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Abstract. We provide some refinements of several results in (Fonseca, I. and Müller,
S., 1999. A-Quasiconvexity, Lower Semicontinuity, and Young Measures. SIAM journal
on mathematical analysis). In particular, we refine a lower semi-continuity result and
the decomposition lemma. Namely, we show that both the oscillation and concentration
effects of weakly convergent sequences in Lp, 1 < p < ∞, that satisfy a PDE constraint
of constant rank have gradient structure. We also characterize the generalized Young
measures arising from such sequences by duality with A-quasiconvex functions.

1. Introduction

Young measures are very useful functional analytic and measure theoretic tools to de-
scribe the effective limits of energy functionals

v ∈ Lp(Ω,V) 7→
ˆ

Ω
F (x, v(x))dx, |F (x, z)| 6 c(1 + |z|)p.(1.1)

In their original formulation in [40] (see also [8, 4, 32, 6, 10]), they were used to describe
oscillation phenomena in the Calculus of Variations. They have been subsequently used
in the study of partial differential equations modeling numerous problems in continuum
mechanics [38, 7, 39, 13]. Subsequent extensions, such as the DiPerna–Majda measures
[14], were developed to also account for concentration effects. Oscillation and concentration
are the only obstructions to strong convergence in Lebesgue spaces, so their interaction the
with (lower semi-)continuity properties of the non-linear functionals (1.1) is fundamental.

In particular, in accordance with the framework of compensated compactness [38, 39, 30]
we will couple the functional (1.1) with a linear differential constraint. This framework
has been studied extensively in the past century, as can be seen from the works [29, 5, 11,
17, 24, 21, 12, 3, 19, 25], to name a few.

The main objective of the present work is to give a precise and robust characterization
of Lp-Young measures, 1 < p < ∞, generated by sequences satisfying a constant rank
constraint by duality with Jensen inequalities for A-quasiconvex functions, a terminology
that we now begin to explain. Firstly, our notion of Young measures is closely related to
that of Alibert–Bouchitté [1], see also [27, 37, 35]. The result is analogous to that of [18],
where varifolds are used, in the case of weak convergence of gradients. A related result to
ours, pertaining to DiPerna–Majda measures, was proved in [15]. Such characterizations
for (oscillation) Young measures were first proved in [21, 22, 17]. Secondly, the correlation
between lower semi-continuity and A-quasiconvexity is a recurring theme, see [29, 11, 17, 3]
and the related results on weak continuity [39, 30, 19].

Our analysis is based on two main parts. On one hand, we prove a refined Decomposition
Lemma 1.1, which separates the gradient structure of oscillation and concentration effects.
This extends similar results in [24, 22, 18, 17, 15, 34] and substantiates the fact asserted
in the introduction of [34] (see also [19]) that the study of functionals defined on constant
rank constrained sequences can be reduced to the study of functionals depending on (higher
order) gradients, see [28]. On the other hand, we show that the method introduced recently
in [25] is robust enough to enable us to construct generating sequences with ease.
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We now begin a more technical description of our results. Throughout this paper,
Ω ⊂ Rn denotes an open and bounded set with negligible boundary, L n(∂Ω) = 0. The
linear differential constraint with which we couple the functional (1.1) will be given by a
(vectorial) linear partial differential operator

Av :=
∑
|α|=`

Aα∂
αv for v : Rn → V, where Aα ∈ Lin(V,W) whenever |α| = `.(1.2)

Here V, W are finite dimensional inner product spaces over R.
We will always assume that A satisfies the constant rank condition [36, 30, 17], that

there exists r ∈ N0 such that

rankA(ξ) = r for all ξ ∈ Rn \ {0}, where A(ξ) :=
∑
|α|=`

ξαAα,(1.3)

as well as the spanning wave cone condition

span ΛA = V, where ΛA :=
⋃

ξ∈Sn−1

kerA(ξ).(1.4)

Both of these conditions are standard for the type of problem we are looking at.
It was shown in [34] that there exists another constant rank operator B such that

kerA(ξ) = imB(ξ) for ξ 6= 0 where Bu = T(Dku) for u : Rn → U,(1.5)

where k is the order of B and T ∈ Lin(SLink(Rn,U),V) is the tensor of coefficients of
B. We call such B a potential operator for A. We refer the reader to Section 2.1 for the
definition of p-Young measures.

Our first result is the following enhanced decomposition lemma:

Lemma 1.1. Let A as in (1.2) be a constant rank operator with potential operator B such
that (1.5) holds. Let 1 < p <∞ and

vj ⇀ v in Lp(Ω,V) with Avj → Av in W−`,p(Ω,W)

generate a p-Young measure ν =
(
(νx)x∈Ω, λ, (ν∞x )x∈Ω̄

)
. Then there exist sequences

(uj), (ũj) ⊂ C∞c (Ω,U) and (b̃j) ⊂ Lp(Ω,V) such that

vj = v + Buj + Bũj + b̃j ,

Buj , Bũj , b̃j ⇀ 0 in Lp(Ω,V),

(Dkuj) is p-uniformly integrable,

Dkũj → 0 in L n-measure,

b̃j → 0 in Lploc(Ω,V),

and, moreover, in Yp(Ω,V),

(v + Buj) generates ((νx)x∈Ω, 0, n/a) ,

(Bũj) generates ((δ0)x∈Ω, λ Ω, (ν∞x )x∈Ω) ,

(b̃j) generates ((δ0)x∈Ω, λ ∂Ω, (ν∞x )x∈∂Ω) .

