A, 166, 1938, 391-414.
- V.E. Britikov, Asymptotic number of forests from unrooted trees, Mat. Zametki, 43, 1988, 672-684.
- A. Cayley, A theorem on trees, Quart. J. Pure Appl. Math., 23, 1889, 376-378. (The Collected Mathematical Papers of Arthur Cayley, Vol. XIII, pp. 26-28, Cambridge Univ. Press, Cambridge, 1897).
- R.F. Kayser \& H.J. Raveché, Bifurcation in Onsager's model of the isotropic-nematic transition, Phys. Rev. A, 17, 1978, 2067-2072.
- J.L. Lebowitz \& O. Penrose, Convergence of virial expansions, J. Math. Phys., 5, 1964, 841-847.
- J.E. Mayer, The statistical mechanics of condensing systems I, J. Chem. Phys., 5, 1937, 67-73.
- J.E. Mayer \& M.G. Mayer, Statistical Mechanics. Wiley, New York, 1940.
- L. Mederos, E. Velasco \& Y.Martínez-Ratón, Hard-body models of bulk liquid crystals, J. Phys.: Condens. Matter, 26, 2014, 463101.
- T. Morais \& A. Procacci, Continuous particles in the canonical ensemble as an abstract polymer gas, J. Stat. Phys., 151, 2013, 830-849.
- L. Onsager, Anisotropic solutions of colloids, Phys. Rev., 62, 1942, 558.
- L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. N.Y. Acad. Sci., 51, 1949, 627-659.
- P. Palffy-Muhoray, M.Y. Pevnyi, E.G. Virga \& X. Zheng, The effects of particle shape in orientationally ordered soft materials, in Mathematics and Materials, vol. 23, PCMS Series, AMS, 2017, in press.
- P. Palffy-Muhoray, E.G. Virga \& X. Zheng, Toward Onsager's density functional via Penroses tree identity, to be submitted, 2017.
- O. Penrose, Convergence of fugacity expansions for classical systems, in T.A. Bak, Editor, Statistical Mechanics, Foundations and Applications, pp. 101-109, New York, 1967. I.U.P.A.P. Meeting (Copenhagen 1966), Benjamin, Inc.
- A. Procacci \& S. A. Yuhjtman, Convergence of Mayer and virial expansions and the Penrose tree-graph identity, Lett. Math. Phys., 107, 2017, 31-46.
- E. Pulvirenti \& D. Tsagkarogiannis, Cluster expansion in the canonical ensemble, Comm. Math. Phys., 316, 2012, 289-306.
- D. Ruelle, Statistical Mechanics: rigorous results, World Scientific-Imperial College Press, Singapore, 1969.
- J.V. Selinger, Introduction to the Theory of Soft Matter: From Ideal Gases to Liquid Crystals, Springer, Cham, 2016.
- S.J. Tate, Virial expansion bounds, J. Stat. Phys., 153, 2013, 325-338.
- N.M. Temme, The asymptotic expansion of the incomplete Gamma functions, SIAM J. Math. Anal., 10, 1979, 757-766.
- H.D. Ursell, The evaluation of the Gibbs' phase-integral for imperfect gases, Proc. Camb. Phil. Soc., 23, 1927, 685-697.
- M.A.C. Vollmer, Critical points and bifurcations of the three-dimensional Onsager model for liquid crystals, submitted, 2017.
- G.J. Vroege \& H.N.W Lekkerkerker, Phase transitions in lyotropic colloidal and polymer liquid crystals, Rep. Prog. Phys., 55, 1992, 1241-1309.

Mathematical Theories of Liquid Crystals
 Epifanio G. Virga
 Mathematical Institute
 University of Oxford
 virga@maths.ox.ac.uk
 on leave from
 Department of Mathematics
 University of Pavia, Italy

Ideal Course Outline

I. Fundamentals
II. The Maier-Saupe Theory
III. The Onsager Theory
IV. The Oseen-Frank Theory
V. The Landau-deGennes Theory
VI. The Ericksen-Leslie Theory