In fact, a decomposition of the form vj = Buj + bj where (Buj) captures the oscillation
and (bj) captures the concentration in Ω̄ is also possible under a weaker constraint, see
Lemma 3.1. In that case, we can improve one of the main results in [17] concerning
lower semi-continuity for energy functionals arising from integrands of p-qrowth, i.e, Borel
measurable maps F : Ω× V→ R that satisfy

|F (x, z)| 6 c(1 + |z|)p for L n-a.e. x ∈ Ω and all z ∈ V.(1.6)

Our result is:
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Theorem 1.2. Suppose that A satisfies conditions (1.3) and (1.4). Let 1 < p, q <∞ and
F : Ω× V→ [0,∞) be a normal integrand of p-growth, i.e., satisfying (1.6). Suppose that
z 7→ F (x, z) is A-quasiconvex for L n-a.e. x ∈ Ω. Then

vj ⇀ v in Lp(Ω,V)

Avj → Av in W−`,q(Ω,W)

}
=⇒ lim inf

j→∞

ˆ
Ω
F (x, vj(x))dx >

ˆ
Ω
F (x, v(x))dx.(1.7)

By normal integrand we mean a jointly Borel measurable function that is lower semi-
continuous in the second variable. We recall that an integrand as above is said to be
A-quasiconvex if, for L n-a.e. x0 ∈ Ω, we have at all z ∈ V that

F (x0, z) 6
 
Tn
F (x0, z + v(x))dx, for all v ∈ C∞(Tn,V) with Av = 0,

 
Tn
v(x)dx = 0.

For an autonomous integrand f : V → R satisfying (1.6), we define the upper recession
function by

f∞p (z) := lim sup
(z′,t)→(z,∞)

f(tz′)

tp
for (x, z) ∈ Ω× V.(1.8)

We have the following characterization result:

Theorem 1.3. Suppose that A satisfies conditions (1.3) and (1.4). Let ν ∈ Yp(Ω,V).
If ν =:

(
(νx)x∈Ω, λ, (ν∞x )x∈Ω̄

)
is generated by a sequence (vj) ⊂ Lp(Ω,V) such that

(Avj) is strongly compact in W−`,p(Ω,V), then

〈f, νx〉 > f(ν̄x) for L n-a.e. x ∈ Ω,

〈f∞p , ν∞x 〉 > 0 for λ-a.e. x ∈ Ω,
for all A-quasiconvex f satisfying (1.6).(1.9)

Conversely, suppose that λ(∂Ω) = 0 and write v(x) := ν̄x. Let B be a potential operator
for A, i.e. suppose that (1.5) holds. Suppose also that the inequalities (1.9) hold. Then
there exist sequences (uj), (ũj) ⊂ C∞c (Ω,V) such that:

(v + Buj + Bũj) generates ν,

(Dkuj)is p-uniformly integrable,

Dkũj → 0 in measure.

This shows, once again, that A-quasiconvexity is intrinsic to weak convergence of PDE
constrained sequences. In fact, we can say more: with T as in (1.5) and under (1.4), it was
shown in [26] that f is A-quasiconvex if and only if f ◦T is k-quasiconvex. Coupled with
the properties of (Dkuj), (Dkũj) in the result above, we can say that weak-Lp convergence
of constant rank constrained sequences reduces to convergence of higher order gradients.

2. Preliminaries

As general notation, we will use Qr(x) for the open cube of radius r/2 > 0 centered at
x ∈ Rn. BV will denote the open unit ball in a normed linear space V, whereas SV will
denote the unit sphere. We will writeM(E) for the space of Radon measures defined on
a locally compact Hausdorff space E, equipped with the Borel σ-algebra,M+(E) for the
cone of positive such measures, andM+

1 (E) for the space of probability measures.
Our convention for the Fourier transform is

Fv ≡ v̂ : ξ ∈ Rn 7→
ˆ
Rn
v(x)e− ix·ξdx

defined for Schwartz functions v and extended by duality to tempered distributions. On
the torus Tn we use the obvious analogue for the Fourier coefficients.

Throughout the text, Ω ⊂ Rn denotes a bounded and open set with L n(∂Ω) = 0.
Unless otherwise specified, 1 < p <∞ will denote a Lebesgue exponent.
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2.1. Generalized Young measures. The presentation here loosely follows the recent
lecture notes [26]. Let 1 < p <∞. Consider the space of integrands

Ep(Ω,V) :=

{
Φ ∈ C(Ω× V) : Φ∞p (x, z) := lim

t→∞, x′→x

Φ(x′, tz)

tp
∈ R uniformly in Ω̄× SV

}
,

which is naturally equipped with the norm

‖Φ‖Ep := sup
(x,z)∈Ω×V

|Φ(x, z)|
(1 + |z|)p

.

When no ambiguity can arise, we may write Ep := Ep(Ω,V). It will thus be convenient to
work with the coordinate transformations

S : ẑ ∈ BV 7→
ẑ

1− |ẑ|
∈ V, S−1 : z ∈ V 7→ z

1 + |z|
∈ BV,

where BV denotes the open unit ball in V. With this notation, the space of integrands
Ep(Ω,V) can be identified with C(Ω×BV) via the linear isometric isomorphism

(TpΦ)(x, ẑ) := (1− |ẑ|)pΦ
(
x,

ẑ

1− |ẑ|

)
, for x ∈ Ω, ẑ ∈ BV.

It follows that its adjoint, T ∗p : Ep(Ω,V)∗ → C(Ω×BV)∗ ∼= M(Ω×BV) is also a linear
isometric isomorphism. We embed Lp(Ω,V) into E∗p via

εv(Φ) :=

ˆ
Ω

Φ(x, v(x))dx 6 ‖Φ‖Ep
ˆ

Ω
(1 + |v|)pdx 6 2p−1‖Φ‖Ep(|Ω|+ ‖v‖

p
Lp),

so that, by the sequential Banach–Alaoglu theorem, we can conclude that bounded Lp

sequences are weakly-* compact in E∗p under the above identification. In particular, if (vj)

is bounded in Lp(Ω), we know that along a subsequence we have εvj
∗
⇀ ν in Ep(Ω,V)∗.

We define µ := (T−1
p )∗ν ∈M(Ω×BV) and write for Φ ∈ Ep

⟪Φ,ν⟫ := 〈Φ,ν〉Ep,E∗p = 〈TpΦ, µ〉

=

ˆ
Ω̄×BV

(1− |ẑ|)pΦ
(
x,

ẑ

1− |ẑ|

)
dµ(x.ẑ) +

ˆ
Ω̄×SV

Φ∞p (x, ẑ)dµ(x, ẑ).

From this formula we derive two necessary conditions for the weakly-* limits of εvj , namely
that µ > 0 in the sense ofM(Ω×BV) andˆ

Ω
ϕ(x)dx =

ˆ
Ω̄×BV

ϕ(x)(1− |ẑ|)pdµ(x, ẑ) for all ϕ ∈ C(Ω̄).(2.1)

Conversely, these conditions are sufficient to enable us to disintegrate µ into appropriately
parametrized (generalized Young) measures that detect both oscillation and concentration
behavior of an Lp-weakly convergent sequence (vj). We define:

Definition 2.1. A parametrized measure ν =
(
(νx)x∈Ω, λ, (ν∞x )x∈Ω̄

)
is said to be an Lp-

Young measure (or p-Young measure) whenever
(a) (νx)x∈Ω ⊂M+

1 (V) is weakly-* L n-measurable (the oscillation measure).
(b) λ ∈M+(Ω̄) (the concentration measure).
(c) (ν∞x )x∈Ω̄ ⊂M+

1 (V) is weakly-* λ-measurable (the concentration-angle measure).
(d)

´
Ω

´
V |z|

pdνx(z)dx <∞ (the moment condition holds).
Then ν acts linearly on Ep(Ω,V) via

⟪Φ,ν⟫ :=

ˆ
Ω

ˆ
V

Φ(x, • )dνxdx+

ˆ
Ω̄

ˆ
SV

Φ∞p (x, • )dν∞x dλ(x) for Φ ∈ Ep(Ω,V).

We write Yp(Ω,V) (or simply Yp) for the set of all such ν.



OSCILLATION AND CONCENTRATION UNDER CONSTANT RANK CONSTRAINTS 5

It is then easy to check that a Young measure ν actually lies in E∗p and, moreover, that
the inclusion Yp ⊂ E∗p is strict. We have the disintegration theorem:

Theorem 2.2. Yp(Ω,V) = T ∗p {µ ∈M+(Ω×BV) : equation (2.1) holds}.

The description of Yp can be pushed further: as a consequence of Theorem 1.3 with
A ≡ 0 and B = Id, we can prove that any ν ∈ Yp can be obtained as a weakly-* limit in
E∗p of elementary Young measures εv =

(
(δv(x))x∈Ω, 0, n/a

)
∈ Yp. This fact can be proved

directly, but will not be used in the sequel.
Coming back to Theorem 2.2, it implies that Yp is weakly-* closed in E∗p and convex.

Collecting, we obtain the fundamental weak compactness result that we will use:

Theorem 2.3 (FTYM). Let (vj)j be a bounded sequence in Lp(Ω,V). Then there exists
ν ∈ Yp(Ω,V) such that, along a subsequence, εvj

∗
⇀ ν in Ep(Ω,V)∗, i.e.,

lim
j→∞

ˆ
Ω

Φ(x, vj(x))dx =

ˆ
Ω

ˆ
V

Φ(x, z)dνx(z)dx+

ˆ
Ω̄

ˆ
SV

Φ∞p (x, z)dν∞x (z)dλ(x)

for all Φ ∈ Ep(Ω,V).

By taking Φ(x, z) = ϕ(x)zi for ϕ ∈ C(Ω̄), we see that v(x) := ν̄x := 〈id, νx〉 for L n-a.e.
x ∈ Ω, since Φ∞p ≡ 0. It follows that vj ⇀ v in Lp(Ω,V). We will refer to the map v as
the barycentre of ν.

One can test for weakly-* convergence in E∗p with fewer integrands:

Lemma 2.4. There exists a countable family {ϕ⊗f : ϕ ∈ Lip(Ω), f ∈ Liploc(V)∩Ep(Ω,V)}
whose span is dense in Ep(Ω,V). Moreover,

|f(z1)− f(z2)| 6 c‖Tpf‖Lip(BV)|z1 − z2|(1 + |z1|+ |z2|)p−1 for z1, z2 ∈ V,

where ‖g‖Lip := ‖g‖L∞ + ‖Dg‖L∞.

The main use of p-Young measures is that they efficiently separate the oscillation and
Lp-concentration effects:

Theorem 2.5. Let (vj) ⊂ Lp(Ω,V) generate ν ∈ Yp(Ω,V). Then vj → v in L n-measure
if and only if v(x) = ν̄x and νx = δν̄x for L n-a.e. x ∈ Ω.

Moreover, let ṽj : Ω→ V be measurable, such that vj − ṽj → 0 in L n-measure. Thenˆ
Ω
ϕ(x)F (ṽj(x))dx→

ˆ
Ω
ϕ(x)〈νx, F 〉dx for ϕ ∈ C(Ω̄), F ∈ Cc(V).

Theorem 2.6. Let (vj) ⊂ Lp(Ω,V) generate ν ∈ Yp(Ω,V) and Φ ∈ Ep(Ω,V). Then
(Φ( • , vj)) is uniformly integrable if and only if

〈|Φ∞p (x, • )|, ν∞x 〉 = 0 for λ-a.e. x ∈ Ω̄.

In particular, (vj) is p-uniformly integrable if and only if λ ≡ 0.
Furthermore, if (ṽj) ⊂ Lp(Ω,V) generate ν̃ ∈ Yp(Ω,V) is such that (vj − ṽj) is p-

uniformly integrable, then λν = λν̃(=: λ) and ν∞x = ν̃∞x for λ-a.e. x ∈ Ω̄.

Finally, we have the following classical lower semi-continuity result concerning (rough)
integrands that are bounded from below and their interaction with the oscillation measure:

Proposition 2.7. Let 1 < p < ∞ and F : Ω × V → [0,∞) be a normal integrand of
p-growth (1.6). Let (vj) ⊂ Lp(Ω,V) generate ν ∈ Yp(Ω,V). Then

lim inf
j→∞

ˆ
Ω
F (x, vj(x))dx >

ˆ
Ω
〈νx, F (x, • )〉dx.
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2.2. Linear differential operators. We will work with linear homogeneous partial dif-
ferential operators with constant coefficients

Av :=
∑
|α|=`

Aα∂
αv, Bu :=

∑
|β|=k

Bβ∂
βu,

defined respectively for V, U-valued functions on Rn and having coefficientsAα ∈ Lin(V,W),
Bβ ∈ Lin(U,V). These have characteristic polynomials

A(ξ) :=
∑
|α|=`

ξαAα ∈ Lin(V,W), B(ξ) :=
∑
|β|=k

ξβBβ ∈ Lin(U,V)

for ξ ∈ Rn. We say that A satisfies the constant rank condition if there exists an integer
r such that

rankA(ξ) = r for all ξ ∈ Rn \ {0}.
It was recently showed in [34] that for each such A there exists B as above such that the
exact relation

kerA(ξ) = kerB(ξ) for all ξ ∈ Rn \ {0}.
This result was established by showing that the ξ 7→ A†(ξ) defines a (−`)-homogeneous
rational function that is smooth away from zero. Here M † denotes the Moore–Penrose
generalized inverse, see [9] for details.

As a consequence of the existence of B, it was shown in [34] that we have the implication

Av = 0 for v ∈ C∞(Tn,V), v̂(0) = 0 =⇒ v = Bu for some u ∈ C∞(Tn,U).

Another consequence is the identity

IdV = B(ξ)B†(ξ) +A∗(ξ)(A∗)†(ξ), for ξ ∈ Rn \ {0},

which was used in [19, 20] to obtain Helmholtz-type decompositions such as:

Proposition 2.8. Let A, B be as above, 1 < p, q < ∞. For v ∈ C∞c (Ω,V), we have the
decomposition

v = Bu+A∗w, with ‖Dku‖Lp(Rn) 6 c‖v‖Lp(Ω), ‖D`w‖Lq(Rn) 6 c‖v‖W−`,q(Ω),

where
û(ξ) := B†(ξ)v̂(ξ), w := (A∗)†(ξ)v̂(ξ).

2.3. A-quasiconvex integrands. A known necessary condition for lower semi-continuity
in the topology we are working with is that of A-quasiconvexity (see [17]): we say that a
locally bounded Borel function f : V→ R is A-quasiconvex if

f(z) 6
 
Tn
f(z + v(x))dx, for all v ∈ C∞(Tn,V), s.t. Av = 0,

 
Tn
v(x)dx = 0.

We say that a non-autonomous normal integrand F : Ω × V → R is A-quasiconvex if
F (x0, • ) is A-quasiconvex for L n-a.e. x0 ∈ Ω. It is well known that such an A-quasiconvex
integrand f is convex in the directions of the wave cone ΛA (see (1.4) and [17, Prop. 3.4]).
In particular, if the wave cone is spanning V, one can argue that f is locally Lipschitz. In
particular, in this case, the definition (1.8) of the p-upper recession function can be shown
to equal

f∞p (z) = lim sup
t→∞

f(tz)

tp
for z ∈ V.

This fact will be used without mention. Nevertheless, the limit superior in the formula
cannot be replaced with the limit, see [31]. It is no surprise then, that we will need the
following approximation from above of quasiconvex integrands by quasiconvex integrands
that have regular recession function.
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Lemma 2.9. Let f : V → R be A-quasiconvex. Then there exist A-quasiconvex Φ ∈ Ep
such that

Φi ↓ f and Φ∞i,p ↓ f∞p
as i→∞ pointwisely in V.

A proof of this fact can be given by modifying the argument in [23, Lem. 6.3]. Moreover,
the Φi can be chosen to be p-homogeneous outside a large ball that increases with i.

Even though this fact is only used implicitly in the sequel (as part of the omitted proof
of Proposition 5.1), it was shown in [34] that, in the presence of (1.3) and without (1.4),
an integrand f is A-quasiconvex if and only if

f(z) 6
 

Ω
f(z + Bu(x))dx, for all u ∈ C∞c (Ω,U).

Together with the spanning cone condition (1.4), this has been used in [26, Lem. 4.7] to
reduce A-quasiconvexity to k-quasiconvexity.

3. The decomposition lemmas

Lemma 3.1 (Decomposition lemma, anisotropic version). Let A as in (1.2) be a constant
rank operator with potential operator B such that (1.5) holds. Let 1 < p, q <∞ and

vj ⇀ v in Lp(Ω,V) with Avj → Av in W−`,q(Ω,W)

generate a p-Young measure ν. Then there exist sequences (uj) ⊂ C∞c (Ω,U) and (bj) ⊂
Lp(Ω,V) such that

vj = v + Buj + bj ,

Buj , bj ⇀ 0 in Lp(Ω,V),

(Dkuj) is p-uniformly integrable,
bj → 0 in L n-measure.

Therefore, we have that, in Yp(Ω,V)

(v + Buj) generates ((νx)x∈Ω, 0, n/a) and (bj) generates
(
(δ0)x∈Ω, λ, (ν∞x )x∈Ω̄

)
.

Proof. Define the truncation maps

Tα(z) :=

{
z |z| 6 α
k z
|z| |z| > α

,

which can be used to see that

lim
α→∞

lim
j→∞

ˆ
Ω
|Tαvj |p =

ˆ
Ω
〈νx, | • |p〉dx,

so that we can employ a diagonalization argument to see that there exists a sequence
αj ↑ ∞ such that

lim
j→∞

ˆ
Ω
|Tαjvj |p =

ˆ
Ω
〈νx, | • |p〉dx.

By use of Theorem 2.6 applied to the integrand | • |p and the sequence (Tαjvj), we see that
the sequence is p-uniformly integrable. Since (vj) converges weakly in L1, it is uniformly
integrable, so that, for ε > 0,

εL n(|vj − Tαjvj | > ε) 6
ˆ
|vj |>αj

|vj |
(

1− αj
|vj |

)
dx 6

ˆ
|vj |>αj

|vj |dx→ 0,

so that (vj − Tαjvj) converges to zero in measure.
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We write ν1 := ((νx)x∈Ω, 0, n/a) and ν2 :=
(
(δ0)x∈Ω, λ, (ν∞x )x∈Ω̄

)
and conclude from

Theorems 2.5 and 2.6 that (Tαjvj) generates ν1 ∈ Yp(Ω,V) and (vj − Tαjvj) generates
ν2 ∈ Yp(Ω,V).

Let now r > 1 be a number such that r < p and r 6 q. We claim that Tαjvj − vj → 0
in Lr(Ω,V). To see this, write

‖Tαjvj − vj‖rLr(Ω) 6 c
ˆ
|vj |>αj

|vj |rdx 6 c
ˆ
|vj |>αj

|vj |p

αp−rj

dx 6
c

αp−rj

ˆ
Ω
|vj |pdx→ 0.

In particular, ATαjvj → Av in W−`,r(Ω,W).
We now aim to find a sequence of cut off functions ρj ∈ C∞c (Ω, [0, 1]) such that ρj ↑ 1

that makes A
(
ρj(Tαjvj − v)

)
well behaved. First, note that for any such sequence we

have that (ρjTαjvj) is p-uniformly integrable and that
(
(1− ρj)(Tαjvj − v)

)
converges in

measure to zero.

vj :=
[
ρj(Tαjvj − v) + v

]
+
[
(vj − Tαjvj) + (1− ρj)(Tαjvj − v)

]
,

where the first term converges weakly in Lp to v and generates ν1 and the second term
converges in measure to zero and generates ν2. It remains to preserve the differential
structure, which adds restrictions to (ρj). We write ṽj = Tαjvj − v, so that Aṽj → 0 in
W−`,r(Ω,W) and

A(ρj ṽj) = ρjAṽj +
∑
|α|=`

∑
β<α

(
α

β

)
∂α−βρjAα∂

β ṽj ,(3.1)

where ∂β ṽj → 0 in W−`,p(Ω,W) by the compact Sobolev embedding. Choosing the
derivatives of (ρj) to blow up slow enough near the boundary of Ω, we can obtain that
A(ρj ṽj) → 0 in W−`,r(Ω,W). Since ρj is compactly supported inside Ω, we can mollify
and assume that ρj ≡ 1 and ṽj ∈ C∞c (Ω,V), which we identify with their extension by zero
to Rn without mention. With this new notation, we record that (v+ ṽj) generates ν1 and
(vj − v − ṽj) generates ν2.

We can define, cf. Proposition 2.8,

ûj(ξ) := B†(ξ)F ṽj(ξ), so that D̂kuj(ξ) = B†(ξ)F ṽj(ξ)⊗ ξ⊗k =: F [Hṽj ](ξ) for ξ 6= 0.

We can then infer that ṽj −Buj → 0 in Lr(Rn,V), so that (vj − v−Buj) generates ν2. We
claim that (Dkuj) is p-uniformly integrable in Ω. In that case, we retrieve Buj = T(Dkuj),
where the tensor T is the linear map in (1.5). It will follow that (v + Buj) generates ν1.

To prove this, first note that for α > 0, by the Hörmander–Mikhlin multiplier theorem,
we have

sup
j

ˆ
Rn
|Hṽj −HTαṽj |pdx 6 c sup

j

ˆ
Rn
|ṽj − Tαvj |pdx→ 0 as α→∞

by p-uniform integrability of (ṽj). Let ε > 0 and choose α > 0 such that the right hand
side is less than ε. Let s > p and notice that, again by the Hörmander–Mikhlin multiplier
theorem, we have

‖HTαṽj‖Ls(Rn) 6 c‖Tαṽj‖Ls(Ω) 6 cα,

so that (HTαṽj) is p-uniformly integrable. Then there exists δ > 0 such that L n(E) < ε
implies that ˆ

E
|HTαṽj |pdx 6 ε.

We can therefore estimateˆ
E
|Dkuj |pdx =

ˆ
E
|Hṽj |pdx 6 c

ˆ
Rn
|Hṽj −HTαṽj |pdx+ c

ˆ
E
|HTαṽj |pdx 6 cε,

which concludes the proof of the claim that (Buj) is uniformly integrable.
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It remains to use cut off functions to prove that we can assume that Buj are compactly
supported inside Ω. To this end, let φj ∈ C∞c (Ω, [0, 1]) be such that φj ↑ 1 be such that
B(ρjuj) is well behaved in a sense that we now describe. First, note that since ∂βuj → 0

in Lp(Rn,SLink(Rn,V)), we have by the compact Sobolev embedding that ∂βuj → 0 in
Lp(Ω,V) for |β| < k. In particular, by a Leibniz rule computation similar to the one
in (3.1), we can choose φj to be controlled in Ck(Ω̄) such that B(φjuj) − φjBuj → 0 in
Lp(Ω,W). In particular, (B(φjuj)) is p-uniformly integrable and B(φjuj) − Buj → 0 in
measure in Ω.

It follows that we can assume that uj ∈ C∞c (Ω,U) and we can set bj := vj − v −Buj so
that all the required properties are satisfied. �

Proof of the Decomposition Lemma 1.1. Using the Decomposition Lemma 3.1 with p = q,
we can write vj = v + Buj + bj with (uj) as required and (bj) generating(

(δ0)x∈Ω, λ, (ν∞x )x∈Ω̄

)
.

Consequently, we have that Abj → 0 in W−`,p(Ω,V). Selecting cut-off (test) functions
0 6 ρj ↑ 1. Proceeding like in the proof of Lemma 3.1, we can ensure that A(ρjbj)→ 0 in
W−`,p(Ω,V). Therefore, the same is true of (A((1− ρj)bj)), and clearly (ρjbj), ((1−ρj)bj)
both converge to zero in measure and weakly in Lp. Since all (1 − ρj)bj = bj near ∂Ω, it
is easy to see that ((1− ρj)bj) generates ((δ0)x∈Ω, λ ∂Ω, (ν∞x )x∈∂Ω).

Next, one can use the same Helmholtz decomposition as in Lemma 3.1 to split

ρjbj = BUj +A∗wj ,
which, in this case are such that A∗wj → 0 in Lp(Rn,V). Repeating the cut-off function
argument at the end of the proof of Lemma 3.1, we can define ũj := φjUj in a way such
that B ((1− φj)Uj) → 0 in Lp(Ω,V). We can then conclude that ũj thus defined and
b̃j := (1− ρj)bj +A∗wj + B ((1− φj)Uj) satisfy the conditions of the lemma. �

4. The Jensen inequalities and the lower semi-continuity theorem

We begin this section by proving the Jensen inequalities (1.9). To this end, we state
without proof a so-called localization result:

Proposition 4.1. Let A as in (1.2) be a constant rank operator with potential operator B
such that (1.5) holds. Let 1 < p, q <∞ and

vj ⇀ v in Lp(Ω,V) with Avj → Av in W−`,q(Ω,W)

generate a p-Young measure ν =
(
(νx)x∈Ω, λ, (ν∞x )x∈Ω̄

)
. We write λ = λa(x)L n Ω + λs

for the Radon–Nýkodim decomposition of λ. We have that
(a) For L n-a.e. x0 ∈ Ω, we have that the homogeneous p-Young measure(

(νx0)y∈Q1(0), 0, n/a
)
is generated by (v(x0) + Buj),

where uj ∈ C∞c (Q1(0),U).
Suppose that p = q.

(b) For L n-a.e. x0 ∈ Ω, we have that the homogeneous p-Young measure(
(δ0)x0∈Q1(0), λ

a(x0)L n Q1(0), (ν∞x0)y∈Q1(0)

)
is generated by (Bũj),

where ũj ∈ C∞c (Q1(0),U).
(c) For λs-a.e. x0 ∈ Ω, there exists a (tangent measure of λs at x0) τ ∈ M+

1 (Q̄1(0)),
such that we have that the homogeneous p-Young measure(

(δ0)x0∈Q1(0), τ, (ν∞x0)y∈Q̄1(0)

)
is generated by (BUj),

where Uj ∈ C∞c (Q1(0),U).
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A proof can be found in [26, Sec. 5], see also [3]. Using this result, we can proceed to
prove the Jensen inequalities (1.9). Since the oscillation inequality holds for anisotropic
constraints, we will split the proof in two lemmas.

Lemma 4.2. Suppose that A satisfies conditions (1.3) and (1.4). Let 1 < p, q <∞ and

vj ⇀ v in Lp(Ω,V) with Avj → Av in W−`,q(Ω,W)

generate a p-Young measure ν =
(
(νx)x∈Ω, λ, (ν∞x )x∈Ω̄

)
. Then for all A-quasiconvex

f : V→ R satisfying (1.6), we have that

〈f, νx〉 > f(ν̄x) for L n-a.e. x ∈ Ω.

Lemma 4.3. Suppose that A satisfies conditions (1.3) and (1.4). Let 1 < p <∞ and

vj ⇀ v in Lp(Ω,V) with Avj → Av in W−`,p(Ω,W)

generate a p-Young measure ν =
(
(νx)x∈Ω, λ, (ν∞x )x∈Ω̄

)
. Then for all A-quasiconvex

f : V→ R satisfying (1.6), we have that

〈f∞p , ν∞x 〉 > 0 for λ-a.e. x ∈ Ω.

Proof of Lemma 4.2. Let x0 ∈ Ω be in a set of full Lebesgue measure where ν̄x0 = v(x0)
(a Lebesgue point of v) and Proposition 4.1(a) applies. We have that, for autonomous and
A-quasiconvex Φ ∈ Ep

〈Φ, νx0〉 = lim
j→∞

ˆ
Q1(0)

Φ(v(x0) + Buj(y))dy > Φ(v(x0)).

If f is autonomous and A-quasiconvex but does not necessarily posses a strong recession
function, we employ Lemma 2.9 to approximate f from above with well behaved Φ. The
conclusion follows from the monotone convergence theorem. �

Proof of Lemma 4.3. Let now x0 ∈ Ω be L n-significant such that Proposition 4.1(b) ap-
plies. Letting a well behaved A-quasiconvex integrand Φ approximate f as in the proof of
Lemma 4.2, we note that Φ∞p ∈ Ep is also A-quasiconvex, so we can write

λa(x0)〈Φ∞p , ν∞x 〉 = lim
j→∞

ˆ
Q1(0)

Φ∞p (Bũj(y))dy > Φ∞p (0) = 0,

which implies the required inequality since λ ∈M+(Ω̄).
If we now look at a λs-significant x0 ∈ Ω such that Proposition 4.1(c) applies, we have,

in a similar fashion,

τ(Q̄1(0))〈Φ∞p , ν∞x 〉 = lim
j→∞

ˆ
Q1(0)

Φ∞p (BUj(y))dy > Φ∞p (0) = 0,

and we can conclude as before since τ is a probability measure. �

We conclude this section with a proof of the lower semi-continuity theorem:

Proof of Theorem 1.2. By Proposition 2.7 we have that

lim inf
j→∞

ˆ
Ω
F (x, vj(x))dx >

ˆ
Ω
〈νx, F (x, • )〉dx >

ˆ
Ω
F (x, ν̄x)dx =

ˆ
Ω
F (x, v(x))dx

where the second inequality follows from Lemma 4.2. �
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5. Proof of the characterization result

It remains to prove Theorem 1.3. The Jensen inequalities were already proved in Lem-
mas 4.2 and 4.3. To establish the converse, we proceed with adapting the strategy from
[25, Sec. 3]. We begin with the case of homogeneous Young measures.

Let Q ⊂ Rn be a cube and z ∈ V and define

Yp
h(z) :={

(ν0, ν∞) ∈M+
1 (V)×M+(SV) : there exist uj ∈ C∞c (Q,U) s.t. for all Φ ∈ Ep,a

lim
j→∞

 
Q

Φ(z + Buj(x))dx = 〈ν0,Φ〉+ 〈ν∞,Φ∞p 〉
}
,

where Ep,a(V) denotes the set of autonomous integrands in Ep(Ω,V), i.e.,

Ep,a(V) =

{
Φ ∈ C(V) : Φ∞p (x, z) := lim

t→∞

Φ(tz)

tp
∈ R locally uniformly for z ∈ V

}
.

It is easy to see that, with the norm induced from Ep(Ω,V), we have that Yp
h(z) ⊂

Ep,a(V)∗ ' M(V) ×M(SV), where the isomorphism is given by the map Tp. We record
that, since p > 1, we have that ν̄0 = z for elements of Yp

h(z). Finally, let us mention that
in the “inhomogenization” argument we will only look at measures (ν0, ν∞) ∈ Yp

h that have
ν0 = δ0 or ν∞ ≡ 0, which is completely unlike in [25].

We can now formulate the homogeneous step of the converse of Theorem 1.3:

Proposition 5.1. Suppose that A satisfies conditions (1.3) and (1.4). Let B be a potential
operator for A such that (1.5) holds. Let ν := (ν0, ν∞) ∈M+

1 (V)×M+(SV) and z ∈ V.
Then ν ∈ Yp

h(z) if and only if ν̄0 = z and

〈ν0, f〉+ 〈ν∞, f∞p 〉 > f(z) for all A-quasiconvex f : V→ R satisfying (1.6).

The proof follows the lines of the argument in [25, Sec. 3.3] exactly. We can now proceed
with the proof of the main result, which follows closely the construction in [25, Sec. 3.4],
see also [33, Sec. 3.3.3]:

Proof of Theorem 1.3. We already explained that we need only prove the converse. To this
end, let ν ∈ Yp(Ω,V) be such that λ(∂Ω) = 0. By Theorem 2.5 and 2.6, we have that it
suffices to show that there exist sequences (uj), (ũj) ⊂ C∞c (Ω,U) such that

(v + Buj) generates ((νx)x∈Ω, 0, n/a) and (Bũj) generates ((δ0)x∈Ω, λ, (ν∞x )x∈Ω) .

Indeed, this is enough since we would have that (Buj) is p-uniformly integrable and Bũj →
0 in measure, while both sequences converge weakly to 0 in Lp(Ω,V). In this case, one can
apply the Decomposition Lemma 1.1 to refine the two sequences.

We will test with integrands ϕ ⊗ Φ ∈ C(Ω̄) × Ep,a(V) as given by Lemma 2.4. In
particular, we can assume that ‖ϕ‖Lip, ‖TpΦ‖Lip 6 1, so that

|Φ(z)− Φ(z′)| 6 c|z − z′|(1 + |z|+ |z′|)p−1 for z, z′ ∈ V.
We are working with ‖ • ‖Lip := ‖ • ‖L∞ + ‖D • ‖L∞ . Let ε > 0.

We write g(x) := ϕ(x)〈νx,Φ〉 and g0(x) := 〈νx,Φ0〉 where Φ0 = (1 + | • |)p, so g, g0 ∈
L1(Ω) by the moment condition. We apply Lusin’s theorem in the following way: There
exists a compact set C ⊂ Ω such that, with G = (g, g0),

L n(Ω \ C) < ε|Ω|,
ˆ

Ω\C
|G|dx < ε|Ω|, and G

∣∣
C
is continuous.

Using Tietze’s extension theorem, we can find G̃ =: (g̃, g̃0) ∈ C(Ω̄) such that G̃ = G in C
and ‖G̃‖L∞(Ω) = ‖G‖L∞(C). Moreover, G̃ is uniformly continuous, so we can find δ ∈ (0, ε)

such that |G̃(x) − G̃(x′)| < ε whenever |x − x′| < δ. Finally, consider a regular grid of
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cubes in Rn of side length δ/2; we write Fδ for the family of such cubes that are contained
in Ω. Since L n(∂Ω) = 0, it is clear that |

⋃
Fδ| ↑ |Ω| as δ ↓ 0. We write

Foδ := {Q ∈ Fδ : Q ∩ C 6= ∅}.

Then Foδ covers C ∩
⋃
Fδ, so that we can assume by taking δ smaller thatˆ

Ω\
⋃
Foδ
|G|dx < ε|Ω|.

For each cube Q ∈ Foδ , we choose an arbitrary xQ ∈ Q ∩ C that are Lebesgue points of
the barycentre v(x) = ν̄x and such that the oscillation Jensen inequality holds at xQ. We
also record that

|G(xQ)− G̃(x)| < ε for all x ∈ Q.
We can also assume that we have a piecewise constant approximation of the barycentre in
Lp(Ω,V) ˆ

Ω
|v − vε|pdx 6 ε|Ω|, where vε :=

∑
Q∈Foδ

v(xQ)1Q.

As a consequence of Proposition 5.1 with ν0 = νxQ , ν
∞ = 0 we can find uεQ ∈ C∞c (Q,U)

such that∣∣∣∣〈νxQ ,Φ〉 −  
Q

Φ(ν̄xQ + BuεQ(x))dx

∣∣∣∣+

∣∣∣∣〈νxQ ,Φ0〉 −
 
Q

Φ0(ν̄xQ + BuεQ(x))dx

∣∣∣∣ < ε.

Recall here that Φ0 = (1 + | • |)p. We can begin to estimate∣∣∣∣∣
ˆ

Ω
gdx−

ˆ
⋃
F0
δ

g̃dx

∣∣∣∣∣ 6
ˆ

Ω\
⋃
Foδ
|g|dx+

ˆ
F oδ

|g − g̃|dx 6 2ε|Ω|,

so that ∣∣∣∣∣∣
ˆ
⋃
F0
δ

g̃dx−
∑
Q∈Foδ

|Q|g(xQ)

∣∣∣∣∣∣ 6 ε|Ω|.
We can estimate further∣∣∣∣∣∣

∑
Q∈Foδ

(
|Q|g(xQ)− ϕ(xQ)

ˆ
Q

Φ(ν̄xQ + BuεQ(x))dx

)∣∣∣∣∣∣ 6 ε|Ω|.
We then have that∑

Q∈Foδ

ϕ(xQ)

ˆ
Q

Φ(ν̄xQ + BuεQ(x))dx =
∑
Q∈Foδ

ˆ
Q
ϕ(x)Φ(ν̄xQ + BuεQ(x))dx+ E1,

where

|E1| 6 c
∑
Q∈Foδ

ˆ
Q
|ϕ(xQ)− ϕ(x)|Φ0(ν̄xQ + BuεQ(x))dx 6 cδ

∑
Q∈Foδ

|Q|(〈νxQ ,Φ0〉+ ε)

6 cδ
∑
Q∈Foδ

(ˆ
Q
〈νx,Φ0〉dx+ 2ε|Q|

)
6 cδ

(ˆ
Ω
〈νx,Φ0〉dx+ 2ε|Ω|

)
,

(5.1)

where the integral is finite by the moment condition. We make and recall the abbreviations

uε :=
∑
Q∈Foδ

uεQ ∈ C∞c (Ω,U) and vε =
∑
Q∈Foδ

v(xQ)1Q ∈ Lp(Ω,V).
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We next look at∑
Q∈Foδ

ˆ
Q
ϕ(x)Φ(v(xQ) + BuεQ(x))dx =

∑
Q∈Foδ

ˆ
Q
ϕ(x)Φ(v(x) + BuεQ(x))dx+ E2,

where, by using ‖ϕ‖L∞ 6 1,

|E2| 6 c
ˆ

Ω
|v − vε| (1 + |v + Buε|+ |vε + Buε|)p−1 dx

6 c‖v − vε‖Lp(Ω)‖1 + |v + Buε|+ |vε + Buε|‖p−1
Lp(Ω)

6 c‖v − vε‖Lp(Ω)

((ˆ
Ω

Φ0(vε + Buε)dx
)(p−1)/p

+ ‖v − vε‖p−1
Lp(Ω)

)
Since ‖v − vε‖Lp(Ω) 6 (ε|Ω|)1/p and the estimation

ˆ
Ω

Φ0(vε + Buε)dx 6 c
(ˆ

Ω
〈νx,Φ0〉dx+ ε|Ω|

)
from (5.1), we are very close to conclude. Writingˆ

Ω\
⋃
Foδ
ϕ(x)Φ(v(x) + Buε(x))dx 6 c

ˆ
Ω\

⋃
Foδ

(1 + |v|)pdx 6 cε|Ω|

and collecting estimates, we have that∣∣∣∣ˆ
Ω
ϕ(x)〈νx,Φ〉dx−

ˆ
Ω
ϕ(x)Φ(v(x) + Buε(x))dx

∣∣∣∣→ 0 as ε ↓ 0.

We have thus showed that the oscillation measure has the right gradient structure.
We carry on with the concentration part. We now consider the functions h(x) :=

ϕ(x)〈ν∞x ,Φ∞p 〉 and h0(x) := 〈ν∞x ,Φ∞0,p〉, where we recall that Φ0 = (1 + | • |)p. We have
that H := (h, h0) ∈ L1(Ω; dλ). As in the previous case, we will apply Lusin’s theorem
and Tietze’s extension theorem to find a compact set K ⊂ Ω and a continuous extension
H̃ =: (h̃, h̃0) ∈ C(Ω̄), such that

λ(Ω \K) < ελ(Ω),

ˆ
Ω\K
|H|dλ < ελ(Ω), H̃

∣∣
K

= H, ‖H̃‖L∞(Ω) = ‖H‖L∞(K).

We then choose δ ∈ (0, ε) and a collection Fcδ of cubes in exact analogy with the case of
the oscillation measures, by replacing L n with λ. At this stage we also use the assumption
λ(∂Ω) = 0. Finally, for each Q ∈ Fcδ , we choose xQ ∈ Q ∩K such that the concentration
Jensen inequality holds at xQ.

By Proposition 5.1 with ν0 = δ0 and ν∞ = |Q|−1λ(Q)ν∞xQ we can find ũεQ ∈ C∞c (Q,U)

such that ∣∣∣∣Φ(0) +
λ(Q)

|Q|
〈ν∞xQ ,Φ

∞
p 〉 −

 
Q

Φ(BũεQ(x))dx

∣∣∣∣ < ε,∣∣∣∣Φ0(0) +
λ(Q)

|Q|
〈ν∞xQ ,Φ

∞
0,p〉 −

 
Q

Φ0(BũεQ(x))dx

∣∣∣∣ < ε.

We can then estimateˆ
Ω
ϕdxΦ(0) +

ˆ
Ω
hdλ =

ˆ
Ω\

⋃
Fcδ
ϕdxΦ(0) +

∑
Q∈Fcδ

|Q|ϕ(xQ)

(
Φ(0) +

λ(Q)

|Q|
〈ν∞xQ ,Φ

∞
p 〉
)

+ E3,
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where

|E3| 6
∑
Q∈Fcδ

ˆ
Q
|ϕ− ϕ(xQ)|dx|Φ(0)|+ 2ελ(Ω) +

ˆ
Q
|ϕ||h̃− h(xQ)|dλ 6 δ|Ω|+ 3ελ(Ω).

We next focus on∣∣∣∣∣∣
∑
Q∈Fcδ

(
|Q|ϕ(xQ)

(
Φ(0) +

λ(Q)

|Q|
〈ν∞xQ ,Φ

∞
p 〉
)
− ϕ(xQ)

ˆ
Q

Φ(BũεQ(x))dx

)∣∣∣∣∣∣ 6 ε|Ω|.
Defining ũε := ũεQ on each Q ∈ Fcδ and extending by zero to the rest of Ω, we obtain
ũε ∈ C∞c (Ω,U). Further, we have∑

Q∈Fcδ

ϕ(xQ)

ˆ
Q

Φ(BũεQ(x))dx =

ˆ
⋃
Fcδ
ϕ(x)Φ(BũεQ(x))dx+ E4,

where

|E4| 6 cδ
∑
Q∈Fcδ

ˆ
Q

Φ0(BũεQ(x))dx 6 cδ

ε|Ω|+ ∑
Q∈Fcδ

|Q|Φ0(0) + λ(Q)h0(xQ)


6 cδ

(
ε|Ω|+

ˆ
⋃
Fcδ
|h0|dλ

)
6 cδ (ε|Ω|+ λ(Ω))

where the last integral can be computed explicitly. Collecting, we proved that∣∣∣∣ˆ
Ω
ϕdxΦ(0) +

ˆ
Ω
〈ν∞x ,Φ∞p 〉dλ(x)−

ˆ
Ω
ϕ(x)Φ(BũεQ(x))dx

∣∣∣∣→ 0 as ε ↓ 0.

The proof is complete. �
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